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Abstract

The Kestelman-Borwein-Ditor Theorem, on embedding a null se-
quence by translation in (measure/category) ‘large’ sets, has two gen-
eralizations. Miller [MilH] replaces the translated sequence by a ‘se-
quence homotopic to the identity’. The authors, in [BOst9], replace
points by functions: a uniform functional null sequence replaces the
null sequence and translation receives a functional form. We give a
unified approach to results of this kind. In particular, we show that (i)
Miller’s homotopy version follows from the functional version, and (ii)
the pointwise instance of the functional version follows from Miller’s
homotopy version.
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We begin by recalling the following result, due in this form in the measure
case to Borwein and Ditor [BoDi], but already known much earlier albeit in
somewhat weaker form by Kestelman ([Kes] Th. 3), and rediscovered by
Trautner [Trau] (see [BGT] p. xix and footnote p. 10). Below, for P a set
of reals (or property) that is Lebesgue measurable/has the Baire property
(‘is Baire’ for short), we say that ‘P holds for generically all £’ to mean that
{t : t ¢ P} is null/meagre.

The Kestelman-Borwein-Ditor Theorem ( KBD Theorem). Let
{zn} — 0 be a null sequence of reals. If T is measurable and non-null/Baire
and non-meagre, then for generically all t € T there is an infinite set M,
such that

{t+zm:meM} CT.

Furthermore, for any density point u of T, there is t € T arbitrarily close
to u for which the above holds.

We are concerned in this paper with what we loosely term ‘smooth gen-
eralizations’ of the KBD Theorem, in that some form of differentiability is
present in the assumptions concerning mappings on the pairs (¢,z). In a
companion paper [BOst11] we derive a common non-smooth generalization
in which only continuity is assumed (the mappings are homeomorphisms).

We are also concerned by a further aspect — the ‘pointwise’ nature of
theorem, because of the sequence of points z, which is in the datum. The
KBD Theorem was first generalized by Harry Miller [MilH], as below, by
replacing ¢t + z with a more general function H(t, z) (originally defined on
R x R). We need a definition (the terminology is ours).

Definition (Miller homotopy, cf. [MilH]). Let U be open and let [
be a non-degenerate interval (possibly infinite, or semi-infinite). We call a
function H : U x I — R a Miller homotopy acting on U with distinguished
point zy if:

(i) H(u, z) = u, for all u € U,

(ii) H has continuous first-order partial derivatives H; and Hs, and

(iii) Ha(u,29) > 0, for all u € U.

Note. As the function H is differentiable, and hence jointly continuous, it
is natural to regard it as establishing a homotopy to the identity (albeit utiliz-
ing a distinguished point 2y other than 0, and some interval about z; instead



of the customary unit interval). Condition (iii) is only a non-stationarity
requirement (map z — —z, 29 — —2o, if Ha(u, 29) < 0).

Convention. We will refer to the distinguished point z; as the ‘null
point’ and any sequence z, — 2y converging to the null point as a ‘null
sequence’. Thus in the case H(u,z) = u + z with z5 = 0, the sequence
zn — Zp is a null sequence in the customary sense.

Miller’s Homotopy Theorem. Let H be a Miller homotopy acting on
an open set U with distinguished point zy. Let z, — zy be a null sequence
and let T'C U be measurable and non-null/Baire and non-meagre. Then, for
generically all t € T, there is an infinite set M, such that

{H(t,z) :meM;} CT.

Stated thus, this too is a ‘pointwise’ theorem, but it is noteworthy that
the substitutions,

z,(t) := H(t,z,) — t and u,(t) =t + z,(1), (1)

allow a functional reinterpretation of the theorem (we have used bold type
to distinguish functions from points). We may regard the sequence of func-
tions {z,(t)}, which converge to zero (see below), as the datum and now the
conclusion of Miller’s theorem reads: {t+ z,,(t) : m € M;} C T, or, in short,

{u,(t) :me M} CT. (2)

Thus Miller’s Theorem becomes simply a functional version of the KBD
Theorem. We now quote one of the functional generalizations which goes
beyond the KBD setting. This involves a continuously differentiable function
f(.); see [BOst9] for the proof. It will be clear from its statement that the
case case f(u) = u yields the Miller Theorem in the form (2). We will need
several definitions.

Definition (uniformity - pointwise). We say that the null sequence
{zn,} — 20 is a uniformly null sequence, or that z, — 2o uniformly, if for
some positive constant K,

|20 — 20| < K277, for all n € w.
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Definition (uniformity - functionwise). We say that the sequence of
functions {z,(.)} is a uniformly null function sequence on U, or that z,(.) —
2o uniformly on U, if each z,(.) is measurable/Baire and, for some positive
constant K,

max{|z,(u)|} < K-27" for all n € w and all u € U.

Definition (bi-Lipschitz). We call a uniformly null sequence {z,(.)}
bi-Lipschitz if the mappings ¢ — u,(t) are bi-Lipschitz uniformly in n, i.e.
for some «, # and all n we have

0<a§1+M§ﬁ, for u # v.

In particular z/, is bounded away from —1, except perhaps at countably many
points.

The following theorem is proved in [BOst9] (where further improvements,
motivated by convex analysis, are given); it is manifestly a ‘functionwise’
theorem.

Theorem (Generic Reflection Theorem). Let T' be measurable/Baire.
Let f(.) be continuously differentiable and non-stationary at generically all
points. Let {z,(.)} — 0 be a uniformly null sequence that is bi-Lipschitz with

1+ f'(t)z,(t) > 0, for all n, (3)

for generically all t € T. Then, for generically all t € T, there is an infinite
set M, such that

f(u,) +t— f(t) €T, for all n € M. (4)

In particular, if [ is linear and f(t) = at with « # 0, then, for generically
all w e T, there is an infinite set M, such that

au,(u) + (1 — a)u € T for all n € M,. (5)

Setting v = 1 in (5) thus yields (2). We will see that the apparently
stronger form — the Homotopic Reflection Theorem — is equivalent to this.
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Proposition 1 (Canonical Homotopy). Let U be an open set and let
H be a Miller homotopy acting on U with distinguished point zy. Let f be
continuously differentiable and increasing on U. Then

F(u,z) :=u+ f(H(u,z2)) — f(u)

1s a Miller homotopy acting on U with distinguished point zy. In particular,
the canonical homotopy

Fu, 2) == u+ f(u+2) = f(u)
s a Miller homotopy acting on U with distinguished point zo = 0.

Proof. This is clear since F(u,z2p) = u, and Fy(u, z9) = f'(u)Ha(u, 29).
0

We call the particular case canonical for two reasons. In the first place,
if F(u,z) := f(H(u,z2))+ g(u) is a Miller homotopy, then the substitution
z = zp yields g(u) = u — f(u), making the choice of ¢(.) unique, and H is
recoverable from F'. The second reason is even more fundamental; we defer
this to the end of the paper.

Proposition 2 (Composition Theorem). Let U be an open set and
let H and F' be Miller homotopies acting on U with distinguished point z.
Then

G(u,z) = F(H(u,z), 2)

is a Miller homotopy acting on some open subset of U with distinguished
point zg.

Proof. As H(u,zy) = u, by continuity, for any u € U, there is a neigh-
bourhood W x J of (u, zp), so that H maps W x J into U and W C V. The
rest is clear since

Go(u,z0) = Fi(H(u,20),20)Hz2(u, z0) + Fo(H(u, 2), 29)
= Hy(u,20) + Fo(H(u, 2), 20) > 0. O

Proposition 3. Let H be a Miller homotopy acting on an open set U
with distinguished point zy. Let z, — zg uniformly. Put

Zn(u) = H(u, z,) — u.
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Then

(i) {20(w)} — 0,

(ii) {zn(u)} is locally uniformly null in U,

(iii) for some large enough N, {z,(u) : n > N} is locally bi-Lipschitz in
U.

Proof. Since Hi(t,zy) = 1, for any ¢, we may invoke the Mean Value
Theorem to write the Taylor expansion for (u, z) near (¢, zg) as

H(u,z) =t+ (u—1t)+ Hao(t, 20)(z — 20) + o(||(u — t, 2 — z0)||). (6)

Hence,
zn(u) = Ha(t, 20) (20 — 20) + o([|(u — £, 20 — 20)|])- (7)

Thus the sequence has limit zero, and uniformity is clear provided u is close
enough to t. Again by the Mean Value Theorem, for some w,, = wy,(u, v), we
have

H(u, z,) — H(v, z,) = Hy(wy, 2,)(u — v),
SO

Zn(u) — 2z, (v) = (Hy(wp, 2,) — 1)(u — v).
Hence
Zy(u) — 2, (0)

u—v

But H(t, 20) = 1, so near (f, 29) we can ensure that 3 < Hi(wy, z,) < 2. O

1+ = Hi(wy, 2n).

Remark. Formula (7) indicates that in practice {z,(u)} is close to
monotonic if {z,} is (see e.g. [BGT] Section 1.7.6 for slow decrease and
related matters).

Proposition 4. Let H be a Miller homotopy acting on an open set U
with distinguished point zy. Let z, — zg monotonically. Then the functions

hn(t) := H(t, z,)

are homotopic to the identity, and local diffeomorphisms, hence locally ‘bi-
Lipschitz’ (thus preserve null sets both ways); moreover

hy(t) — t, ultimately monotonically.



Proof. Invertibility of h, follows from the Inverse Function Theorem.
Note that since Hi(to,20) = 1, for any ¢y, we may invoke the Mean Value
Theorem to write the Taylor expansion near (to, z9) as

H(t,z) =to+ (t — to) + Ha(to, 20)(z — 20) + o(||(t — to, 2 — 20)]])-
From here we deduce that
hn(t) = t+ Hy(to, 20)(2n — 20) +0(||(t — to, 20 — 20)||), as t — to and n — oo.

Thus h,, is almost a shift and h,(¢) — ¢. The ultimate monotonicity, at any

t, follows from the continuity and positivity of the partial derivative H, at
(t, Z()). O

Corollary (Miller’s Theorem) The functionwise Generic Reflection
Theorem implies the pointwise Miller Homotopy Theorem.

Proof. Indeed, the definition (1) and the argument following it are now
justified by Proposition 3. So Miller’s Theorem follows from the Generic
Reflection Theorem by taking f(u) = u. O

Now we obtain a pointwise converse: Miller’s Homotopy Theorem implies
the pointwise Homotopic Generic Reflection Theorem.

Theorem (Pointwise Homotopic Generic Reflection). Let U be
an open set and let H be a Miller homotopy acting on U with distinguished
point zo. Let T'C U be measurable and non-null/Baire and non-meagre and
let z, — z9. Then Miller’s theorem implies that, for genmerically all u € T,
there is an infinite Ml,, such that

{f(um)+u—f(u)mEMu}:{f(H(u,zm))—l—u—f(u) meMu} gT
In particular, for H(t,z) =t+ z and zy = 0, we have
{flu+zpy)+u— f(u):meM,} CT.

Proof. Since
is a Miller homotopy, we may apply Miller’s Theorem to the homotopy F'(t, z)

to obtain
{F(t,zp) :m e M} CT. O
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A first homotopic generalization of the Generic Reflection theorem may
be obtained by taking a function sequence z,(u) and transforming by a Miller
homotopy H. Then,

Zp(u) = H(u, zp(u)) — u

18 uniformly null and locally bi-Lipschitz. However, a conclusion in the form
{f(H(u, 2m(u))) +u— f(u) :m €M} C T

is already available, in the equivalent form
{f(u+Zn(u)) +u—f(u) :meM,} CT.

Our final result is obtained by replacing the f construction here by the obvi-
ous generalization, suggested by Propositions 1 and 2, a composition Miller
homotopy F. We see below that the Generic Reflection Theorem implies such
a generalization of itself. We thus have the following result.

Theorem (Homotopic Generic Reflection). Let H and F' be Miller
homotopies acting on an open set U with distinguished point zy. Let T C U
be non-null/non-meagre and let {z,(u)} be a uniformly null sequence that is
bi-Lipschitz on U (so converging to zp). If

1+ [Fa(u, 20) + Ha(u, 20)]z,,(u) > 0, for all n,

for generically all w € U, then, for generically all w € T, there is an infinite
M., such that
{F(H(u,2zm(u)), zm(uw) :m e M,} CT.

In particular, let f be continuously differentiable and non-stationary in
U. If, for u e U,
1+ f'(u)Hq(u, 29) > 0, for all n,

(in particular if 14 f'(u) > 0 on U), then, for generically all uw € T, there
s an infinite M, such that

{f(un(u))+u—f(u) :m € Mu} = {f(H(u, zm(u)))+u—f(u) :m € My} CT.
Proof. According to Proposition 2 the equation

G(t,z) = F(H(t, z),2)



defines a homotopy provided the composition is valid. Let
Z,(t) ;= F(H(t,z,(t)),2,(t)) —t = G(t,2,(t)) — t.
Thus

1+2,(t) = Fi(H(t,2(1)), 20 (1)) Hi(t, 20 (1))
HFL(H (20 (1)), 20 (1)) Ha(, 20 (1)) + F2(H (¢, 20 (1)), 20 (1))]2,, ().

Then, by Proposition 3, this is locally a uniformly null, bi-Lipschitz sequence
tending to zero. Hence, the Generic Reflection Theorem (applied with f(u) =
u) yields the desired conclusion:

{t+Z,(t):meM,} CT,

or

{F(H(u,2m (1)), zm(u)) :m e M,} CT.

Remarks.

1. The Homotopic Reflection Theorem follows from the special linear case
f(u) = u of the Generic Reflection Theorem. In turn the Homotopic Reflec-
tion Theorem may be applied to F'(t,z) = f(t + z) — f(t) + u, for a general
f(.), to obtain the conclusion of the Generic Reflection Theorem. Thus the
special linear case f(u) = w contains the nub; it is actually equivalent to
the general case of the Generic Reflection Theorem. This is ultimately the
reason for regarding the homotopy in Proposition 1 as canonical.

2. There is an alternative approach to the Homotopic Reflection Theorem.
One can adapt the proof in [BOst9] of the Generic Reflection Theorem, as
follows. Firstly, we need to define the analogue of the f-congugate: the
F-conjugate of {z,,(t)} is defined to be

Z(t) := F(H(t,2m(t)),2m(t)) — F(t,20) = F(H(t,2,(t)), zm(t)) — t.
Secondly, as may be expected from Proposition 3, we set

fu(t) = F(H(t, 24(1)), 20 (1))



so that f,(u) is increasing for u near t, (with at most countably many ex-
ceptions) provided

1+ [Fy(t, 20) + Ha(t, 20)|2.,(£) > 0,

since Hi(to, z0) = Fi(to, z0) = 1.
Now by (6) applied to F' we have

fu(t) = H(t, 20 (t)) + (t = to) + Fa(to, 20)(2n(t) = 20) +0([|(t = t0, 2n(t) = 20)]),

since H (to, z9) = to. Applying (6) again, but now to H, we have

fa(t) =t + [Ha(to, 20) + Fa(to, 20)](zn(t) — 20) + o([|(t — to, Zn(t) — 20)|])-

Hence, since Hy and F;, are continuous, for u sufficiently close to ¢ and n
large enough, we have the critical inequality

for some constant M. This is all that is needed for the proof in [BOst9] to
proceed.

3. The overall conclusion is that all the functional reflection theorems are
equivalent. This is because, in the limit, all the null sequences act like first-
order infinitesimals added to the identity. Thus, despite its being restricted to
the pointwise case, Miller’s Theorem falls barely short of the full story. The
essence of the KBD Theorem is that it applies to a wide class of sequences
homotopic to the identity, as Miller was the first to observe.
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