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Abstract
The key vehicle of the recent development of a topological theory of

regular variation based on topological dynamics [BOst13], and embrac-
ing its classical univariate counterpart (cf. [BGT]) as well as fragmen-
tary multivariate (mostly Euclidean) theories (eg [MeSh], [Res], [Ya]),
are groups with a right-invariant metric carrying �ows. Following the
vector paradigm, they are best seen as normed groups. That concept
only occasionally appears explicitly in the literature despite its fre-
quent disguised presence, and despite a respectable lineage traceable
back to the Pettis closed-graph theorem, to the Birkho¤-Kakutani
metrization theorem and further back still to Banach�s Théorie des
opérations linéaires. We collect together known salient features and
develop their theory including Steinhaus theory uni�ed by the Cate-
gory Embedding Theorem [BOst11], the associated themes of subaddi-
tivity and convexity, and a topological duality inherent to topological
dynamics. We study the latter both for its independent interest and
as a foundation for topological regular variation.
Classi�cation: 26A03
Keywords: multivariate regular variation, topological dynamics,

�ows, convexity, subadditivity, quasi-isometry, Souslin-graph theorem,
automatic continuity, density topology, Lipschitz norm.
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1 Introduction

Group norms, which behave like the usual vector norms except that scaling
is restricted to the basic scalars of group theory (the units �1 in an abelian
context and the exponents �1 in the non-commutative context), have played
a part in the early development of topological group theory. Although ubiq-
uitous, they lack a clear and uni�ed exposition. This lack is our motivation
here, since they o¤er the right context for the recent theory of topological reg-
ular variation. This extends the classical theory (for which see, e.g. [BGT])
from the real line to metrizable topological groups. Normed groups are just
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groups carrying a right-invariant metric. The basic metrization theorem for
groups, the Birkho¤-Kakutani Theorem of 1936 ([Bir], [Kak], see [Kel], Ch.6
Problems N-R, [Klee], [Bour] Part 2, Section 4.1, and [ArMa], compare also
[Eng] Exercise 8.1.G and Th. 8.1.21), is usually stated as asserting that
a �rst-countable Hausdor¤ group has a right-invariant metric. It is prop-
erly speaking a �normability�theorem in the style of Kolmogorov�s Theorem
([Kol], or [Ru-FA2], Th. 1.39; in this connection see also [Jam], where strong
forms of connectedness are used in an abelian setting to generate norms), as
we shall see below. Indeed the metric construction in [Kak] is reminiscent
of the more familiar construction of a Minkowski functional (for which see
[Ru-FA2] Sect. 1.33), but is implicitly a supremum norm �as de�ned below;
in Rudin�s derivation of the metric (for a topological vector space setting,
[Ru-FA2] Th. 1.24) this norm is explicit. Early use by A. D. Michal and
his collaborators was in providing a canonical setting for di¤erential calculus
(see the review [Mich] and as instance [JMW]) and included the noteworthy
generalization of the implicit function theorem by Bartle [Bart] (see Section
6). In name the group norm makes an explicit appearance in 1950 in [Pet1] in
the course of his classic closed-graph theorem (in connection with Banach�s
closed-graph theorem and the Banach-Kuratowski category dichotomy for
groups). It reappears in the group context in 1963 under the name �length
function�, motivated by word length, in the work of R. C. Lyndon [Lyn2] (cf.
[LynSch]) on Nielsen�s Subgroup Theorem, that a subgroup of a free group
is a free group. (Earlier related usage for function spaces is in [EH].) The
latter name is conventional in geometric group theory despite the parallel
usage in algebra (cf. [Far]) and the recent work on norm extension (from a
normal subgroup) of Bökamp [Bo].
When a group is topologically complete and also abelian, then it admits

a metric which is bi-invariant, i.e. is both right- and left-invariant, as [Klee]
showed in solving a problem of Banach. This context is of signi�cance for the
calculus of regular variation (in the study of products of regularly varying
functions with range a normed group) �see [BOst15].
Fresh interest in metric groups dates back to the seminal work of Milnor

[Mil] in 1968 on the metric properties of the fundamental group of a manifold
and is key to the global study of manifolds initiated by Gromov [Gr1], [Gr2]
in the 1980s (and we will see quasi-isometries in the duality theory of normed
groups), for which see [BH] and also [Far] for an early account; [PeSp] con-
tains a variety of generalizations and their uses in interpolation theory (but
the context is abelian groups).
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The very recent [CSC] (see Sect. 2.1.1, Embedding quasi-normed groups
into Banach spaces) employs norms in considering Ulam�s problem (see [Ul])
on the global approximation of nearly additive functions by additive func-
tions. This is a topic related to regular variation, where the weaker concept
of asymptotic additivity is the key. Recall the classical de�nition of a regu-
larly varying function, namely a function h : R! R for which the limit

@Rh(t) := lim
x!1

h(tx)h(x)�1 (1)

exists everywhere; for f Baire, the limit function is a continuous homomor-
phism (i.e. a multiplicative function). Following the pioneering study of
[BajKar] launching a general (i.e., topological) theory of regular variation,
[BOst13] has re-interpreted (1), by replacing jxj ! 1 with jjxjj ! 1; for
functions h : X ! H; with tx being the image of x under a T -�ow on X
(de�ned in Section 4), and with X;T;H all groups with right-invariant met-
ric (right because of the division on the right) �i.e. normed groups (making
@hX a di¤erential at in�nity, in Michal�s sense [Mi]). In concrete applications
the groups may be the familiar Banach groups of functional analyis, the as-
sociated �ows either the ubiquitous domain translations of Fourier transform
theory or convolutions from the related contexts of abstract harmonic analy-
sis (e.g. Wiener�s Tauberian theory so relevant to classical regular variation �
see e.g. [BGT, Ch. 4]). In all of these one is guaranteed right-invariant met-
rics. Likewise in the foundations of regular variation the �rst tool is the group
H(X) of bounded self-homeomorphisms of the group X under a supremum
metric (and acting transitively on X); the metric is again right-invariant and
hence a group norm. It is thus natural, in view of the applications and the
Birkho¤-Kakutani Theorem, to demand right-invariance.
We show in Section 4 and 6 that normed groups o¤er a natural setting

for subadditivity and for (mid-point) convexity.

2 Metric versus normed groups

This section is devoted to group-norms and their associated metrics. We
collect here some pertinent information (some of which is scattered in the
literature). A central tool for applications is the construction of the subgroup
of bounded homeomorphisms of a given group G of self-homeomorphisms of
a topological group X; the subgroup possesses a guaranteed right-invariant
metric. This is the archetypal example of the symbiosis of norms and metrics,
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and it bears repetition that, in applications just as here, it is helpful to work
simultaneously with a right-invariant metric and its associated group norm.
We say that the group X is normed if it has a group-norm as de�ned

below (cf. [DDD]).

De�nition. We say that jj � jj : X ! R+ is a group-norm if the following
properties hold:
(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;
(ii) Positivity: jjxjj > 0 for x 6= e;
(iii) Inversion (Symmetry): jjx�1jj = jjxjj:
If (i) holds we speak of a group semi-norm; if (i) and (iii) and jjejj = 0

holds one speaks of a pseudo-norm (cf. [Pet1]); if (i) and (ii) holds we speak
of a group pre-norm (see [Low] for a full vocabulary).
We say that a group pre-norm, and so also a group-norm, is abelian, or

more precisely cyclically permutable, if
(iv) Abelian norm (cyclic permutation): jjxyjj = jjyxjj for all x; y:
Other properties we wish to refer to are :
(i)K for all x; y : jjxyjj � K(jjxjj+ jjyjj);
(i)ult for all x; y : jjxyjj � maxfjjxjj; jjyjjg:

Remarks 1
1. Mutatis mutandis this is just the usual vector norm, but with scal-

ing restricted to the units �1: The notation and language thus mimick the
vector space counterparts, with subgroups playing the role of subspaces; for
example, for a symmetric, subbadditive p : X ! R+; the set fx : p(x) = 0g
is a subgroup. Indeed the analysis of Baire subadditive functions (see Sec-
tion 4) is naturally connected with norms, via regular variation. That is why
normed groups occur naturally in regular variation theory.
2. When (i)K , for some constant K; replaces (i), one speaks of quasi-

norms (see [CSC], cf. �distance spaces�[Rach] for a metric analogue). When
(i)ult replaces (i) one speaks of an ultra-norm, or non-Archimedean norm.
3. Note that (i) implies joint continuity of multiplication, while (iii) im-

plies continuity of inversion, but in each case only at the identity, eX , a matter
we return to in Section 3. (Montgomery [Mon1] shows that joint continuity
is implied by separate continuity when the group is locally complete.) See
below for the stronger notion of uniform continuity invoked in the Uniformity
Theorem of Conjugacy.
4. Abelian groups with ordered norms may also be considered, cf. [JMW].
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Remarks 2
Subadditivity implies that jjejj � 0 and this together with symmetry

implies that jjxjj � 0; since jjejj = jjxx�1jj � 2jjxjj; thus a group norm
cannot take negative values. Subadditivity also implies that jjxnjj � njjxjj;
for natural n: The norm is said to be 2-homogeneous if jjx2jj = 2jjxjj; see
[CSC] Prop. 4.12 (Ch. IV.3 p.38) for a proof that if a normed group is
amenable or weakly commutative (de�ned in [CSC] to mean that, for given
x; y; there is m of the form 2n; for some natural number n; with (xy)m =
xmym), then it is embeddable as a subgroup of a Banach space. In the
case of an abelian group 2-homogeneity corresponds to sublinearity, and here
Berz�s Theorem characterizes the norm (see [Berz] and [BOst5]). The abelian
property implies only that jjxyzjj = jjzxyjj = jjyzxjj; hence the alternative
name of �cyclically permutable�. Harding [H], in the context of quantum
logics, uses this condition to guarantee that the group operations are jointly
continuous (cf. Theorem 2 below) and calls this a strong norm. See [Kel] Ch.
6 Problem O (which notes that a locally compact group with abelian norm
has a bi-invariant Haar measure). We note that when X is a locally compact
group continuity of the inverse follows from the continuity of multiplication
(see [Ell]). The literature concerning when joint continuity of (x; y) ! xy
follows from separate continuity reaches back to Namioka [Nam] (see e.g.
[Bou], [HT], [CaMo]).

Convention. For a variety of purposes and for the sake of clarity, when
we deal with a metrizable groupX if we assume a metric dX onX is right/left
invariant we will write dXR or d

X
L ; omitting the superscript and perhaps the

subscript if context permits.
Remarks 3
For X a metrizable group with right-invariant metric dX and identity eX ;

the canonical example of a group-norm is identi�ed in Proposition 2.3 below
as

jjxjj := dX(x; eX):

Remarks 4
If f : R+ ! R+ is increasing, subadditive with f(0) = 0; then

jjjxjjj := f(jjxjj)

is also a group-norm. See [BOst5] for recent work on Baire (i.e., having the
Baire property) subadditive functions. These will appear in Section 3.

6



We begin with two key de�nitions.

De�nition and notation. For X a metric space with metric dX and
� : X ! X a bijection the �-permutation metric is de�ned by

dX� (x; y) := dX(�(x); �(y)):

When X is a group we will also say that dX� is the �-conjugate of dX : We
write

jjxjj� := dX(�(x); �(e));

and for d any metric on X

Bd
r (x) := fy : d(x; y) < rg;

suppressing the superscript for d = dX ; however, for d = dX� we adopt the
briefer notation

B�
r (x) := fy : dX� (x; y) < rg:

Following [BePe] Auth(X) denotes the group of auto-homeomorphisms of X
under composition, but without a topological structure. We denote by idX
the identity map idX(x) = x on X:

Examples A. Let X be a group with metric dX : The following permu-
tation metrics arise naturally in this study.
1. With �(x) = x�1 we refer to the �-permutation metric as the involution-

conjugate, or just the conjugate, metric and write

~dX(x; y) = dX� (x; y) = dX(x�1; y�1); so that jjxjj� = jjxjj = jjx�1jj:

2. With �(x) = g(x) := gxg�1; the inner automorphism, we have (drop-
ping the additional subscript, when context permits):

dX (x; y) = dX(gxg�1; gyg�1); so that jjxjj = jjgxg�1jj:

3. With �(x) = �g(x) := gx; the left shift by g, we refer to the �-
permutation metric as the g-conjugate metric, and we write

dXg (x; y) = dX(gx; gy):

If dX is right-invariant, cancellation on the right gives

dX(gxg�1; gyg�1) = dX(gx; gy); i.e. dX (x; y) = dXg (x; y) and jjxjjg = jjgxg�1jj:
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For dX right-invariant, �(x) = �g(x) := xg; the right shift by g, gives nothing
new:

dX� (x; y) = dX(xg; yg) = dX(x; y):

But, for dX left-invariant, we have

jjxjj� = jjg�1xgjj:

4 (Topological permutation). For � 2 Auth(X); i.e. a homeomor-
phism and x �xed, note that for any " > 0 there is � = �(") > 0 such
that

d�(x; y) = d(�(x); �(y)) < ",

provided d(x; y) < �; i.e
B�(x) � B�

" (x):

Take � = �(x) and write � = �(y); there is � > 0 such that

d(x; y) = d��1(�; �) = d(��1(�); ��1(�)) < ",

provided d�(x; y) = d(�(x); �(y)) = d(�; �) < �; i.e.

B�
�(x) � B"(x):

Thus the topology generated by d� is the same as that generated by d: This
observation applies to all the previous examples provided the permutations
are homeomorphisms (e.g. if X is a topological group under dX): Note that
for dX right-invariant

jjxjj� = jj�(x)�(e)�1jj:
5. For g 2 Auth(X); h 2 X; the bijection �(x) = g(�h(x)) = g(xh) is a

homeomorphism provided right-shifts are continuous. We refer to this as the
shifted g-h-permutation metric

dXg-h(x; y) = dX(g(xh); g(yh));

which has the associated g-hshifted norm

jjxjjg-h = dX(g(xh); g(h)):

6 (Equivalent Bounded norm). Set �d(x; y) = minfdX(x; y); 1g: Then
�d is an equivalent metric (cf. [Eng] Th. 4.1.3, p. 250). We refer to

jjxj�j := �d(x; e) = minfdX(x; e); 1g = minfjjxjj; 1g;
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as the equivalent bounded norm.
7. For A = Auth(X) the evaluation pseudo-metric at x on A is given by

dAx (f; g) = dX(f(x); g(x));

and so
jjf jjx = dAx (f; id) = dX(f(x); x)

is a pseudo-norm.

De�nition (Re�nements). 1 (cf. [GJ] Ch. 15.3 which works with
pseudometrics.) Let � = fdXi : i 2 Ig be a family of metrics on a group X.
The weak (Tychonov) �-re�nement topology on X is de�ned by reference to
the local base at x obtained by a �nite intersections of "-balls about x :\

i2F
Bi
"(x); for F �nite, i.e. B

i1
" (x) \ ::: \Bin

" (x); if F = fi1; :::; ing;

where
Bi
"(x) := fy 2 X : dXi (x; y) < "g:

2. The strong �-re�nement topology on X is de�ned by reference to the local
base at x obtained by a full intersections of "-balls about x :\

d2�

Bd
" (x):

Clearly \
d2�

Bd
" (x) �

\
i2F

Bi
"(x); for F �nite,

hence the name. We will usually be concerned with a family � of conjugate
metrics. We note the following, which is immediate from the de�nition. (For
(ii) see the special case in [dGMc] Lemma 2.1, [Ru-FA2] Ch. I 1.38(c), or
[Eng] Th. 4.2.2 p. 259, which uses a sum in place of a supremum, and
identify X with the diagonal of

Q
d2�
(X; d); see also [GJ] Ch. 15.)

Proposition 2.1. (i) The strong �-re�nement topology is generated by
the metric

dX�(x; y) = supfdXi (x; y) : i 2 Ig:
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(ii) The weak �-re�nement topology for � a countable family of metrics
indexed by I = N is generated by the metric

dX�(x; y) = sup
i2I
2�i

dXi (x; y)

1 + dXi (x; y)
:

Examples B. 1. For X a group we may take � = fdXz : z 2 Xg to
obtain

dX�(x; y) = supfdX(zx; zy) : z 2 Xg;
and if dX is right-invariant

jjxjj� = sup
z
jjzxz�1jj:

2. For X a topological group we may take � = fdXh : h 2 Auth(X)g; to
obtain

dX�(x; y) = supfdX(h(x); h(y)) : h 2 Auth(X)g:
3. In the case A = Auth(X) we may take � = fdAx : x 2 Xg; the

evaluation pseudo-metrics, to obtain

dA�(f; g) = sup
x
dAx (f; g) = sup

x
dX(f(x); g(x)); and

jjf jj� = sup
x
dAx (f; idX) = sup

x
dX(f(x); x):

In Proposition 2.12 we will show that the strong �-re�nement topology re-
stricted to the subgroup H(X) := ff 2 A : jjf jj� < 1g is the topology
of uniform convergence. The weak �-re�nement topology here is just the
topology of pointwise convergence.

The following result illustrates the kind of use we will make of re�nement.

Proposition 2.2 (Symmetrization re�nement) If jxj is a group pre-
norm, then the symmetrization re�nement

jjxjj := maxfjxj; jx�1jg

is a group-norm
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Proof. Positivity is clear, likewise symmetry. Noting that, for any A;B;

a+ b � maxfa;Ag+maxfb; Bg;

and supposing w.l.o.g. that

maxfjxj+ jyj; jy�1j+ jx�1jg = jxj+ jyj;

we have

jjxyjj = maxfjxyj; jy�1x�1jg � maxfjxj+ jyj; jy�1j+ jx�1jg
= jxj+ jyj � maxfjxj; jx�1jg+maxfjyj; jy�1jg
= jjxjj+ jjyjj: �

Remark. One can use summation and take jjxjj := jxj+ jx�1j; as

jjxyjj = jxyj+ jy�1x�1j � jxj+ jyj+ jy�1j+ jx�1j = jjxjj+ jjyjj:

However, here and below, we prefer the more general use of a supremum or
maximum.

Proposition 2.3. If jj � jj is a group-norm, then d(x; y) := jjxy�1jj is a
right-invariant metric; equivalently, ~d(x; y) := d(x�1; y�1) = jjx�1yjj is the
conjugate left-invariant metric on the group.
Conversely, if d is a right-invariant metric, then jjxjj := d(e; x) = ~d(e; x)

is a group-norm.
Thus the metric d is bi-invariant i¤ jjxy�1jj = jjx�1yjj = jjy�1xjj; i.e. i¤

the group-norm is abelian.

Proof. Given a group-norm put d(x; y) = jjxy�1jj: Then jjxy�1jj = 0
i¤ xy�1 = e; i.e. i¤ x = y: Symmetry follows from inversion as d(x; y) =
jj(xy�1)�1jj = jjyx�1jj = d(y; x): Finally, d obeys the triangle inequality,
since

jjxy�1jj = jjxz�1zy�1jj � jjxz�1jj+ jjzy�1jj:

As for the converse, given a right-invariant metric d; put jjxjj := d(e; x):
Now jjxjj = d(e; x) = 0 i¤ x = e: Next, jjx�1jj = d(e; x�1) = d(x; e) = jjxjj;
and so

d(xy; e) = d(x; y�1) � d(x; e) + d(e; y�1) = jjxjj+ jjyjj:
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Also d(xa; ya) = jjxaa�1y�1jj = d(x; y):
Finally d is bi-invariant i¤ d(e; yx�1) = d(x; y) = d(e; x�1y) i¤ jjyx�1jj =

jjx�1yjj: Inverting the �rst term yields the abelian property of the group-
norm. �

The two (inversion) conjugate metrics separately de�ne a left and right
uniformity; taken together they de�ne what is known as the ambidextrous
uniformity, the only one of the three capable of being complete �see [Hal-ET,
p. 63], [Kel] Ch. 6 Problem Q, and [Br-2]. We return to these matters in
Section 3.

De�nitions. 1. For dXR a right-invariant metric on a group X; we are
justi�ed by Proposition 2.2 in de�ning the g-conjugate norm from the g-
conjugate metric by

jjxjjg := dXg (x; eX) = dXR (gx; g) = dXR (gxg
�1; eX) = jjgxg�1jj:

2. For � a family of right-invariant metrics on X we put � = fjj:jjd : D 2
�g; the set of corresponding norms de�ned by

jjxjjd := d(x; eX); for d 2 �:

The re�nement norm is then, as in Proposition 2.1,

jjxjj� := sup
d2�

d(x; eX) = sup
d2�

jjxjjd:

We will be concerned with special cases of the following de�nition.

De�nition ([Gr1], [Gr2], [BH] Ch. I.8). For constants � � 1;  � 0;
the metric spaces X and Y are said to be (�-)-quasi-isometric under the
mapping � : X ! Y if

1

�
dX(a; b)�  � dY (�a; �b) � �dX(a; b) +  (a; b 2 X);

dY (y; �[X]) �  (y 2 Y ):

Corollary 2.4. For � a homomorphism, the normed groups X; Y are
(�-)-quasi-isometric under � for the corresponding metrics i¤ their norms
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are (�-)-quasi-equivalent, i.e.

1

�
jjxjjX �  � jj�(x)jjY � �jjxjjX +  (a; b 2 X);

dY (y; �[X]) �  (y 2 Y ):

Proof. This follows from �(eX) = eY and �(xy�1) = �(x)�(y)�1: �

Remark. Note that p(x) = jj�(x)jjY is subadditive and bounded at
x = e: It will follow that p is locally bounded at every point when we later
prove Lemma 4.3.

The following result (which we use in [BOst14]) clari�es the relationship
between the conjugate metrics and the group structure. We de�ne the "-
swelling of a set K in a metric space X; for a given (e.g. right-invariant)
metric dX ; to be

B"(K) := fz : dX(z; k) < " for some k 2 Kg

and for the conjugate (resp. left-invariant) case we can write similarly

~B"(K) := fz : ~dX(z; k) < " for some k 2 Kg:

We write B"(x0) for B"(fx0g); so that

B"(x0) := fz : jjzx�10 jj < "g:

When x0 = eX ; the ball B"(eX) is the same under either of the conjugate
metrics, as

B"(eX) := fz : jjzjj < "g:

Proposition 2.5. (i) In a locally compact group X; for K compact and
for " > 0 small enough so that the closed "-ball B"(eX) is compact, the
swelling B"=2(K) is pre-compact.
(ii) B"(K) = fwk : k 2 K; jjwjjX < "g = B"(eX)K; where the notation

refers to swellings for dX a right-invariant metric; similarly, for ~dX ; the
conjugate metric, ~B"(K) = KB"(e).

Proof. (i) If xn 2 B"=2(K); then we may choose kn 2 K with d(kn; xn) <
"=2: W.l.o.g. kn converges to k: Thus there exists N such that, for n > N;
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d(kn; k) < "=2: For such n; we have d(xn; k) < ": Thus the sequence xn lies in
the compact closed "-ball centred at k and so has a convergent subsequence.
(ii) Let dX(x; y) be a right-invariant metric, so that dX(x; y) = jjxy�1jj. If

jjwjj < "; then dX(wk; k) = dX(w; e) = jjwjj < "; so wk 2 B"(K): Conversely,
if " > dX(z; k) = dX(zk�1; e); then, putting w = zk�1; we have z = wk 2
B"(K): �

The signi�cance of the following simple corollary is manifold. It explicitly
demonstrates that small either-sided translations �x; �y do not much alter the
norm. Its main e¤ect is on the analysis of subadditive functions.

Corollary 2.6. With jjxjj := dX(x; e); where dX is a right-invariant
metric on X;

j(jjxjj � jjyjj)j � jjxyjj � jjxjj+ jjyjj:
Proof: By Proposition 2.2, the triangle inequality and symmetry holds

for norms, so jjyjj = jjx�1xyjj � jjx�1jj+ jjxyjj = jjxjj+ jjxyjj: �

We now generalize (1), by letting T;X be subgroups of a normed group
G with X invariant under T:

De�nition. We say that a function h : X ! H is slowly varying on X
over T if @Xh(t) = eH ; that is, for each t in T

h(tx)h(x)�1 ! eH ; as jjxjj ! 1 for x 2 X:

We omit mention of X and T when context permits. In practice G will be
an internal direct product of two normal subgroups G = TX:We may verify
the property of h just de�ned by comparison with a slowly varying function.

Theorem 2.7 (Comparison criterion). h : X ! H is slowly varying
i¤ for some slowly varying function g : X ! H and some � 2 H;

lim
jjxjj!1

h(x)g(x)�1 = �:

Proof. If this holds for some slowly varying g and some �;

h(tx)h(x)�1 = h(tx)g(tx)�1g(tx)g(x)�1g(x)h(x)�1 ! �eH�
�1 = eH ;

so h is slowly varying; the converse is trivial. �
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Theorem 2.8. For dX a right-invariant metric on X; the norm jjxjj :=
dX(x; e); as a function from X to the multiplicative positive reals R�+; is
slowly varying in the multiplicative sense, i.e., for any t 2 X;

lim
jjxjj!1

jjtxjj
jjxjj = 1:

Hence also

lim
jjxjj!1

jjgxg�1jj
jjxjj = 1:

More generally, for T a one-parameter subgroup of X; any sub-additive
Baire function p : X ! R�+ with

jjpjjT := lim
x2T; jjxjj!1

p(x)

jjxjj > 0

is multiplicatively slowly varying. (The limit exists by the First Limit Theo-
rem for Baire subadditive functions, see [BOst5].)

Proof: By Corollary 2.6, for x 6= e;

1� jjtjj
jjxjj �

jjtxjj
jjxjj � 1 +

jjtjj
jjxjj ;

which implies slow variation. We regard p as mapping to R�+; the strictly
positive reals (since p(x) = 0 i¤ x = eX). If jjpjjT > 0, we may then take
� = jjpjjT and the assertion follows from the Comparison criterion above.
Explicitly, for x 6= e;

p(xy)

p(x)
=
p(xy)

jjxyjj �
jjxyjj
jjxjj �

jjxjj
p(x)

! jjpjjT � 1 �
1

jjpjjT
= 1: �

Corollary 2.9. If � : X ! Y is a group homomorphism and jj � jjY is
( 1-)-quasi-isometric to jj � jjX under the mapping �, then the subadditive
function p(x) = jj�(x)jjY is slowly varying. For general (�-)-quasi-isometry
the function p satis�es

��2 � p�(z) � p�(z) � �2;

where

p�(z) = lim sup
jjxjj!1

p(zx)p(x)�1 p�(z) = lim inf
jjxjj!1

p(zx)p(x)�1:
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Proof. Subadditivity of p follows from homomorphism, since p(xy) =
jj�(xy)jjY = jj�(x)�(y)jjY � jj�(x)jjY + jj�(y)jjY : Assuming that, for � = 1
and  > 0; the norm jj � jjY is (�-)-quasi-isometric to jj � jjX ; we have, for
x 6= e;

1� 

jjxjjX
� p(x)

jjxjjX
� 1� 

jjxjjX
:

So

lim
jjxjj!1

p(x)

jjxjj = 1 6= 0;

and the result follows from the Comparison criterion (Th. 2.7) and Theorem
2.5.
If, for general � � 1 and  > 0; the norm jj � jjY is (�-)-quasi-isometric

to jj � jjX ; we have, for x 6= e;

��1 � 

jjxjjX
� p(x)

jjxjjX
� �� 

jjxjjX
:

So for y �xed

p(xy)

p(x)
=
p(xy)

jjxyjj �
jjxyjj
jjxjj �

jjxjj
p(x)

�
�
�� 

jjxyjjX

�
� jjxyjjjjxjj �

�
��1 � 

jjxjjX

��1
;

giving, by Theorem 2.8 and because jjxyjj � jjxjj � jjyjj;

p�(y) := lim sup
x!1

p(xy)

p(x)
� �2:

The left-sided inequality is proved dually (interchanging the roles of the upper
and lower bounds on jj�(x)jjY ). �

Remarks. 1. In the case of the general (�-)-quasi-isometry, p exhibits
the normed-groups O-analogue of slow-variation; compare [BGT] Cor. 2.0.5
p. 65.
2. When X = R the weaker boundedness property: �p�(y) < 1 on a

large enough set of y�s�implies that p satis�es

zd � p�(z) � p�(z) � zc; (z � Z)
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for some constants c; d; Z (so is extended regularly varying in the sense of
[BGT] Ch. 2, 2.2 p. 65). Some generalizations are given in Theorems 6.8
and 6.9.
3. We pause to consider brie�y some classical examples. If X = H = R

is construed additively, so that eH = eX = 0 and jjxjj := jx � 0j = jxj in
both cases, and with the action tx denoting t + x; the function f(x) := jxj
is not slowly varying, because (x+ t)� x = t9 0 = eH : On the other hand
a multiplicative construction on H = R�+; for which eH = 1 and jjhjjH :=
j log hj; but with X = R still additive and tx still meaning t+ x; yields f as
having slow variation (as in the Theorem 2.8), as

f(tx)f(x)�1 = (x+ t)=x! 1 = eH as x!1:

We note that in this context the regularly varying functions h on X have
h(tx)h(x)�1 = h(t+ x)� h(x)! at; for some constant a:
Note that, forX = H = R�+; and with txmeaning t�x; since jjxjj = j log xj

(as just noted) is the group-norm, we have here

f(tx)f(x)�1 = jjtxjj=jjxjj = j log txj
j log xj =

j log t+ log xj
j log xj ! 1 = eH ; as x!1;

which again illustrates the content of Theorem 2.7. Here the regularly varying
functions h(tx)h(x)�1 ! eat; for some constant a: See [BGT] Ch. 1 for
background on additive and multiplicative formulations of regular variation
in the classical setting of functions f : G! H with G;H = R or R+:

De�nition. 1. Say that � 2 X is in�nitely divisible if, for each positive
integer n; there is x with xn = �: (Compare Section 3.)
2. Say that the in�nitely divisible element � is embeddable if, for some

one-parameter subgroup T in X; we have � 2 T: When such a T exists it is
unique (the elements �m=n; for m;n integers, are dense in T ); we write T (�)
for it.
Clearly any element of a one-parameter subgroup is both in�nitely di-

visible and embeddable. For results on this see Davies [D], Heyer [Hey],
McCrudden [McC]. With these de�nitions, our previous analysis allows the
First Limit Theorem for subadditive functions (cf. Th. 2.8 and [BOst5]) to
be restated in the context of normed groups.

Proposition 2.10. Let � be in�nitely divisible and embeddable in T (�);
a one-parameter subgroup of X. Then for any Baire subadditive p : X ! R+
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and t 2 T (�),
@T (�)p(t) := lim

s2T; jjsjj!1

p(ts)

jjsjj = jjpjjT ;

i.e., treating the subgroup T (�) as a direction, the limit function is determined
by the direction.

Proof. By subadditivity, p(s) = p(t�1ts) � p(t�1) + p(ts); so

p(s)� p(t�1) � p(ts) � p(t) + p(s):

For s 6= e; divide through by jjsjj and let jjsjj ! 1 (as in Th. 2.8):

jjpjjT � @Tp(t) � jjpjjT : �

De�nition (Supremum metric, supremum norm). Let X have a
metric dX : As before G is a �xed subgroup of Auth(X); for example TrL(X)
the group of left-translations �x (cf. Th. 3.10), de�ned by

�x(z) = xz:

(We consider this in detail in the Section 4.) For g; h 2 G; de�ne the possibly
in�nite number

d̂X(g; h) := sup
x2X

dX(g(x); h(x)):

Put
H(X) = H(X;G) := fg 2 G : d̂X(g; idX) <1g;

and call these the bounded elements of G: For g; h in H(X), we call d̂X(g; h)
the supremum metric and the associated norm

jjhjjH = jjhjjH(X) := d̂X(h; idX) = sup
x2X

dX(h(x); x)

the supremum norm. This metric notion may also be handled in the setting
of uniformities (cf. the notion of functions limited by a cover U arising in
[AnB] Section 2; see also [BePe] Ch. IV Th. 1.2); in such a context excursions
into invariant measures rather than use of Haar measure (as in Section 6)
would refer to corresponding results established by Itzkowitz [Itz].
Our next result justi�es the terminology of the de�nition above.
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Proposition 2.11 (Group-norm properties in H(X)).
If jjhjj = jjhjjH; then jj � jj is a group-norm: that is, for h; h0 2 H(X);

jjhjj = 0 i¤ h = e; jjh � h0jj � jjhjj+ jjh0jj and jjhjj = jjh�1jj:

Proof. Evidently d̂(h; idX) = supx2X d(h(x); x) = 0 i¤ h(x) = idX : We
have

jjhjj = d̂(h; idX) = sup
x2X

d(h(x); x) = sup
y2X

d(y; h�1(y)) = jjh�1jj:

Next note that

d̂(idX ; h � h0) = sup
x2X

d(hh0(x); x) = sup
y2X

d(h(y); h0�1(y)) = d̂(h; h0�1): (2)

But

d̂(h; h0) = sup
x2X

d(h(x); h0(x)) � sup
x2X

[d(h(x); x)+d(x; h0(x))] � d̂(h; id)+d̂(h0; id) <1:

�

Theorem 2.12. The set H(X) of bounded auto-homeomorphisms of a
metric group X is a group under composition, metrized by the right-invariant
supremum metric d̂X .
Proof. The identity, idX ; is bounded. For right-invariance (cf. (2)),

d̂(g � h; g0 � h) = sup
x2X

d(g(h(x)); g0(h(x)) = sup
y2X

d(g(y); g0(y)) = d̂(g; g0): �

Theorem 2.13 ([BePe] Ch. IV Th 1.1). Let d be a bounded metric on
X: As a group under composition, A = Auth(X) is a topological group under
the weak �-re�nement topology for � := fd̂� : � 2 Ag.

Proof. To prove continuity of inversion at F; write H = F�1 and for any
x put y = f�1(x): Then

d�(f
�1(x); F�1(x)) = d�(H(F (y)); H(f(y))) = d�H(F (y); f(y));

and so

d̂�(f
�1; F�1) = sup

x
d�(f

�1(x); F�1(x)) = sup
y
d�H(F (y); f(y)) = d̂�H(f; F ):
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Thus f�1 is in any d̂� neighbourhood of F�1 provided f is in any d̂�H neigh-
bourhood of F:
As for continuity of composition at F;G, we have for �xed x that

d�(f(g(x)); F (G(x))) � d�(f(g(x)); F (g(x))) + d�(F (g(x)); F (G(x)))

= d�(f(g(x)); F (g(x)) + d�F (g(x); G(x))

� d̂�(f; F ) + d̂�F (g;G):

Hence
d̂�(fg; FG) � d̂�(f; F ) + d̂�F (g;G);

so that fg is in the d̂�-ball of radius " of FG provided f is in the d̂�-ball of
radius "=2 of F and g is in the d̂�H-ball of radius "=2 of G: �

Remark: The compact-open topology. In similar circumstances, we
show in Theorem 3.17 below that under the strong �-re�nement topology
Auth(X) is a normed group and a topological group. Rather than use weak
or strong re�nement of metrics in Auth(X), one may consider the compact-
open topology (the topology of uniform convergence on compacts, introduced
by Fox and studied by Arens in [Ar1], [Ar2]). However, in order to ensure the
kind of properties we need (especially in �ows), the metric space X would
then need to be restricted to a special case. Recall some salient features of
the compact-open topology. For composition to be continuous local compact-
ness is essential ([Dug] Ch. XII.2, [Mc], [BePe] Section 8.2, or [vM] Ch.1).
When T is compact the topology is admissible (i.e. Auth(X) is a topo-
logical group under it), but the issue of admissibility in the non-compact
situation is not currently fully understood (even in the locally compact case
for which counter-examples with non-continuous inversion exist, and so ad-
ditional properties such as local connectedness are usually invoked �see [Dij]
for the strongest results). In applications the focus of interest may fall on
separable spaces (e.g. function spaces), but, by a theorem of Arens, if X
is separable metric and further the compact-open topology on C (X;R) is
metrizable, then X is necessarily locally compact and �-compact, and con-
versely (see e.g [Eng] p.165 and 266).

We will now apply the supremum-norm construction to deduce that right-
invariance may be arranged if for every x 2 X the left translation �x has �nite
sup-norm:

jj�xjjH = sup
z2X

dX(xz; z) <1:
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We will need to note the connection with conjugate norms.

De�nition. Recall the g-conjugate norm is de�ned by

jjxjjg := jjgxg�1jj:

The conjugacy re�nement norm corresponding to the family of all the g-
conjugate norms � = fjj:jjg : g 2 Gg will be denoted by

jjxjj1 := sup
g
jjxjjg;

in contexts where this is �nite.

Clearly, for any g;
jjxjj1 = jjgxg�1jj1;

and so jjxjj1 is an abelian norm. Evidently, if the metric dXL is left-invariant
we have

jjxjj1 = sup
g
jjxjjg = sup

z2X
dXL (z

�1xz; e) = sup
z2X

dXL (xz; z): (shift)

One may �nesse the left-invariance assumption, using (shift), as we will see
in Proposition 2.14.

Example C. As H(X) is a group and d̂X is right-invariant, the norm
jjf jjH gives rise to a conjugacy re�nement norm. Working in H(X); suppose
that fn ! f under the supremum norm d̂X : Let g 2 H(X): Then pointwise

lim
n
fn(g(x)) = f(g(x)):

Hence, as f�1 is continuous, we have for any x 2 X;

f�1(lim
n
fn(g(x))) = lim

n
f�1fn(g(x)) = g(x):

Likewise, as g�1 is continuous, we have for any x 2 X;

g�1(lim
n
f�1fn(g(x))) = lim

n
g�1f�1fn(g(x)) = x:

Thus
g�1f�1fng ! idX pointwise.
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This result is generally weaker than the assertion jjf�1fnjjg ! 0; which
requires uniform rather than pointwise convergence.

We need the following notion of admissibility (with the norm jj:jj1 in
mind; compare also Section 3).

De�nitions. 1. Say that the metric dX satis�es the metric admissibility
condition on H � X if, for any zn ! e in H under dX and arbitrary yn;

dX(znyn; yn)! 0:

2. If dX is left-invariant, the condition may be reformulated as a norm
admissibility condition on H � X; since

jjy�1n znynjj = dXL (y
�1
n znyn; e) = dXL (znyn; yn)! 0:

3. We will say that the group X satis�es the topological admissibility condi-
tion on H � X if, for any zn ! e in H and arbitrary yn

y�1n znyn ! e:

Proposition 2.14 (Right-invariant sup-norm).
For any metric dX on a group X; put

HX : = H = fx 2 X : sup
z2X

dX(xz; z) <1g;

jjxjjH : = sup dX(xz; z); for x 2 H:

For x; y 2 H; let �dH(x; y) := d̂X(�x; �y) = supz d
X(xz; yz): Then:

(i) �dH is a right-invariant metric on H; and �dH(x; y) = jjxy�1jjH = jj�x��1y jjH:
(ii) If dX is left-invariant, then �dH is bi-invariant on H, and so jjxjj1 =
jjxjjH and the norm is abelian on H.
(iii) The �dH-topology on H is equivalent to the dX-topology on H i¤ dX

satis�es the metric admissibility condition on H, i.e. for zn ! e in H and
arbitrary yn 2 X;

dX(znyn; yn)! 0:

(iv) In particular, if dX is right-invariant, then H = X and �dH = dX .
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(v) If X is a compact topological group under dX , then �dH is equivalent to
dX :

Proof. (i) The argument relies implicitly on the natural embedding of
X in Auth(X) as TrL(X) (made explicit in the next section). For x 2 X we
write

jj�xjjH := sup
z
dX(xz; z):

For x 6= e; we have 0 < jj�xjjH � 1: By Proposition 2.12, H(X) =
H(X;TrL(X)) = f�x : jj�xjjH < 1g is a subgroup of H(X;Auth(X)) on
which jj � jjH is thus a norm. Identi�ying H(X) with the subset H = fx 2
X : jj�xjj <1g of X; we see that on H

�dH(x; y) := sup
z
dX(xz; yz) = d̂H(�x; �y)

de�nes a right-invariant metric, as

�dH(xv; yv) = sup
z
dX(xvz; yvz) = sup

z
dX(xz; yz) = �dH(x; y):

Hence with
jjxjjH = �dH(x; e) = jj�xjjH;

by Proposition 2.11

jj�x��1y jjH = �dH(x; y) = jjxy�1jjH;

as asserted.
If dX is left-invariant, then

�dH(vx; vy) = sup
z
dXL (vxz; vyz) = sup

z
dXL (xz; yz) =

�dH(x; y);

and so �dH is both left invariant and right-invariant.
Note that

jjxjjH = �dH(x; e) = sup
z
dXL (xz; z) = sup

z
dXL (z

�1xz; e) = sup
z
jjxjjz = jjxjj1:

(ii) We note that

dX(zn; e) � sup
y
dX(zny; y):
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Thus if zn ! e in the sense of dH; then also zn ! e in the sense of dX :
Suppose that the metric admissibility condition holds but the metric dH is
not equivalent to dX : Thus for some zn ! e (in H and under dX) and " > 0;

sup
y
dX(zny; y) � ":

Thus there are yn with
dX(znyn; yn) � "=2;

which contradicts the admissibility condition.
For the converse, if the metric dH is equivalent to dX , and zn ! e in H

and under dX ; then zn ! e also in the sense of dH; hence for yn given and
any " > 0; there is N such that for n � N;

" > �dH(zn; e) = sup
y
dX(zny; y) � dX(znyn; yn):

Thus dX(znyn; yn)! 0; as required.
(iii) If dX is right-invariant, then dX(znyn; yn) = dX(zn; e) ! 0 and the

admissibility condition holds on H. Of course jj�xjjH = supz d
X(xz; z) =

dX(x; e) = jjxjjX and so H = X:
(iv) If X is compact, then H = HX as z ! dX(xz; z) is continuous. If

zn ! e and yn are arbitrary, suppose that the admissibility condition fails.
Then for some " > 0 we have w.l.o.g.

dX(znyn; yn) � ":

Passing down a subsequence ym ! y and assuming that X is a topological
group we obtain

0 = dX(ey; y) � ";

a contradiction. �

As a corollary we obtain the following known result (cf. Theorem 3.3.4
in [vM] p. 101, for a di¤erent proof).

Proposition 2.15. In a �rst countable topological group X the condi-
tion y�1n znyn ! e on X is equivalent to the existence of an abelian norm
(equivalently, a bi-invariant metric).

Proof. By the Birkho¤-Kakutani Theorem, the topology is induced by a
left-invariant metric, dXL say, which is w.l.o.g. bounded (take d = maxfdXL ; 1g,
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which is also left-invariant, cf. Example A6). Then HX = X; and the
topological admissibility condition y�1n znyn ! e on X implies the metric
admissibility condition for dXL : The metric thus induces the norm jjxjjH; which
is abelian, and, by Proposition 2.3, de�nes a bi-invariant metric. Conversely,
if jj:jjX is abelian, then the topological admissibility condition follows from
the observation that

jjy�1n znynjj = jjyny�1n znjj = jjznjj ! 0: �

Application. Let S; T be normed groups. For � : S ! T we de�ne the
possibly in�nite number

jj�jj := supfjj�(s)jjT=jjsjjS : s 2 Sg = inffM : jj�(s)jj �M jjsjj (8s 2 S)g:

� is called bounded if jj�jj is �nite. The bounded elements form a group
G under the pointwise multiplication (��)(t) = �(t)�(t): Clearly jj�jj = 0
implies that �(t) = e; for all t: Symmetry is clear. Also

jj�(t)�(t)jj � jj�(t)jj+ jj�(t)jj � [jj�jj+ jj�jj]jjtjj;

so
jj��jj � jj�jj+ jj�jj:

We say that a function � : S ! T is multiplicative if � is bounded and

�(ss0) = �(s)�(s0):

A function  : S ! T is asymptotically multiplicative if  = ��; where �
is multiplicative and bounded and � is bounded. In the commutative situa-
tion with S; T normed vector spaces, the norm here reduces to the operator
norm. This group norm is studied extensively in [CSC] in relation to Ulam�s
problem. We consider in Section 3 the case S = T and functions � which are
inner automorphisms.

Proposition 2.16 (Magni�cation metric). Let T = H(X) with group
norm jjtjj = dT (t; eT ) and A a subgroup (under composition) of Auth(T ) (so,
for t 2 T and � 2 A; �(t) 2 H(X) is a homeomorphism of X): For any
" � 0; put

d"A(�; �) := sup
jjtjj�"

d̂T (�(t); �(t)):
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Suppose further that X distinguishes the maps f�(eH(X)) : � 2 Ag; i.e.,
for �; � 2 A; there is z = z�;� 2 X with �(eH(X))(z) 6= �(eH(X))(z):
Then d"A(�; �) is a metric; furthermore, d

"
A is right-invariant for trans-

lations by  such that �1 maps the "-ball to the "-ball.
Proof. To see that this is a metric, note that for t = eH(X) = idT we

have jjtjj = 0 and

d̂T (�(eH(X)); �(eH(X))) = sup
z
dX(�(eH(X))(z); �(eH(X))(z))

� dX(�(eH(X))(z�;�); �(eH(X))(z�;�)) > 0:

Symmetry is clear. Finally the triangle inequality follows as usual:

d"A(�; �) = sup
jjtjj�1

d̂T (�(t); �(t)) � sup
jjtjj�1

[d̂T (�(t); (t)) + d̂T ((t); �(t))]

� sup
jjtjj�1

d̂T (�(t); (t)) + sup
jjtjj�1

d̂T ((t); �(t))

= d"A(�; ) + d"A(; �):

One cannot hope for the metric to be right-invariant in general, but if �1

maps the "-ball to the "-ball, one has

d"A(�; �) = sup
jjtjj�"

d̂T (�((t)); �((t))

= sup
jj�1(s)jj�"

d̂T (�(s); �(s)): �

In this connection we note the following.

Proposition 2.17. In the setting of Proposition 2.16, denote by jj:jj" the
norm induced by d"A; then

sup
jjtjj�"

jj(t)jjT � " � jjjj" � sup
jjtjj�"

jj(t)jjT + ":

Proof. By de�nition, for t with jjtjj � "; we have

jjjj" = sup
jjtjj�"

d̂T ((t); t) � sup
jjtjj�"

[d̂T ((t); e) + d̂T (e; t)] � sup
jjtjj�"

jj(t)jjT + ";

jj(t)jjT = d̂T ((t); e) � d̂T ((t); t) + d̂T (t; e)

� jjtjj+ jjjj" � "+ jjjj": �
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Theorem 2.18 (Invariance of Norm Theorem �for (b) cf. [Klee]).
(a) The group-norm is abelian (and the metric is bi-invariant) i¤

jjxy(ab)�1jj � jjxa�1jj+ jjyb�1jj;

for all x; y; a; b; or equivalently,

jjuabvjj � jjuvjj+ jjabjj;

for all x; y; u; v:
(b) Hence a metric d on the group X is bi-invariant i¤ the Klee property
holds:

d(ab; xy) � d(a; x) + d(b; y): (Klee)

In particular, this holds if the group X is itself abelian.
(c) The group norm is abelian i¤ the norm is preserved under conjugacy
(inner automorphisms).

Proof (a) If the group-norm is abelian, then by the triangle inequality

jjxyb�1 � a�1jj = jja�1xyb�1jj
� jja�1xjj+ jjyb�1jj:

For the converse we demonstrate bi-invariance in the form jjba�1jj =
jja�1bjj: In fact it su¢ ces to show that jjyx�1jj � jjx�1yjj; for then bi-
invariance follows, since taking x = a; y = b we get jjba�1jj � jja�1bjj; whereas
taking x = b�1; y = a�1 we get the reverse jja�1bjj � jjba�1jj: As for the claim,
we note that

jjyx�1jj � jjyx�1yy�1jj � jjyy�1jj+ jjx�1yjj = jjx�1yjj:

(b) Klee�s result is deduced as follows. If d is a bi-invariant metric, then
jj � jj is abelian. Conversely, for d a metric, let jjxjj := d(e; x): Then jj:jj is a
group-norm, as

d(ee; xy) � d(e; x) + d(e; y):

Hence d is right-invariant and d(u; v) = jjuv�1jj. Now we conclude that the
group-norm is abelian since

jjxy(ab)�1jj = d(xy; ab) � d(x; a) + d(y; b) = jjxa�1jj+ jjyb�1jj:

Hence d is also left-invariant.
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(c) Suppose the norm is abelian. Then for any g; by the cyclic prop-
erty jjg�1bgjj = jjgg�1bjj = jjbjj: Conversely, if the norm is preserved under
automorphism, then we have bi-invariance, since jjba�1jj = jja�1(ba�1)ajj =
jja�1bjj: �

Remark. Note that, taking b = v = e; we have the triangle inequality.
Thus the result (a) characterizes maps jj � jj with the positivity property as
group pre-norms which are abelian. In regard to conjugacy, see also the Uni-
formity Theorem for Conjugation in Section 11. We close with the following
classical result.

Theorem 2.19 (Normability Theorem for Groups �Kakutani-
Birkho¤). Let X be a �rst-countable group and let Vn be a balanced local
base at eX with

V 4
n+1 � Vn:

Let r =
P1

n=1 cn(r)2
�n be a terminating representation of the dyadic number

r; and put

A(r) :=
1X
n=1

cn(r)Vn:

Then
p(x) := inffr : x 2 A(r)g

is a group-norm. If further X is locally compact and non-compact, then p
may be arranged such that p is unbounded on X, but bounded on compact
sets.

For a proof see that o¤ered in [Ru-FA2] for Th. 1.24 (p. 18-19), which
derives a metrization of a topological vector space in the form d(x; y) = p(x�
y) and makes no use of the scalar �eld, That proof may be rewritten verbatim
with xy�1 substituting for the additive notation x� y (cf. Proposition 2.2).

Remarks.
1. If the group-norm is abelian, then we have the commutator inequality

jj[x; y]jj � 2jjx�1yjj;

because

jj[x; y]jj = jjx�1y�1xyjj � jjx�1yjj+ jjy�1xjj = 2jjx�1yjj:
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The triangle inequality gives only

jj[x; y]jj = jjx�1y�1xyjj � jjx�1y�1jj+ jjxyjj = jjxyjj+ jjyxjj:

2. Take u = f(tx); v = f(x)�1 etc.; then, assuming the Klee Property, we
have

jjf(tx)g(tx)[f(x)g(x)]�1jj = jjf(tx)g(tx)g(x)�1f(x)�1jj
� jjf(tx)f(x)�1jj+ jjg(tx)g(x)�1jj;

showing that the product of two slowly varying functions is slowly varying,
since

f(tx)f(t)�1 ! e i¤ jjf(tx)f(t)�1jj ! 0:

3 Normed versus topological groups

By the Birkho¤-Kakutani Theorem above (Th. 2.19) any metrizable topo-
logical group has a right-invariant equivalent metric, and hence is a normed
group. We show below that a normed group is a topological group provided
its shifts are continuous, i.e. the group is semitopological (see [ArRez]). This
is not altogether surprising: assuming that a group T is metrizable, non-
meagre and analytic in the metric, and that both shifts are continuous, then
T is a topological group (see e.g. [THJ] in [Rog2] p. 352; compare also [Ell]).

As we have seen in Th. 2.3, a group-norm de�nes two metrics: the right-
invariant metric which we denote in this section by dR(x; y) := jjxy�1jj and
the conjugate left-invariant metric, here to be denoted dL(x; y) := dR(x

�1; y�1)
= jjx�1yjj: There is correspondingly a right and left metric topology which
we term the right or left norm topology. We write !R for convergence
under dR etc. Recall that both metrics give rise to the same norm, since
dL(x; e) = dR(x

�1; e) = dR(e; x) = jjxjj; and hence de�ne the same balls
centered at the origin e:

Bd
R(e; r) := fx : d(e; x) < rg = Bd

L(e; r):

Denoting this commonly determined set by B(r); we have seen in Proposition
2.5 that

BR(a; r) = fx : x = ya and dR(a; x) = dR(e; y) < rg = B(r)a;

BL(a; r) = fx : x = ay and dL(a; x) = dL(e; y) < rg = aB(r):
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Thus the open balls are right- or left-shifts of the norm balls at the origin.
This is best viewed in the current context as saying that under dR the right-
shift �a : x! xa is right uniformly continuous, as

dR(xa; ya) = dR(x; y);

and likewise that under dL the left-shift �a : x! ax is left uniformly contin-
uous, as

dL(ax; ay) = dL(x; y):

In particular, under dR we have y !R b i¤ yb�1 !R e; as dR(e; yb�1) =
dR(y; b): Likewise, under dL we have x!L a i¤ a�1x!L e; as dL(e; a�1x) =
dL(x; a):

Thus either topology is determined by the neighbourhoods of the identity
(origin) and according to choice makes the appropriately sided shift continu-
ous. We noted earlier that the triangle inequality implies that multiplication
is jointly continuous at the identity e: Inversion is also continuous at the iden-
tity by the symmetry axiom. To obtain similar results elsewhere one needs to
have continuous conjugation, and this is linked to the equivalence of the two
norm topologies. The conjugacy map under g 2 G (inner automorphism) is
de�ned by

g(x) := gxg�1:

Recall that the inverse of g is given by conjugation under g
�1 and that

g is a homomorphism. Its continuity is thus determined by behaviour at the
identity, as we verify below. We work with the right topology (under dR).

Lemma 3.1. The homomorphism g is right-continuous at any point i¤
it is right-continuous at e:

Proof. This is immediate since x !R a i¤ xa�1 !R e and g(x) !R

g(a) i¤ g(xa
�1)!R g(e); since

jjgxg�1(gag�1)�1jj = jjgxa�1g�1jj: �

We note that by the Generalized Darboux Theorem (see Section 10) if
g is locally norm-bounded and the norm is N-subhomogeneous (i.e. there
are constants �n !1 with �njjzjj � jjznjj); then g is continuous. Working
under dR; we will relate inversion to left shift. We begin with the following.
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Lemma 3.2. If inversion is right-to-right continuous, then
x!R a i¤ a�1x!R e:

Proof. For x !R a; we have, assuming continuity, that dR(e; a�1x) =
dR(x

�1; a�1) ! 0: Conversely, for a�1x !R e we have dR(a�1x; e) ! 0; i.e.
dR(x

�1; a�1) ! 0: So since inversion is right-continuous and (x�1)�1 = x;
etc, we have dR(x; a)! 0: �

Expansion of the last argument yields the following.

Theorem 3.3. The following are equivalent:
(i) inversion is right-to-right continuous,
(ii) left-open sets are right-open,
(iii) for each g the conjugacy g is right-continuous at e; i.e. for every

" > 0 there is � > 0 such that

gB(�)g�1 � B(");

(iv) left-shifts are right-continuous.
Proof. We show that (i)()(ii)()(iii)()(iv).
Assume (i). For any a and any " > 0; by continuity of inversion at a;

there is � > 0 such that, for x with dR(x; a) < �; we have dR(x�1; a�1) < ";
i.e. dL(x; a) < ": Thus

B(�)a = BR(a; �) � BL(a; ") = aB("); (incl)

i.e. left-open sets are right-open, giving (ii). For the converse, we just reverse
the last argument. Let " > 0: As a 2 BL(a; ") and BL(a; ") is left open, it is
right open and so there is � > 0 such that

BR(a; �) � BL(a; "):

Thus for x with dR(x; a) < �; we have dL(x; a) < "; i.e. dR(x�1; a�1) < "; i.e.
inversion is right-to-right continuous, giving (i).
To show that (ii)()(iii) note that the inclusion (incl) is equivalent to

a�1B(�)a � B(");

i.e. to
�1a [B(�)] � B("):
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that is, to the assertion that a(x) is continuous at x = e (and so continuous,
by Lemma 3.1). The property (iv) is equivalent to (iii) since the right shift
is right-continuous and a(x)a = �a(x) is equivalent to a(x) = �a(x)a

�1: �

We may now deduce the following characterization of metric topological
groups.

Theorem 3.4 (Equivalence Theorem). A normed group is a topolog-
ical group under either the right (resp. left) norm topology i¤ each conjugacy

g(x) := gxg�1

is right- (resp. left-) continuous at x = e (and so everywhere), i.e. for
zn !R e and any g

gzng
�1 !R e: (adm)

Equivalently, it is a topological group i¤ left/right shifts are continuous for
the right/left norm topology, or i¤ the two norm topologies are themselves
equivalent.

Proof. Only one direction needs proving. We work with the dR topology,
the right topology. By Theorem 3.3 we need only show that multiplication is
jointly right-continuous. First we note that multiplication is right-continuous
i¤

dR(xy; ab) = jjxyb�1a�1jj; as (x; y)!R (a; b):

Here, we may write Y = yb�1 so that Y !R e i¤ y !R b; and we obtain the
equivalent condition:

dR(xY b; ab) = dR(xY; a) = jjxY a�1jj; as (x; Y )!R (a; e):

By Theorem 3.3, as inversion is right-to-right continuous, Lemma 3.2 justi�es
re-writing the second convergence condition with X = a�1x and X !R e;
yielding the equivalent condition

dR(aXY b; ab) = dR(aXY; a) = jjaXY a�1jj; as (X; Y )!R (e; e):

But, by Lemma 3.1, this is equivalent to continuity of conjugacy. �

Corollary 3.5. For X a topological group under its norm, the left shifts
�a(x) := ax are bounded and uniformly continuous in norm.
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Proof. We have jj�ajj = jjajj as

sup
x
dR(x; ax) = dR(e; a) = jjajj:

We also have

dR(ax; ay) = dR(axy
�1a�1; e) = jja(xy�1)jj:

Hence, for any " > 0; there is � > 0 such that, for jjzjj < �

jja(z)jj � ":

Thus provided dR(x; y) = jjxy�1jj <  we have, dR(ax; ay) < ": �

Remarks.
1 (Klee property). If the group has an abelian norm (in particular if

the group is abelian), then the norm has the Klee property (see [Klee] for the
original metric formulation, or Th. 2.18), and then it is a topological group
under the norm-topology. Indeed the Klee property is that

jjxyb�1a�1jj � jjxa�1jj+ jjyb�1jj;

and so if x !R a and y !R b; then xy !R ab: This may also be deduced
from the observation that g is continuous, since here

jjgxg�1jj = jjgxeg�1jj � jjgg�1jj+ jjxejj = jjxjj:

Compare [vM] Section 3.3, especially Example 3.3.6 of a topological group
of real matrices which fails to have an abelian norm.
2. For T a normed group with right-invariant metric dR one is led to study

the associated supremum metric on the group of bounded homeomorphisms
h from T to T (i.e. having supT d(h(t); t) <1) with composition � as group
operation:

dA(h; h
0) = sup

T
d(h(t); h0(t)):

This is a right-invariant metric which generates the norm

jjhjjA := dA(h; eA) = sup
T
d(h(t); t):

It is of interest from the perspective of topological �ows, in view of the
following observation.
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Lemma 3.6. Under dA on A = Auth(T ) and dT on T; the evaluation
map (h; t)! h(t) from A�T to T is continuous.

Proof. Fix h0 and t0: The result follows from continuity of h0 at t0 via

dT (h0(t0); h(t)) � dT (h0(t0); h0(t)) + d
T (h0(t); h(t))

� dT (h0(t0); h0(t)) + dA(h; h0): �

3. Since the conjugate metric of a right-invariant metric need not be
continuous, one is led to consider the symmetrization re�nement of a metric
d, given by

dS(g; h) = maxfd(g; h); d(g�1; h�1)g: (sym)

This metric need not be translation invariant on either side (cf. [vM] Example
1.4.8); however, it is inversion-invariant:

dS(g; h) = dS(g�1; h�1);

so one expects to induce topological group structure with it, as we do in Th.
3.11 below. When d = dXR is right-invariant and so induces the group-norm
jjxjj := d(x; e) and d(x�1; y�1) = dXL (x; y); we may use (sym) to de�ne

jjxjjS := dXS (x; e):

Then
jjxjjS = maxfdXR (x; e); dXR (x�1; e)g = jjxjj;

which is a group-norm, even though dXS need not be either left- or right-
invariant. This motivates the following result, which follows from the Equiv-
alence Theorem (Th. 3.4) and Example A4 (Topological permutations).

Theorem 3.7 (Ambidextrous Re�nement). For X a normed group
with norm jj:jj; put

dXS (x; y) := maxfjjxy�1jj; jjx�1yjjg = maxfdXR (x; y); dXL (x; y)g:

Then X is a topological group under the right (or left) norm topology i¤ X
is a topological group under the symmetrization re�nement metric dXS :

Proof. Suppose that under the right-norm topology X is a topological
group. Then dXL is dXR -continuous, by Th. 3.4, and hence d

X
S is also dXR -

continuous. Thus if xn ! x under dXR ; then also, by continuity, xn ! x
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under dXS : Now if xn ! x under dXS ; then also xn ! x under dXR ; as d
X
R � dXS :

Thus dXS generates the topology and so X is a topological group under dXS :
Conversely, suppose that X is a topological group under dXS : As X is a

topological group, its topology is generated by the neighbourhoods of the
identity. But as already noted,

dXS (x; e) := jjxjj;

so the dXS -neighbourhoods of the identity are also generated by the norm; in
particular left-open sets aB(") are dXS -open and so right-open. Hence by Th.
3.4 (or Th. 3.3) X is a topological group under either norm topology. �

Thus, according to the Ambidextrous Re�nement Theorem, a symmetriza-
tion that creates a topological group structure from a norm structure is in
fact redundant. We are about to see such an example in the next theorem.
Given a metric space (X; d); we let Hunif (X) denote the subgroup of

uniformly continuous homeomorphisms (relative to d), i.e. homeomorphisms
� satisfying the condition that, for each " > 0; there is � > 0 such that

d(�(x); �(x0)) < "; for d(x; x0) < �: (3)

Lemma 3.8 (Compare [dGMc] Cor. 2.13).
(i) For �xed � 2 H(X), the mapping �� : �! �� is continuous.
(ii) For �xed � 2 Hunif (X), the mapping �� : � ! �� is in Hunif (X) �

i.e. is uniformly continuous.
(iii) The mapping (�; �)! �� is continuous from Hunif (X)�Hunif (X)

to H(X) under the supremum norm.

Proof. (i) We have

d̂(��; ��) = sup d(�(�(t)); �(�(t))) = sup d(�(s); �(s)) = d̂(�; �):

(ii) For � 2 Hunif (X) and given " > 0; choose � > 0; so that (3) holds. Then,
for �;  with d̂(�; ) < �; we have d(�(t); (t)) < � for each t; and hence

d̂(��; �) = sup d(�(�(t)); �((t))) � ":

(iii) Again, for � 2 Hunif (X) and given " > 0; choose � > 0; so that (3)
holds. Thus, for �; � with d̂(�; �) < �; we have d(�(t); �(t)) < � for each t:
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Hence for � with d̂(�; �) < " we obtain

d(�(�(t)); �(�(t))) � d(�(�(t)); �(�(t))) + d(�(�(t)); �(�(t)))

� "+ d̂(�; �) � "+ ":

Consequently, we have

d̂(��; ��) = sup d(�(�(t)); �(�(t))) � 2":

�
Comment. See also [AdC] for a discussion of the connection between

choice of metric and uniform continuity. The following result is of interest

Proposition 3.9 (deGroot-McDowell Lemma, [dGMc], Lemma 2.2).
Given �; a countable family of auto-homeomorphism of X closed under com-
position (i.e. a semigroup in Auth(X)), the metric on X may be replaced by
a topologically equivalent one such that each � 2 � is uniformly continuous.

De�nition. Say that a homeomorphism h is bi-uniformly continuous
if both h and h�1 are uniformly continuous. Write

Hu = fh 2 Hunif : h
�1 2 Hunifg:

Proposition 3.10 (Group of left shifts). For a normed topological
group X with right-invariant metric dX ; the group TrL(X) of left shifts is
(under composition) a subgroup of Hu(X) that is isometric to X; hence has
the same norm.

Proof. As X is a topological group, we have TrL(X) � Hu(X) by Cor.
3.5; TrL(X) is a subgroup and � : X ! TrL(X) is an isomorphism, because

�x � �y(z) = �x(�y(z)) = x(�y(z) = xyz = �xy(z):

Moreover, � is an isometry, as dX is right-invariant; indeed, we have

dT (�x; �y) = sup
z
dX(xz; yz) = dX(x; y): �

We now o¤er a generalization which motivates the duality considerations
of Section 11.
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Theorem 3.11 The family Hu(T ) of bi-uniformly continuous bounded
homeomorphisms of a complete metric space T is a complete topological group
under the symmetrized supremum metric. It is a topological group under the
supremum metric.

Proof. Suppose that T is metrized by a complete metric d: The bounded
homeomorphisms of T , i.e. those homeomorphisms h for which sup d(h(t); t) <
1; form a group H = H(T ) under composition. The subgroup

Hu = fh 2 H : h and h�1 is uniformly continuousg

is complete under the supremum metric d̂(h; h0) = sup d(h(t); h0(t)); by the
standard 3" argument. It is a topological semigroup since the composition
map (h; h0)! h � h0 is continuous. Indeed, as in Proposition 2.13, in view of
the inequality

d(h � h0(t); H �H 0(t)) � d(h � h0(t); H � h0(t)) + d(H � h0(t); H �H 0(t))

� d̂(h;H) + d(H � h0(t); H �H 0(t));

for each " > 0 there is � = �(H; ") < " such that for d̂(h0; H 0) < � and
d̂(h;H) < ";

d̂(h � h0; H �H 0) � 2":
Likewise, mutatis mutandis, for their inverses; to be explicit, writing g =
h0�1; G = H 0�1 etc, for each " > 0 there is �0 = �(G; ") = �(H 0�1; ") such that
for d̂(g0; G0) < �0 and d̂(g;G) < ";

d̂(g � g0; G �G0) � 2":

Set � = minf�; �0g < ": So for d̂(h0; H 0)+d̂(g;G) < � and d̂(h;H)+d̂(g0; G0) <
�; we have d̂(h0; H 0) < �; d̂(h;H) < � < "; and d̂(g0; G0) < � and d̂(g;G) < ";
so

d̂(h � h0; H �H 0) + d̂(g � g0; G �G0) � 4":
So composition is continuous under the symmetrized metric

dS(g; h) = d̂(g; h; ) + d̂(g�1; h�1):

But as this metric is inversion-invariant, i.e.

dS(g; h) = dS(g
�1; h�1);
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this gives continuity of inversion. This means that Hu is a complete metric
topological group under the symmetrized supremum metric.
The �nal assertion follows from the Ambidextrous Re�nement Theorem,

Th. 3.7. �

We now deduce a corollary with important consequences for the Uni-
form Convergence Theorem of topological regular variation (for which see
[BOst13]). We need the following de�nitions and a result due to E¤ros (for
a proof and related literature see [vM]).

De�nition. A group G � H(X) acts transitively on a space X if for
each x; y in X there is g in X such that g(x) = y:
The group acts micro-transitively on X if for U open in G and x 2 X the

set fh(x) : h 2 Ug is a neighbourhood of x:

Theorem 3.12 (E¤ros�Open Mapping Principle, [E¤]). Let G be
a Polish group acting transitively on a separable metrizable space X. The
following are equivalent.
(i) G acts micro-transitively on X,
(ii) X is Polish,
(iii) X is of second category.

Remark. van Mill [vM1] gives the stronger result that for G an analytic
group (iii) implies (i). See Section 10 for de�nitions, references and the
related classical Open Mapping Theorem (which follows from Th. 3.12: see
[vM1]).

Theorem 3.13 (Crimping Theorem). Let T be a Polish space with
a complete metric d. Suppose that a closed subgroup G of Hu(T ) acts on T
transitively, i.e. for any s; t in T there is h in G such that h(t) = s. Then
for each " > 0 and t 2 T; there is � > 0 such that for any s with dT (s; t) < �;
there exists h in G with jjhjjH < " such that h(t) = s:
Consequently:
(i) if y; z are in B�(t); then there exists h in G with jjhjjH < 2" such

that h(y) = z;
(ii)Moreover, for each zn ! t there are hn in G converging to the identity

such that hn(t) = zn:

Proof. As G and T are Polish, by E¤ros� Theorem, G acts micro-
transitively on T ; that is, for each t in T and each " > 0 the set fh(t) :
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h 2 Hu(T ) and jjhjjH < "g is a neighbourhood of t; i.e. for some � = �(") > 0;
B�(t) � fh(t) : jjhjj < "g: Hence if dT (s; t) < � we have for some h in G with
jjhjjH < " that h(t) = s:
If y; z 2 B�(t); there is h; k in G with jjhjj < " and jjkjj < " such that

h(t) = y and k(t) = z: Thus kh�1is in G; kh�1(y) = z and

jjkh�1jj � jjkjj+ jjh�1jj = jjkjj+ jjhjj � 2";

as the norm is inversion symmetric.
For the �nal conclusion, taking for " successively the values "n = 1=n;

we de�ne �n = �("n): Let zn ! t: By passing to a subsequence we may
assume that dT (zn; t) < �n: Now there exists hn in G such that jjhnjj < 2"n
and hn(t) = zn: As hn ! id; we have constructed the �crimping sequence�of
homeomorphisms asserted. �

Remarks. By Proposition 3.10, this result applies also to the closed
subgroup of left translations on T .

The Crimping Theorem implies the following classical result.

Theorem 3.14 (Ungar�s Theorem, [Ung], [vM] Th. 2.4.1, p.78). Let
G be a subgroup of H(X): Let X be a compact metric space on which G acts
transitively. For each " > 0; there is � > 0 such that for x; y with d(x; y) < �
there is h 2 G such that h(x) = y and jjhjj < ":

Proof. X is a Polish space, and H(X) = Hu(X) , as X is compact. Let
" > 0: By the Crimping Theorem for each x 2 X there is � = �(x; ") > 0
such that for y; z 2 B�(x) there is h 2 G with h(y) = z and jjhjj < ": Thus
fB�(x;")(x) : x 2 Xg covers X: By compactness, for some �nite set F =
fx1; :::; xNg; the space X is covered by fB�(x;")(x) : x 2 Fg: The conclusion
of the theorem follows on taking � = minf�(x; e) : x 2 Fg: �

De�nition. Let G be a normed group normed by jj:jj: For g 2 G; recall
that the g-conjugate norm is de�ned by

jjxjjg := jjg(x)jj = jjgxg�1jj:

If left or right shifts are continuous inG (in particular ifG is a semitopological
group), then jjznjj ! 0 i¤ jjznjjg ! 0:
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Example. For X a normed group with metric dX take G = Hu(X)
normed by jjhjj := jjhjjH: Then

jjhjjg = sup
x
dX(ghg�1(x); x) = sup

z
dX(g(h(z)); z):

We now give an explicit construction of a equivalent bi-invariant metric
on G when one exists (compare [HR] Section 8.6), namely

jjxjj1 := supfjjxjjg : g 2 Gg:

We recall from Section 2 that the group norm satis�es the norm admissi-
bility condition if, for zn ! e and gn arbitrary,

jjgnzng�1n jjG ! 0: (n-adm)

Evidently, this is a sharper version of (adm).

Theorem 3.15. Suppose that jj:jj1 is �nite on G: Then jjxjj1 is an
equivalent norm i¤ the jj:jjG meets the norm admissibility condition (n-adm).
In particular, for the bounded norm jxj := minfjjxjj; 1g the correspond-

ing norm jxj1 := supfjxjg : g 2 Gg is an equivalent abelian norm i¤ the
admissibility condition (n-adm) holds.

Proof. First assume (n-adm) holds. As jjxjj = jjxjje � jjxjj1 we need
to show that if zn ! e then jjznjj1 ! 0: Suppose otherwise; then for some
" > 0; w.l.o.g. jjznjj1 � "; and so there is for each n an element gn such that

jjgnzng�1n jj � "=2:

But this contradicts the admissibility condition (n-adm)
As to the abelian property of the norm, we have

jjyzy�1jj1 = supfjjgyzy�1g�1jj : g 2 Gg = supfjjgyz(gy)�1jj : g 2 Gg = jjzjj1;

and so taking z = xy we have jjyxjj = jjxyjj:
For the converse, assume jjxjj1 is an equivalent norm. For gn arbitrary,

suppose that jjznjj ! 0 and " > 0: For some N and all n � N we thus have
jjznjj1 < ": Hence for n � N;

jjgnzng�1n jj � jjznjj1 < ";
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verifying the condition (n-adm). �

Theorem 3.16. Let G be a normed topological group which is compact
and normed by jj:jjG. Then

jjxjj1 := supfjjxjjg : g 2 Gg

is an abelian (hence bi-invariant) norm topologically equivalent to jjxjj:

Proof. We write jj:jj for jj:jjG: Suppose, for some x; that fjjxjjg : g 2 Gg
is unbounded. We may select gn with

jjgnxg�1n jj ! 1:

Passing to a convergent subsequence we obtain a contradiction. Thus jjxjj1
is �nite and hence a norm. We verify the admissibility condition. Suppose
to the contrary that for some zn ! e; arbitrary gn; and some " > 0 we have

jjgnzng�1n jj > ":

Using compactness, we may pass to a convergent subsequence, gm ! g (in
the norm jj:jjG). Since multiplication is jointly continuous in G we obtain
the contradiction that jjgeg�1jj = jjejj = 0 > ": �

Remarks. 1. Suppose as usual that dR is a right-invariant metric on a
group G. The right-shift �a(x) = xg is uniformly continuous, as

dR(xg; yg) = dR(x; y):

However, it is not necessarily bounded, as

jj�gjj = sup
x
dR(xg; x) = sup

x
jjgjjx = jjgjj1:

But on the subgroup f�g : jjgjj1 <1g; the norm jj�gjj is bi-invariant, since
jjgjj1 is bi-invariant.
2. The condition we used in Theorem 3.15 to check admissibility of the

supremum norm may be reformulated, without reference to the group norm,
topologically thus:

gnzng
�1
n ! e for zn ! e;
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with gn arbitrary. In a �rst-countable topological group this condition is
equivalent to the existence of a bi-invariant metric (see Proposition 2.15; cf.
Theorem 3.3.4 in [vM] p. 101). We will see a related condition in Theorem
3.21 below.
3. Note that the set of 2�2 real matrices under matrix multiplication and

with the subspace topology ofR4 forms a topological group with no equivalent
bi-invariant metric; for details see e.g. [vM] Example 3.3.6 (p.103), where
matrices an; gn are exhibited with zn := angn ! e and gnan 9 e; so that
gn(angn)g

�1
n 9 e:

We now apply the last theorem and earlier results to an example of our
greatest interest.

Example. Let X be a normed group with right-invariant metric dX :
Give the group G = H(X) the usual group-norm

jjf jjH := sup
x
dX(f(x); x):

Finally, for f; g 2 G recall that the g-conjugate norm and the conjugacy
re�nement norm are

jjf jjg := jjgfg�1jjH; and jjf jj1 := supfjjf jjg : g 2 Gg:

Thus
jjf jj1 = sup

x
sup
g
dXg (f(x); x):

Theorem 3.17 (Abelian normability of H(X) �cf. [BePe] Ch. IV
Th 1.1). Assume that jjf jj1 is �nite for each f in H(X) �for instance if
dX is bounded, and in particular if X is compact.
Then:
(i) H(X) under the abelian norm jjf jj1 is a topological group.
(ii) The norm jjf jj1 is equivalent to jjf jjH i¤ the admissibility condition

(n-adm) holds, which here reads: for jjfnjjH ! 0 and any gn in H(X);

jjgnfng�1n jjH ! 0:

Equivalently, for jjznjjH ! 0 (i.e. zn converging to the identity), any gn in
H(X); and any yn 2 X;

jjgn(zn(yn))gn(yn)�1jjX ! 0:
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(iii) In particular, if X is compact, H(X) = Hu(X) is under jjf jjH a
topological group.

Proof. (i) and the �rst part of (ii) follow from Th. 3.15 (cf. Remarks 1
on the Klee property, after Cor. 3.5); as to (iii), this follows from Th. 3.12
and 3.7. Turning to the second part of (ii), suppose �rst that

jjgnzng�1n jjH ! 0;

and let yn be given. For any " > 0 there is N such that, for n � N;

" > jjgnzng�1n jjH = sup
x
d(gnzng

�1
n (x); x):

Taking x here as xn = gn(yn); we obtain

" > d(gnzn(yn); gn(yn)) = d(gnzn(yn)gn(yn)
�1; eX); for n � N:

Hence jjgn(zn(yn))gn(yn)�1jjX ! 0; as asserted.
For the converse direction, suppose next that

jjgnzng�1n jjH 9 0:

Then w.l.o.g. there is " > 0 such that for all n

jjgnzng�1n jjH = sup
x
d(gnzng

�1
n (x); x) > ":

Hence, for each n; there exists xn such that

d(gnzng
�1
n (xn); xn) > ":

Equivalently, setting yn = g�1n (xn) we obtain

d(gn(zn(yn))gn(yn)
�1; eX) = d(gn(zn(yn)); gn(yn)) > ":

Thus, for this sequence yn we have

jjgn(zn(yn))gn(yn)�1jjX 9 0: �

Remark. To see the need for the re�nement norm in verifying continuity
of composition in H(X); we work with metrics and recall the permutation
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metric dXg (x; y) := dX(g(x); g(y)): Recall also that the metric de�ned by the
norm jjf jjg is the supremum metric d̂g on H(X) arising from dg on X: Indeed

dg(h
0; h) = jjh0h�1jjg = sup

z
dX(gh0h�1g�1(z); z) = sup

x
dX(g(h0(x)); g(h(x)))

= sup
x
dXg (h

0(x)); h(x)):

Now, as in Proposition 2.13

d̂g(F1G1; FG) � d̂g(F1; F ) + d̂gF (G1; G) � d̂1(F1; F ) + d̂1(G1; G);

we may conclude that

d̂1(F1G1; FG) � d̂1(F1; F ) + d̂1(G1; G):

This recon�rms that composition is continuous. When g = e, the term d̂F
arises above and places conditions on how �uniformly�close G1 needs to be
to G (as in Th. 3.11).
For these reasons we �nd ourselves mostly concerned with Hu(X):

Below we weaken the Klee property, characterized by the condition jjgxg�1jj �
jjxjj; by considering instead the existence of a real-valued function g ! Mg

such that
jjgxg�1jj �Mgjjxjj; for all x:

Remark. Under these circumstances, on writing xy�1 for x and with dX

the right-invariant metric de�ned by the norm, one has

dX(gxg�1; gyg�1) = dX(gx; gy) �Mgd
X(x; y);

so that the inner-automorphism g is uniformly continuous (and a home-
omorphism). Moreover, Mg is related to the Lipschitz-1 norms jjgjj1 and
jjgjj1; where

jjgjj1 := sup
x 6=y

dX(gx; gy)

dX(x; y)
; and jjgjj1 := sup

x 6=y

dX(gxg�1; gyg�1)

dX(x; y)
;

cf. [Ru-FA2] Ch. I, Exercise 22. This motivates the following terminology.

De�nition. 1. Say that an automorphism f : G! G of a normed group
has the Lipschitz property if there is M > 0 such that

jjf(x)jj �M jjxjj; for all x 2 G: (mag)
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2. Say that a group-norm has the Lipschitz property , or that the group is
Lipschitz-normed, if each continuous automorphism has the Lipschitz prop-
erty under the group-norm.

De�nitions. 1. By analogy with the de�nition in Section 2, call a group
G in�nitely divisible if for each x 2 G and n 2 N there is some � 2 G with
x = �n: We may write � = x1=n (without implying uniqueness).
2. Recall that a group-norm is N-homogeneous if it is n-homogeneous for

each n 2 N, i.e. for each n 2 N, jjxnjj = njjxjj for each x: Thus if �n = x,
then jj�jj = 1

n
jjxjj and, as �m = xm=n, we have m

n
jjxjj = jjxm=njj; i.e. for

rational q > 0 we have qjjxjj = jjxqjj:

Theorem 3.18 below relates the Lischitz property of a norm to local be-
haviour. One should expect local behaviour to be critical, as asymptotic
properties are trivial, since by the triangle inequality

lim
jjxjj!1

jjxjjg
jjxjj = 1:

As this asserts that jjxjjg is slowly varying (see Section 2) and jjxjjg is contin-
uous, the Uniform Convergence Theorem (UCT) applies (see [BOst13]; for
the case G = R see [BGT]), and so this limit is uniform on compact subsets
of G: Theorem 3.19 identi�es circumstances when a group-norm on G has
the Lipschitz property and Theorem 3.20 considers the Lipschitz property of
the supremum norm in Hu(X):

On a number of occasions, the study of group-norm behaviour is aided
by the presence of the following property. Its de�nition is motivated by the
notion of a �invariant connected metric�as de�ned in [Var] Ch. III.4 (see also
[Nag]). The property expresses scale-comparability between word-length and
distance, in keeping with the key notion of quasi-isometry.

De�nition (Word-net). Say that a normed group G has a group-
norm jj:jj with a vanishingly small word-net (which may be also compactly
generated, as appropriate) if, for any " > 0; there is � > 0 such that, for all
� with 0 < � < � there is a set (a compact set) of generators Z� in B�(e)
and a constant M� such that, for all x with jjxjj > M�; there is some word
w(x) = z1:::zn(x) using generators in Z� with jjzijj = �(1 + "i); with j"ij < ";
where

d(x;w(x)) < �
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and

1� " � n(x)�

jjxjj � 1 + ":

Say that the word-net is global if M� = 0:

Remarks. 1. Rd has a vanishingly small compactly generated global
word-net and hence so does the sequence space l2:
2. An in�nitely divisible group X with an N-homogenous norm has a

vanishingly small global word-net. Indeed, given � > 0 and x 2 X take
n(x) = jjxjj=�; then if �n = x we have jjxjj = njj�jj; and so jj�jj = � and
n(x)�=jjxjj = 1:

Theorem 3.18. Let G be a locally compact topological group with a
norm having a compactly generated, vanishingly small global word-net. For
f a continuous automorphism (e.g. f(x) = gxg�1), suppose

� := lim sup
jjxjj!0+

jjf(x)jj
jjxjj <1:

Then

M = sup
x

jjf(x)jj
jjxjj <1:

We defer the proof to Section 4 as it relies on the development there of
the theory of subadditive functions.

Theorem 3.19. If G is an in�nitely divisible group with an N-homogeneous
norm, then its norm has the Lipschitz property, i.e. if f : G! G is a con-
tinuous automorphism, then for some M > 0

jjf(x)jj �M jjxjj:

Proof. Suppose that � > 0: Fix x 6= e: De�ne

p�(x) := supfq 2 Q+ : jjxqjj < �g = �=jjxjj:

Let f be a continuous automorphism. As f(e) = e, there is � > 0 such that,
for jjzjj � �;

jjf(z)jj < 1:
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If jjxqjj < �; then
jjf(xq)jj < 1:

Thus for each q < p�(x) we have

jjf(x)jj < 1=q:

Taking limits, we obtain, with M = 1=�;

jjf(x)jj � 1=p�(x) =M jjxjj: �

De�nitions. 1. Let G be a Lipschitz-normed topological group. We may
now take f(x) = g(x) := gxg�1; since this homomorphism is continuous.
The Lipschitz norm is de�ned by

Mg := sup
x 6=e

jjg(x)jj=jjxjj = sup
x 6=e

jjxjjg=jjxjj:

(As noted before the introduction of the Lipschitz property this is the Lipschitz-
1 norm.) Thus

jjxjjg := jjgxg�1jj �Mgjjxjj:
2. For X a normed group with right-invariant metric dX and g 2 Hu(X)

denote the following (inverse) modulus of continuity by

�(g) = �1(g) := supf� > 0 : dX(g(z); g(z0)) � 1; for all dX(z; z0) � �g:

Theorem 3.20 (Lipschitz property in Hu). Let X be a normed group
with a right-invariant metric dX having a vanishingly small global word-net.
Then, for g; h 2 Hu(X)

jjhjjg �
2

�(g)
jjhjj;

and so Hu(X) has the Lipschitz property.

Proof. We have for d(z; z0) < �(g) that

d(g(z); g(z0)) < 1

For given x put y = h(x)x�1. In the de�nition of the word-net take " < 1:
Now suppose that w(y) = w1:::wn(y) with jjzijj = 1

2
�(1 + "i) and j"ij < ";

where n(y) = n(y; �) satis�es

1� " � n(y)�(g)

jjyjj � 1 + ":
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Put y0 = e,
yi+1 = wiyi

for 0 < i < n(y); and yn(x)+1 = y; the latter is within � of y: Now

d(yi; yi+1) = d(e; wi) = jjwijj < �:

Finally put zi = yix; so that z0 = x and zn(y)+1 = h(x): As

d(zi; zi+1) = d(yix; yi+1x) = d(yi; yi+1) < �;

we have
d(g(zi); g(zi+1)) � 1:

Hence

d(g(x); g(h(x))) � n(y) + 1 < 2jjyjj=�(g)

=
2

�(g)
d(h(x); x):

Thus

jjhjjg = sup
x
d(g(x); g(h(x))) � 2

�(g)
sup
x
d(h(x); x) =

2

�(g)
jjhjj: �

Lemma 3.21 (Bi-Lipschitz property). Me = 1 and Mg � 1; for each
g; moreover Mgh �MgMh and for any g and all x in G;

1

Mg�1
jjxjj � jjxjjg �Mgjjxjj:

Thus in particular jjxjjg is an equivalent norm.

Proof. Evidently Me = 1: For g 6= e; as g(g) = g; we see that

jjgjj = jjgjjg �Mgjjgjj;

and so Mg � 1; as jjgjj > 0: Now for any g and all x;

jjg�1xgjj �Mg�1 jjxjj:
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So with gxg�1 in place of x; we obtain

jjxjj �Mg�1jjgxg�1jj; or
1

Mg�1
jjxjj � jjxjjg: �

De�nition. In a Lipschitz-normed group, put jgj := logMg and de�ne
the symmetrization pseudo-norm jjgjj := maxfjgj; j�1g jg: Furthermore, put

Z(G) := fg 2 G : jjgjj = 0g:

Since Mg � 1 and Mgh � MgMh the symmetrization in general yields, as
we now show, a pseudo-norm (unless Z = feg) on the inner-automorphism
subgroup

Inn := fg : g 2 Gg � Auth(G):

Evidently, one may adjust this de�ciency, e.g. by consideringmaxfjjgjj; jjgjjg;
as g(g) = g (cf. [Ru-FA2] Ch. I Ex. 22).

Theorem 3.22. Let G be a Lipschitz-normed topological group. The set
Z is the subgroup of elements g characterized by

Mg =Mg�1 = 1;

equivalently by the �norm-central�property:

jjgxjj = jjxgjj for all x 2 G;

and so Z(G) � Z(G); the centre of G.

Proof. The conditionmaxfjgj; j�1g jg = 0 is equivalent toMg =Mg�1 =
1: Thus Z is closed under inversion; the inequality 1 � Mgh � MgMh = 1
shows that Z is closed under multiplication. For g 2 Z; as Mg = 1; we
have jjgxg�1jj � jjxjj for all x; which on substitution of xg for x is equivalent
to

jjgxjj � jjxgjj:
Likewise Mg�1 = 1 yields the reverse inequality:

jjxgjj � jjg�1x�1jj � jjx�1g�1jj = jjgxjj:
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Conversely, if jjgxjj = jjxgjj for all x; then replacing x either by xg�1 or
g�1x yields both jjgxg�1jj = jjxjj and jjg�1xgjj = jjxjj for all x; so that
Mg =Mg�1 = 1: �

Corollary 3.23. Mg = 1 for all g 2 G i¤ the group norm is abelian i¤
jjabjj � jjbajj for all a; b 2 G.

Proof. Z = G (cf. Th. 2.18). �

The condition Mg � 1 is not necessary for the existence of an equivalent
bi-invariant norm, as we see below. The next result is similar to Th. 3.15
(where the Lipschitz property is absent).

Theorem 3.24. Let G be a Lipschitz-normed topological group. If fMg :
g 2 Gg is bounded, then jjxjj1 is an equivalent abelian (hence bi-invariant)
norm.

Proof. Let M be a bound for the set fMg : g 2 Gg: Thus we have

jjxjj1 �M jjxjj;

and so jjxjj1 is again a norm. As we have

jjxjj = jjxjje � jjxjj1 �M jjxjj;

we see that jjznjj ! 0 i¤ jjznjj1 ! 0: �

Theorem 3.25. Let G be a compact, Lipschitz-normed, topological
group. Then fMg : g 2 Gg is bounded, hence jjxjj1 is an equivalent abelian
(hence bi-invariant) norm.

Proof. The mapping j:j := g ! logMg is subadditive. For G a compact
metric group, j:j is Baire since

fg : a < Mg < bg = proj1f(g; x) 2 G2 : jjgxg�1jj > ajjxjjg\fg : jjgxg�1jj < bjjxjjg;

and so is analytic, hence by Nikodym�s Theorem (see [Jay-Rog] p. 42) has
the Baire property. As G is Baire, the subadditive mapping j:j is locally
bounded (the proof of Prop. 1 in [BOst5] is applicable here; cf. Section 4),
and so by the compactness of G; is bounded; hence Theorem 3.18 applies. �
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De�nition. Let G be a Lipschitz-normed topological group. Put

M(g) : = fm : jjxjjg � mjjxjj for all x 2 Gg; and then
Mg : = inffm : m 2M(g)g;
�(g) : = fm > 0 : mjjxjj � jjxjjg for all x 2 Gg; and then
mg : = supfm : m 2 �(g)g:

Proposition 3.26. Let G be a Lipschitz-normed topological group. Then

m�1
g =Mg�1 :

Proof. For 0 < m < mg we have for all x that

jjxjj � 1

m
jjgxg�1jj:

Setting x = g�1zg we obtain, as in Lemma 3.20,

jjg�1zgjj � 1

m
jjzjj;

so Mg�1 � 1=m: �

De�nitions (cf. [Kur-1] Ch. I §18 and [Kur-2] Ch. IV §43; [Hil] I.B.3,
[Berg] Ch. 6 �where compact values are assumed �[Bor] Ch. 11; the �rst
uni�cation of these ideas is attributed to Fort [For]).
1. The correspondence g !M(g) has closed graph means that if gn ! g

and mn ! m with mn 2M(gn); then m 2M(g):
2. The correspondence is upper semicontinuous means that for any open

U withM(g) � U there is a neighbourhood V of g such thatM(g0) � U for
g0 2 V:
3. The correspondence is lower semicontinuous means that for any open

U withM(g)\U 6= ? there is a neighbourhood V of g such thatM(g0)\U 6=
? for g0 2 V:

Theorem 3.27. Let G be a Lipschitz-normed topological group. The
mapping g !M(g) has closed graph and is upper semicontinuous.

Proof. For the closed graph property: suppose gn ! g and mn ! m
with mn 2M(gn): Fix x 2 G: We have

jjgnxg�1n jj � mnjjxjj,
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so passing to the limit
jjgxg�1jj � mjjxjj.

As x was arbitrary, this shows that m 2M(g):
For the upper semicontinuity property: suppose otherwise. Then for some

g and some open U withM(g) � U the property fails. We may thus suppose
thatM(g) � (m0;1) � U for some m0 < Mg and that there are gn ! g and
mn < m0 with mn 2M(gn). Thus, for any n and all x;

jjgnxg�1n jj � mnjjxjj.

As 1 � mn � m0; we may pass to a convergent subsequence mn ! m; so
that we have in the limit that

jjgxg�1jj � mjjxjj.

for arbitrary �xed x: Thusm 2M(g) and yetm � m0 < Mg; a contradiction.
�

De�nition. Say that the group-norm is nearly abelian if for arbitrary
gn ! e and zn ! e

lim
n
jjgnzng�1n jj=jjznjj = 1;

or equivalently
lim
n
jjgnznjj=jjgnznjj = 1: (ne)

Theorem 3.28. Let G be a Lipschitz-normed topological group. The
following are equivalent:
(i) the mapping g !Mg is continuous,
(ii) the mapping g !Mg is continuous at e;
(iii) the norm is nearly abelian, i.e. (ne) holds.
In particular, if in addition G is compact and condition (ne) holds, then

fMg : g 2 Gg is bounded, and so again Theorem 3.24 applies, con�rming
that jjxjj1 is an equivalent abelian (hence bi-invariant) norm.

Proof. Clearly (i)=) (ii). To prove (ii)=) (i), given continuity at e; we
prove continuity at h as follows. Write g = hk; then h = gk�1 and g ! h i¤
k ! e i¤ k�1 ! e: Now by Lemma 3.21,

Mh =Mgk�1 �MgMk�1 ;
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so since Mk�1 !Me = 1; we have

Mh � lim
g!h

Mg:

Since Mk !Me = 1 and

Mg =Mhk �MhMk;

we also have
lim
g!h

Mg �Mh:

Next we show that (ii)=)(iii). By Lemma 3.21, we have

1=Mg�1n
� jjgnzng�1n jj=jjznjj �Mgn :

By assumption, Mgn !Me = 1 and Mg�1n
!Me = 1; so

lim
n
jjg�1n zngnjj=jjznjj = 1:

Finally we show that (iii)=)(ii). Suppose that the mapping is not con-
tinuous at e: As Me = 1 and Mg � 1; for some " > 0 there is gn ! e such
that Mgn > 1 + ": Hence there are xn 6= e with

(1 + ")jjxnjj � jjgnxng�1n jj:

Suppose that jjxnjj is unbounded. We may suppose that jjxnjj ! 1:
Hence

(1 + ") � jjgnxng�1n jj
jjxnjj

� jjgnjj+ jjxnjj+ jjg�1n jj
jjxnjj

;

and so as jjgnjj ! 0 and jjxnjj ! 1 we have

(1 + ") � lim
n!1

�
jjgnjj+ jjxnjj+ jjgnjj

jjxnjj

�
= lim

n!1

�
1 +

2

jjxnjj
� jjgnjj

�
= 1;

again a contradiction. We may thus now suppose that jjxnjj is bounded
and so w.l.o.g. convergent, to � � 0 say. If � > 0; we again deduce the
contradition that

(1 + ") � lim
n!1

jjgnjj+ jjxnjj+ jjg�1n jj
jjxnjj

=
0 + � + 0

�
= 1:
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Thus � = 0; and hence xn ! e: So our assumption of (iii) yields

(1 + ") � lim
n!1

jjgnxng�1n jj
jjxnjj

= 1;

a �nal contradiction. �

We note the following variant on Theorem 3.28.

Theorem 3.29. Let G be a Lipschitz-normed topological group. The
following are equivalent:
(i) the mapping g !M(g) is continuous,
(ii) the mapping g !M(g) is continuous at e;
(iii) for arbitrary gn ! e and zn ! e

lim
n
jjgnzng�1n jj=jjznjj = 1:

Proof. Clearly (i)=) (ii). To prove (ii)=) (iii), suppose the mapping
is continuous at e, then by the continuity of the maximization operation (cf.
[Bor] Ch.12, [Hil] I.B.III) g ! Mg is continuous at e; and Theorem 3.28
applies.
To prove (iii)=) (ii), assume the condition; it now su¢ ces by Theorem

3.28 to prove lower semicontinuity (lsc) at g = e: So suppose that, for some
open U; U \M(e) 6= ?: Thus U \ (1;1) 6= ?: Choose m0 < m00 with 1 < m
such that (m0;m00) � U \M(e): IfM is not lsc at e, then there is gn ! e
such

(m0;m00) \M(gn) = ?:
Take, e.g., m := 1

2
(m0 +m00): As m0 < m < m00; there is xn 6= e such that

mjjxnjj < jjgnxng�1n jj:

As before, if jjxnjj is unbounded we may assume jjxnjj ! 1; and so
obtain the contradiction

1 < m � lim
n!1

jjgnjj+ jjxnjj+ jjg�1n jj
jjxnjj

= 1:

Now assume jjxnjj ! � � 0: If � > 0 we have the contradiction

m � lim
n!1

jjgnjj+ jjxnjj+ jjg�1n jj
jjxnjj

=
0 + � + 0

�
= 1:
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Thus � = 0: So we obtain xn ! 0; and now deduce that

1 < m � lim
n!1

jjgnxng�1n jj
jjxnjj

= 1;

again a contradiction. �

Remark. On the matter of continuity a theorem of Mueller ([Mue] Th.
3, see Th. 4.6 below) asserts that in a locally compact group a subadditive
p satisfying

lim inf
x!e
(lim sup

y!x
p(y)) � 0

is continuous almost everywhere.

4 Subadditivity

De�nition. Let X be a normed group. A function p : X ! R is subadditive
if

p(xy) � p(x) + p(y):

Thus a norm jjxjj and so also any g-conjugate norm jjxjjg are examples. Recall
from [Kucz] p. 140 the de�nitions of upper and lower hulls of a function p :

Mp(x) = lim
r!0+

supfp(z) : z 2 Br(x)g;

mp(x) = lim
r!0+

inffp(z) : z 2 Br(x)g:

(Usually these are of interest for convex functions p:) These de�nitions re-
main valid for a normed group. (Note that e.g. inffp(z) : z 2 Br(x)g is a
decreasing function of r:) We understand the balls here to be de�ned by a
right-invariant metric, i.e.

Br(x) := fy : d(x; y) < rg with d right-invariant.

These are subadditive functions if the group G is Rd: We reprove some re-
sults from Kuczma [Kucz], thus verifying the extent to which they may be
generalized to normed groups. Only our �rst result appears to need the Klee
property (bi-invariance of the metric); fortunately this result is not needed in
the sequel. The Main Theorem below concerns the behaviour of p(x)=jjxjj:
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Lemma 4.1 (cf. [Kucz] L. 1 p. 403). For a normed group G with the
Klee property; mp and Mp are subadditive.

Proof. For a > mp(x) and b > mp(y) and r > 0; let d(u; x) < r and
d(v; y) < r satisfy

inffp(z) : z 2 Br(x)g � p(u) < a; and inffp(z) : z 2 Br(y)g � p(v) < b:

Then, by the Klee property,

d(xy; uv) � d(x; u) + d(y; v) < 2r:

Now
inffp(z) : z 2 B2r(xy)g � p(uv) � p(u) + p(v) < a+ b;

hence

inffp(z) : z 2 B2r(xy)g � inffp(z) : z 2 Br(x)g+ inffp(z) : z 2 Br(x)g;

and the result follows on taking limits as r ! 0 + : �

Lemma 4.2 (cf. [Kucz] L. 2 p. 403). For a normed group G; if p : G! R
is subadditive, then

mp(x) �Mp(x) and Mp(x)�mp(x) �Mp(e):

Proof. Only the second assertion needs proof. For a > mp(x) and b < Mp(x);
there exist u; v 2 Br(x) with

a > p(u) � mp(x); and b < p(v) �Mp(x):

So

b� a < p(v)� p(u) � p(vu�1u)� p(u) � p(vu�1) + p(u)� p(u) = p(vu�1):

Now
jjvu�1jj � jjvjj+ jjujj < 2r;

so vu�1 2 B2r(e); and hence

p(vu�1) � supfp(z) : z 2 B2r(e)g:
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Hence, with r �xed, taking a; b to their respective limits,

Mp(x)�mp(x) � supfp(z) : z 2 B2r(e)g:

Taking limits as r ! 0+; we obtain the second inequality. �

Lemma 4.3. For any subadditive function f : G ! R, if f is locally
bounded above at a point, then it is locally bounded at every point.

Proof. We repeat the proof in [Kucz] p. 404 Th. 2, thus verifying that
it continues to hold in a normed group.
Supppose that p is locally bounded above at t0 by K: We �rst show that

f is locally bounded above at e: Suppose otherwise that for some tn ! e we
have p(tn)!1: Now tnt0 ! et0 = t0 and so

p(tn) = p(tnt0t
�1
0 ) � p(tnt0) + p(t�10 ) � K + p(t�10 );

a contradiction. Hence p is locally bounded above at e; i.e. Mp(e) < 1:
But 0 �Mp(x)�mp(x) �Mp(e); hence both Mp(x) and mp(x) are �nite for
every x: That is, p is locally bounded above and below at each x: �

Proposition 4.4 (cf. [Kucz] p 404 Th 3). For a Baire group G and a
Baire function f : G! R, if f is subadditive, then f is locally bounded.

Proof. By the Baire assumptions, for some k Hk = fx : jf(x)j < kg is
non-meagre. Suppose that f is not locally bounded; then it is not locally
bounded above at some point u; i.e. there exists un ! u with

f(un)! +1:

By the Category Embedding Theorem ([BOst11], and Section 5), for some
k 2 !; t 2 Hk and an in�nite M, we have

funt : n 2Mg � Hk:

For n in M, we have

f(un) = f(untt
�1) � f(unt) + f(t�1) � k + f(t�1);

which contradicts f(un)! +1: �
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We recall that vanishingly small word-nets were de�ned in Section 3.

Theorem 4.5. Let G be a normed group with a vanishingly small word-
net. Let p : G! R+ be Baire, subadditive with

� := lim sup
jjxjj!0+

p(x)

jjxjj <1:

Then

lim sup
jjxjj!1

p(x)

jjxjj � � <1:

Proof. Let " > 0: Let b = � + ": Hence on B�(e) for � small enough to
gurantee the existence of Z� and M� we have also

p(x)

jjxjj � b:

By Proposition 4.4, we may assume that p is bounded by some constant K
in B�(e): Let jjxjj > M�:
Choose a word w(x) = z0z1:::zn with jjzijj = �(1 + "i) with j"ij < "; with

p(xi) < bjjxijj = b�(1 + "i)

and
d(x;w(x)) < �;

i.e.
x = w(x)s

for some s with jjsjj < � and

1� " � n(x)�

jjxjj � 1 + ":

Now

p(x) = p(ws) � p(w) + p(r) =
X

p(zi) + p(s)

�
X

b�(1 + "i) + p(s)

= nb�(1 + ") +K:

58



So
p(x)

jjxjj �
n�

jjxjjb(1 + ") +
M

jjxjj :

Hence we obtain
p(x)

jjxjj � b(1 + ")2 +
M

jjxjj :

So in the limit

lim sup
jjxjj!1

p(x)

jjxjj < �;

as asserted. �

We note a related result, which requires the following de�nition. For p
subadditive, put (for this section only)

p�(x) = lim inf
y!x

p(y); p�(x) := lim sup
y!x

p(y):

These are subadditive and lower (resp. upper) semicontinuous with p�(x) �
p(x) � p�(x):

We now return to the result announced as Theorem 3.18.

Proof of Theorem 3.18. Apply Theorem 4.5 to the subadditive func-
tion p(x) := jjf(x)jj which is continuous and so Baire. Thus there is X such
that, for jjxjj � X;

jjf(x)jj � �jjxjj:
Taking " = 1 in the de�nition of a word-net, there is � > 0 small enough
such that B�(e) is pre-compact and there exists a compact set of generators
Z� such that each x there is a word of length n(x) employing generators
of Z� with n(x) � 2jjxjj=�: Hence if jjxjj � X we have n(x) � 2M=�: Let
N := [2M=�]; the least integer greater than 2M=�: Note that ZN� := Z� �:::�Z�
(N times) is compact. The set BK(e) is covered by the compact swelling
K :=cl[ZN� B�(e)]: Hence, we have

sup
x2K

jjf(x)jj
jjxjj <1;

(referring to �g <1; and continuity of jjxjjg=jjxjj away from e); and so

M � maxf�; sup
x2K

jjf(x)jj=jjxjjg <1: �
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Theorem 4.6 (Mueller�s Theorem �[Mue] Th. 3). Let p be subaddi-
tive on a locally compact group G and suppose

lim inf
x!e

p�(x) � 0:

Then p is continuous almost everywhere.

5 Theorems of Steinhaus type and Dichotomy

If  n converges to the identity, then, for large n; each  n is almost an isom-
etry. Indeed, as we shall see in Section 11, by Proposition 11.2, we have

d(x; y)� 2jj njj � d( n(x);  n(y)) � d(x; y) + 2jj njj:

This motivates our next result; we need to recall a de�nition and the Cat-
egory Embedding Theorem from [BOst11], whose proof we reproduce here
for completeness. In what follows, the words quasi everywhere (q.e.), or for
quasi all points mean for all points o¤ a meagre set (see [Kah]).

De�nition (weak category convergence). A sequence of homeomor-
phisms  n satis�es the weak category convergence condition (wcc) if:
For any non-empty open set U; there is a non-empty open set V � U

such that, for each k 2 !;\
n�k

V n �1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre setM such that, for t =2M;

t 2 V =) (9n � k)  n(t) 2 V:

Theorem 5.1 (Category Embedding Theorem). Let X be a Baire
space. Suppose given homeomorphisms  n : X ! X for which the weak
category convergence condition (wcc) is met. Then, for any non-meagre Baire
set T; for locally quasi all t 2 T; there is an in�nite set Mt such that

f m(t) : m 2Mtg � T:
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Proof. Suppose T is Baire and non-meagre. We may assume that T =
UnM with U non-empty and M meagre. Let V � U satisfy (wcc).
Since the functions hn are homeomorphisms, the set

M 0 :=M [
[
n

h�1n (M)

is meagre. Put

W = h(V ) :=
\
k2!

[
n�k

V \ h�1n (V ) � V � U:

Then V \W is co-meagre in V: Indeed

V nW =
[
k2!

\
k�n

V nh�1n (V );

which by assumption is meagre.
Take t 2 V \WnM 0 � UnM = T; as V � U and M � M 0: Thus t 2 T:

Now there exists an in�nite set Mt such that, for m 2 Mt, there are points
vm 2 V with t = h�1m (vm): Since h

�1
m (vm) = t =2 h�1m (M); we have vm =2 M;

and hence vm 2 T: Thus fhm(t) : m 2 Mtg � T for t in a co-meagre set, as
asserted. �

Examples. In R we may consider  n(t) = t + zn with zn ! z0 := 0: It
is shown in [BOst11] that for this sequence the condition (wcc) is satis�ed in
both the usual topology and the density topology on R. This remains true in
Rd; where the speci�c instance of the theorem is referred to as the Kestelman-
Borwein-Ditor Theorem; see the next section ([Kes], [BoDi]; compare also
the Oxtoby-Ho¤mann-Jørgensen zero-one law for Baire groups, [HJ] p. 356,
[Oxt], cf. [RR-1]). In fact in any metrizable groupX with right-invariant
metric dX , for a null sequence tending to the identity zn ! z0 := eX ; the
mapping de�ned by  n(x) = znx converges to the identity (see [BOst13],
Corollary to Ford�s Theorem); here too (wcc) holds. This follows from the
next result, which extends the proof of [BOst11]; cf. Theorem 6.5.

Theorem 5.2 (First Veri�cation Theorem for weak category con-
vergence). For d a metric on X; if  n converges to the identity under d̂,
then  n satis�es the weak category convergence condition (wcc).
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Proof. It is more convenient to prove the equivalent statement that  �1n
satis�es the category convergence condition.
Put zn =  n(z0); so that zn ! z0: Let k be given.
Suppose that y 2 B"(z0); i.e. r = d(y; z0) < ": For some N > k; we have

"n = d( n; id) <
1
3
("� r); for all n � N: Now

d(y; zn) � d(y; z0) + d(z0; zn)

= d(y; z0) + d(z0;  n(z0)) � r + "n:

For y =  n(x) and n � N;

d(z0; x) � d(z0; zn) + d(zn; y) + d(y; x)

= d(z0; zn) + d(zn; y) + d(x;  n(x))

� "n + (r + "n) + "n < ":

So x 2 B"(z0); giving y 2  n(B"(z0)): Thus

y =2
\
n�N

B"(z0)n n(B"(z0)) �
\
n�k

B"(z0)n n(B"(z0)):

It now follows that \
n�k

B"(z0)n n(B"(z0)) = ?:

�

As a �rst corollary we have the following topological result; we deduce as
corollaries also measure-theoretic variants in Theorems 6.6 and 10.11.

Corollary (Topological Kestelman-Borwein Theorem Theorem).
In a normed group X let fzng ! eT be a null sequence. If T is Baire, then
for quasi all t 2 T there is an in�nite set Mt such that

fzmt : m 2Mtg � T:

Likewise, for quasi all t 2 T there is an in�nite set Mt such that

ftzm : m 2Mtg � T:

Proof. Apply Th. 5.2, taking for d a right-invariant metric; dXR say; the
maps  n(t) = znt satisfy dXR (znt; t) = jjznjjH ! 0, so converge to the identity.
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Likewise taking for d a left-invariant metric dXL say, the maps  n(t) = tzn
satisfy dXR (tzn; t) = jjznjjH ! 0, so again converge to the identity. �

As a corollary we have the following important result known for topo-
logical groups (see [RR-TG], Rogers [Jay-Rog] p. 48, and [Kom1] for the
topological vector space setting) and here proved in the metric setting.

Theorem 5.3 (Piccard-Pettis Theorem �Piccard [Pic1], [Pic2], Pet-
tis [Pet1], [RR-TG] cf. [BOst14]). In a normed group, for A non-meagre,
the sets AA�1 and A�1A have non-empty interior.

Proof. Suppose otherwise. We consider the set AA�1 and refer to the
right-invariant metric d(x; y) = jjxy�1jj: Suppose the condition fails: then,
for each integer n = 1; 2; ::: there is zn 2 B1=n(e)nAA�1; hence zn ! z0 = e.
By Proposition 2.11(iv),  n(x) := znx converges to the identity (as the metric
is right-invariant and d(znx; x) = jjznjj), and so satis�es (wcc) by Th. 5.2;
hence, there is a 2 A such that for in�nitely many n

 n(a) 2 A; i.e. zna 2 A; or zn 2 AA�1;

a contradiction. Reference to the conjugate metric secures the same result
for A�1A: �

One says that a set A is thick if e is an interior point of AA�1 (see e.g. [HJ]
Section 3.4). The next result (proved essentially by the same means) applied
to the additive group R implies the Kesteman-Borwein-Ditor ([BOst11]) the-
orem on the line. The name used here refers to a similar (weaker) property
studied in Probability Theory (in the context of probabilities regarded as
a semigroup under convolution, for which see [PRV], or [Par] 3.2 and 3.5,
[BlHe], [Hey]). We need a de�nition.

De�nition. Say that a set A in G is right-shift compact if, for any
sequence of points an in A; there is a point t and a subsequence fan : n 2Mtg
such that ant converges through Mt to a point a0t in A; similarly for left-
shift compact. Evidently, �nite Cartesian products of shift-compact sets are
shift-compact. Thus a right-shift compact set A is pre-compact. (If the
subsequence amt converges to a0t; for m in Mt; then likewise am converges
to a0; for m in Mt:)
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Proposition 5.4. In a normed group, if a subgroup S is locally right-
shift compact, then S is closed and locally compact. Conversely, a closed,
locally compact subgroup is locally right-shift compact.

Proof. Suppose that an ! a0 with an 2 S: If amt ! a0t 2 S down
a subset M then a0t(amt)

�1 = a0a
�1
m 2 S for m 2 M: Hence also a0 =

a0a
�1
m am 2 S for m 2M: Thus S is closed. �

Remark. Suppose that an = (ain) 2 A =
Q
Ai: Pick ti and inductively

in�niteMi �Mi�1 so that ainti ! ai0ti along n 2Mi with ainti 2 Ai for n 2 !:
Diagonalize Mi by setting M := fmig; where mn+1 = minfm 2 Mn+1 : m >
mng: Then the subsequence fam : m 2Mg satis�es, for each J �nite,

prJtam �
Y
j2J

Aj for eventually all m 2M.

Theorem 5.5 (Shift-Compactness Theorem). In a normed group G,
for A precompact, Baire and non-meagre, the set A is right-shift compact,
i.e., for any sequence an 2 A; there are t 2 G and a 2 A such that ant 2 A
and ant! a down a subsequence. Likewise the set A is left-shift compact.

Proof. Suppose an 2 A � �A with �A compact. W.l.o.g. an ! a0 2 �A:
Hence zn := ana

�1
0 ! eG: By Theorem 5.2 (the First Veri�cation Theorem),

 n(x) := znx converges to the identity. Hence, for some a 2 A and in�nite
M; we have fzma : m 2 Mg � A: Taking t = a�10 a; we thus have ant 2 A
and ant ! a 2 A along M. Replace A by A�1 to obtain the other-handed
result. �

The following theorem asserts that a �covering property modulo shift�is
satis�ed by bounded shift-compact sets. It will be convenient to make the
following

De�nitions. 1. Say that D:= fD1; :::; Dhg shift-covers X; or is a shifted-
cover of X if, for some d1; :::; dh in G;

(D1 � d1) [ ::: [ (Dh � dh) = X:

Say that X is compactly shift-covered if every open cover U of X contains a
�nite subfamily D which shift-covers X:
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2. We say that D:= fD1; :::; Dhg strongly shift-covers A; or is a strong
shifted-cover of A; if there are arbitrarily small d1; :::; dh in R such that

(D1 � d1) [ ::: [ (Dh � dh) � A:

Say that A is compactly strongly shift-covered if every open cover U of A
contains a �nite subfamily D which strongly shift-covers A:

Example. Note that A � R is density-open (open in the density topol-
ogy) i¤ each point of A is a density point of A: Suppose a0 is a limit point of
such a set A in the usual topology; then, for any " > 0; we may �nd a point
� 2 A within "=2 of a0 and hence some t 2 A within "=2 of the point � such
that some subsequence t + am is included in A, with limit t + a0 and with
jtj < ": That is, a dense-open set is strongly shift-compact.

Theorem 5.6 (Compactness Theorem �modulo shift, [BOst8]).
Let A be a right-shift compact subset of a separable normed group G. Then
A is compactly shift-covered, i.e. for any norm-open cover U of A; there is
a �nite subset V of U , and for each member of V a translator, such that the
corresponding translates of V cover A:

Proof. Let U be an open cover of A: Since G is second-countable we
may assume that U is a countable family. Write U = fUi : i 2 !g: Let
Q = fqj : j 2 !g enumerate a dense subset of G. Suppose, contrary to
the assertion, that there is no �nite subset V of U such that translates of V,
each translated by one element of Q; cover A: For each n; choose an 2 A
not covered by fUi � qj : i; j < ng: As A is precompact, we may assume,
by passing to a subsequence (if necessary), that an converges to some point
a0; and also that, for some t; the sequence ant lies entirely in A: Let Ui in U
cover a0t: Without loss of generality we may assume that ant 2 Ui for all n:
Thus an 2 Uit�1 for all n: Thus we may select V := Uiqj to be a translation
of Ui such that an 2 V = Uiqj for all n: But this is a contradiction, since an
is not covered by fUi0qj0 : i0; j0 < ng for n > maxfi; jg: �

The above proof of the compactness theorem for shift-covering may be
improved to strong shift-covering, with only a minor modi�cation (replacing
Q with a set Q" = fq"j : j 2 !g which enumerates, for given " > 0; a dense
subset of the " ball about e), yielding the following.
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Theorem 5.7 (Strong Compactness Theorem �modulo shift, cf.
[BOst8]). Let A be a strongly right-shift compact subset of a separable normed
group G. Then A is compactly strongly shift-covered, i.e. for any norm-open
cover U of A; there is a �nite subset V of U , and for each member of V
an arbitrarily small translator, such that the corresponding translates of V
cover A:

Next we turn to the Steinhaus theorem, which we will derive in Section 8
more directly as a corollary of the Category Embedding Theorem. For com-
pleteness we recall in the proof below its connection with the Weil topology
introduced in [We].

De�nition ([Hal-M] Section 72, p. 257 and 273).
1. A measurable group (X;S;m) is a �-�nite measure space with X a

group and m a non-trivial measure such that both S and m is left-invariant
and the mapping x! (x; xy) is measurability preserving.
2. A measurable group X is separated if for each x 6= eX in X; there is a

measurable E � X of �nite, positive measure such that �(E4xE) > 0:

Theorem 5.8 (Steinhaus Theorem �cf. Comfort [Com] Th. 4.6 p.
1175). Let X be a normed locally compact group which is separated under its
Haar measure. For measurable A having positive �nite Haar measure, the
sets AA�1 and A�1A have non-empty interior.

Proof. For X separated, we recall (see [Hal-M] Sect. 62 and [We]) that
the Weil topology on X; under which X is a topological group, is generated
by the neighbourhood base at eX comprising sets of the form NE;" := fx 2
X : �(E4xE) < "g; with � > 0 and E measurable and of �nite positive
measure. Recall from [Hal-M] Sect. 62 the following results: (Th. F ) a
measurable set with non-empty interior has positive measure; (Th. A) a set
of positive measure contains a set of the form GG�1; with G measurable
and of �nite, positive measure; and (Th. B) for such G; NG" � GG�1 for
all small enough " > 0: Thus a measurable set has positive measure i¤ it is
non-meagre in the Weil topology. Thus if A is measurable and has positive
measure it is non-meagre in the Weil topology. Moreover, by [Hal-M] Sect
61, Sect. 62 Ths. A and B, the metric open sets of X are generated by sets of
the form NE;" for some Borelian-(K) set E of positive, �nite measure. By the
Piccard-Pettis Theorem, Th. 5.3 (from the Category Embedding Theorem,
Th. 5.1) AA�1 contains a non-empty Weil neighbourhood NE;": �
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Remark. See Section 7 below for an alternative proof via the density
topology drawing on Mueller�s Haar measure density theorem [Mue] and a
category-measure theorem of Martin [Mar] (and also for extensions to prod-
ucts AB).

Theorem 5.9 (The Subgroup Dichotomy Theorem, Banach-Kuratowski
Theorem �[Ban-G] Satz 1, [Kur-1] Ch. VI. 13. XII; cf. [Kel] Ch. 6 Pblm
P; cf. [BGT] Cor. 1.1.4 and also [BCS] and [Be] for the measure variant).
Let X be a normed group which is non-meagre and let A any Baire sub-

group. Then A is either meagre or clopen in X:

Proof. Suppose that A is non-meagre. We show that e is an interior
point of A; from which it follows that A is open. Suppose otherwise. Then
there is a sequence zn ! e with zn 2 B1=n(e)nA: Now for some a 2 A and
in�nite M we have zna 2 A for all n 2 M: But A is a subgroup, hence
zn = znaa

�1 2 A for n 2M; a contradiction.
Now suppose that A is not closed. Let an be a sequence in A with limit

x: Then anx�1 ! e: Now for some a 2 A and in�niteM we have znx�1a 2 A
for all n 2M: But A is a subgroup, so z�1n and a�1 are in A and hence, for all
n 2M; we have x�1 = z�1n znx

�1aa�1 2 A: Hence x 2 A; as A is a subgroup.
�

Remark. Banach�s proof is purely topological, so applies to topological
groups (though originally stated for metric groups), and relies on the map-
ping x ! ax being a homeomorphism, likewise Kuratowski�s proof, which
proceeds via another dichotomy as detailed below.

Theorem 5.10 (Kuratowski Dichotomy �[Kur-B], [Kur-1], [McSh]
Cor. 1). Suppose H � Auth(X) acts transitively on X; and Z � X is Baire
and has the property that for each h 2 H

Z = h(Z) or Z \ h(Z) = ?;

i.e. under each h 2 H; either Z is invariant or Z and its image are disjoint :
Then, either H is meagre or it is clopen.

The result below generalizes the category version of the Steinhaus Theo-
rem [St] of 1920, �rst stated explicitly by Piccard [Pic1] in 1939, and restated
in [Pet1] in 1950; in the current form it may be regarded as a �localized-
re�nement�of [RR-TG].
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Theorem 5.11 (Generalized Piccard-Pettis Theorem �[Pic1], [Pic2],
[Pet1], [Pet2], [BGT] Th. 1.1.1, [BOst3], [RR-TG], cf. [Kel] Ch. 6 Prb. P).
Let X be a homogenous space. Suppose that  u converges to the identity as
u ! u0; and that A is Baire and non-meagre. Then, for some � > 0; we
have

A \  u(A) 6= ?; for all u with d(u; u0) < �;

or, equivalently, for some � > 0

A \  �1u (A) 6= ?; for all u with d(u; u0) < �:

Proof. We may suppose that A = V nM with M meagre and V open.
Hence, for any v 2 V nM; there is some " > 0 with

B"(v) � U:

As  u ! id; there is � > 0 such that, for u with d(u; u0) < �; we have

d̂( u; id) < "=2:

Hence, for any such u and any y in B"=2(v); we have

d( u(y); y) < "=2:

So
W :=  u(B"=2(z0)) \B"=2(z0) 6= ?;

and
W 0 :=  �1u (B"=2(z0)) \B"=2(z0) 6= ?:

For �xed u with d(u; u0) < �; the set

M 0 :=M [  u(M) [  �1u (M)

is meagre. Let w 2 WnM 0 (or w 2 W 0nM 0; as the case may be). Since
w 2 B"(z0)nM � V nM; we have

w 2 V nM � A:

Similarly, w 2  u(B"(z0))n u(M) �  u(V )n u(M): Hence

 �1u (w) 2 V nM � A:
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In this case, as asserted,
A \  �1u (A) 6= ?:

In the other case (w 2 W 0nM 0), one obtains similarly

 u(w) 2 V nM � A:

Here too
A \  �1u (A) 6= ?:

�
Remarks.
1. In the theorem above it is possible to work with a weaker condition,

namely local convergence at z0, where one demands that for some neighbour-
hood B�(z0) and some K;

d( u(z); z) � Kd(u; u0); for z 2 B�(z0):

This implies that, for any " > 0; there is � > 0 such that, for z 2 B�(z0);

d( u(z); z) < "; for z 2 B�(z0):

2. The Piccard-Pettis Theorem for topological groups (named by Kelley,
[Kel] Ch. 6 Pblm P-(b), the Banach-Kuratowski-Pettis Theorem, say BKPT
for short) asserts the category version of the Steinhaus Theorem [St] that,
for A Baire and non-meagre, the set A�1A is a neighbourhood of the identity;
our version of the Piccard theorem as stated implies this albeit only in the
context of metric groups. Let dX be a right-invariant metric on X and take
 u(x) = ux and u0 = e: Then  u converges to the identity (see [BOst13]
Section 4), and so the theorem implies that B�(e) � A�1 \A for some � > 0;
indeed a0 2 A\ u(A) for u 2 B�(e) means that a0 2 A and, for some a 2 A;
also ua = a0 so that u = a�1a0 2 A�1A: It is more correct to name the
following important and immediate corollary the BKPT, since it appears in
this formulation in [Ban-G], [Kur-1], derived by di¤erent means, and was
used by Pettis in [Pet1] to deduce his Steinhaus-type theorem.

Theorem 5.12 (McShane�s Interior Points Theorem �[McSh] Cor.
3). Let T : X2 ! X be such that Ta(x) := T (x; a) is a self-homeomorphism
for each a 2 X and such that for each pair (x0; y0) there is a homeomorphism
' : X ! X with y0 = '(x0) satisfying

T (x; '(x)) = T (x0; y0); for all x 2 X:

69



Let A and B be second category with B Baire. Then the image T (A;B) has
interior points and there are A0 � A;B0 � B; with AnA0 and BnB0 meagre
and T (A0; B0) open.

6 The Kestelman-Borwein-Ditor Theorem: a
bitopological approach

De�nition (Genericity). Suppose � is L or Ba; the class of measurable
sets or Baire sets (i.e. sets with the Baire property). We will say that P 2 �
holds for generically all t if ft : t =2 Pg is null/meagre according as � is L or
Ba:

In this section we develop a bi-topological approach to a generalization
of the following result. An alternative approach is given in the next section.

Theorem 6.1 (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0
be a null sequence of reals. If T is measurable and non-null/Baire and non-
meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

A stronger form still is derived in [BOst9] (the Generic Re�ection Theo-
rem); see also [BOst3] Section 3.1 Note 3, [BOst4] Section 3.1 Note 1. For
proofs see the original papers [Kes] and [BoDi]; for a uni�ed treatment in the
real-variable case see [BOst9].

Let (X;S;m) be a probability space which is totally-�nite. Letm� denote
the outer measure

m�(E) := inffm(F ) : E � F 2 Sg:

Let the family fKn(x) : x 2 Xg � S satisfy
(i) x 2 Kn(x);
(ii) m(Kn(x))! 0:
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Relative to a �xed family fKn(x) : x 2 Xg de�ne the upper and lower
(outer) density at x of any set E by

D
�
(E; x) = sup lim sup

n
m�(E \Kn(x))=m(Kn(x));

D�(E; x) = inf lim inf
n
m�(E \Kn(x))=m(Kn(x)):

By de�nition D
�
(E; x) � D�(E; x): When equality holds, one says that the

density of E exists at x; and the common value is denoted by D�(E; x): If E
is measurable the star associated with the outer measure m� is omitted. If
the density is 1 at x; then x is a density point; if the density is 0 at x then
x is a dispersion point of E:
Say that a (weak) density theorem holds for fKn(x) : x 2 Xg if for every

set (every measurable set) A almost every point of A is a density (an outer
density) point of A:
Martin [Mar] shows that the family

U = fU : D�
(XnU; x) = 0; for all x 2 Ug

forms a topology, the density topology on X, with the following property.

Theorem 6.2 (Density Topology Theorem). If a density theorem
holds for fKn(x) : x 2 Xg and U is d-open, then every point of U is a
density point of U and so U is measurable. Furthermore, a measurable set
such that each point is a density point is d-open.

We note that the idea of a density topology was introduced slightly earlier
by Go¤man ([GoWa],[GNN]); see also Tall [T]. It can be traced to the work
of Denjoy [Den] in 1915. Recall that a function is approximately continuous
in the sense of Denjoy i¤ it is continuous under the density topology: [LMZ],
p.1.

Theorem 6.3 (Category-Measure Theorem �[Mar] Th. 4.11). Sup-
pose X is a probability space and a density theorem holds for fKn(x) : x 2
Xg: A necessary and su¢ cient condition that a set be nowhere dense in the
d-topology is that it have measure zero. Hence a necessary and su¢ cient
condition that a set be meagre is that it have measure zero. In particular the
topological space (X;U) is a Baire space.
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We now see that the preceeding theorem is applicable to a Haar measure
on a locally compact group X by reference to the following result. Here
bounded means pre-compact (covered by a compact set).

Theorem 6.4 (Haar measure density theorem �[Mue]; cf. [Hal-M]
p. 268). Let A be a �-bounded subset and � a left-invariant Haar measure
of a locally compact group X: Then there exists a sequence Un of bounded
measurable neigbourhoods of eX such that m�(A \ Unx)=m�(Unx) ! 1 for
almost all x out of a measurable cover of A:

Corollary. In the setting of Theorem 6.4 with A of positive, totally-�nite
Haar measure, let (A;SA;mA) be the induced probability subspace of X with
mA(T ) = m(S \ A)=m(A) for T = S \ A 2 SA: Then the density theorem
holds in A:

We now o¤er a generalization of a result from [BOst11]; cf. Theorem 5.2.

Theorem 6.5 (Second Veri�cation Theorem for weak category
convergence). Let X be a normed locally compact group with left-invariant
Haar measure m. Let V be m-measurable and non-null. For any null se-
quence fzng ! e and each k 2 !;

Hk =
\
n�k

V n(V � zn) is of m-measure zero, so meagre in the d-topology.

That is, the sequence hn(x) := xz�1n satis�es the weak category convergence
condition (wcc)

Proof. Suppose otherwise. We write V zn for V � zn; etc. Now, for some
k; m(Hk) > 0: Write H for Hk: Since H � V; we have, for n � k; that
; = H \ h�1n (V ) = H \ (V zn) and so a fortiori ; = H \ (Hzn): Let u be a
metric density point of H: Thus, for some bounded (Borel) neighbourhood
U�u we have

m[H \ U�u] >
3

4
m[U�u]:

Fix � and put
� = m[U�u]:

Let E = H \ U�u: For any zn; we have m[(Ezn) \ U�uzn] = m[E] > 3
4
�:

By Theorem A of [Hal-M] p. 266, for all large enough n; we have

m(U�u4U�uzn) < �=4:
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Hence, for all n large enough we have m[(Ezn)nU�u] � �=4: Put F = (Ezn)\
U�u; then m[F ] > �=2:
But � � m[E [ F ] = m[E] +m[F ]�m[E \ F ] � 3

4
� + 1

2
��m[E \ F ]: So

m[H \ (Hzn)] � m[E \ F ] � 1

4
�;

contradicting ; = H \ (Hzn): This establishes the claim. �

As a corollary of the Category Embedding Theorem, Theorem 6.5 and its
Corollary now yield the following result (compare also Th. 10.11).

Theorem 6.6 (First GeneralizedMeasurable Kestelman-Borwein-
Ditor Theorem). Let X be a normed locally compact group, fzng ! eX
be a null sequence in X. If T is Haar measurable and non-null, resp. Baire
and non-meagre, then for generically all t 2 T there is an in�nite set Mt

such that
ftzm : m 2Mtg � T:

This theorem in turn yields an important conclusion.

Theorem 6.7 (Kodaira�s Theorem �[Kod] Corollary to Satz 18. p.
98, cf. [Com] Th. 4.17 p. 1182). Let X be a normed locally compact group
and f : X ! Y a homorphism into a separable normed group Y . Then f is
Haar-measurable i¤ f is Baire under the density topology i¤ f is continuous
under the norm topology.

Proof. Suppose that f is measurable. Then under the d-topology f is a
Baire function. Hence by the classical Baire Continuity Theorem (see, e.g.
Section 8 below), since Y is second-countable, f is continuous on some co-
meagre set T: Now suppose that f is not continuous at eX : Hence, for some
" > 0 and some zn ! z0 = eX (in the sense of the norm on X); we have
jjf(zn)jj > "; for all n: By the Kestelman-Borwein-Ditor Theorem (Th. 6.1),
there is t 2 T and an in�nite Mt such that tzn ! t = tz0 2 T: Hence, for n
in Mt, we have

f(t)f(zn) = f(tzn)! f(tz0) = f(t);

i.e. f(zn)! eY , a contradiction. �

Remarks.
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1. Comfort [Com] Th. 4.17 proves this result for both X and Y locally
compact, with the hypothesis that Y is �-compact and f measurable with
respect to the two Haar measures onX and Y: That proof employs Steinhaus�
Theorem and the Weil topology. (Under the density topology, Y will not be
second-countable.) When Y is metrizable this implies that Y is separable; of
course if f is a continuous surjection, Y will be locally compact.
2. The theorem reduces measurability to the Baire property and in so

doing resolves a long-standing issue in the foundations of regular variation;
hitherto the theory was established on two alternative foundations employing
either measurable functions, or Baire functions, for its scope, with historical
preference for measurable functions in connection with integration. We refer
to [BGT] for an exposition of the theory which characterizes regularly varying
functions of either type by a reduction to an underlying homomorphism of
the corresponding type relying on its continuity and then represents either
type by very well-behaved functions. Kodaira�s Theorem shows that the
broader topological class may be given priority. See in particular [BGT] p.
5,11 and [BOst11].
3. The Kestelman-Borwein-Ditor Theorem inspires the following de�ni-

tions, which we will �nd useful in the next section

De�nitions. Call a set T subuniversal if for any null sequence zn ! eG
there is t 2 G and in�nite Mt such that

ftzm : m 2Mtg � T:

Call a set T generically subuniversal if for any null sequence zn ! eG
there is t 2 G and in�nite Mt such that

ftzm : m 2Mtg � T and t 2 T:

Thus the Kestelman-Borwein-Ditor Theorem asserts that a set T which is
Baire non-meagre, or measurable non-null, is (generically) subuniversal. The
term subuniversal is coined from Kestelman�s de�nition of set being �univer-
sal for null sequences�([Kes] Th. 2), which required Mt above to be co-�nite
rather than in�nite. By Theorem 6.5 (Shift-compactness Theorem), a gener-
ically subuniversal subset of a normed group is shift-compact (Section 5).

Our �nal results follow from the First Generalized KBD Theorem and
are motivated by the literature of extended regular variation in which one
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assumes only that
h�(u) := lim sup

jjxjj!1
h(ux)(x)�1

is �nite on a �large enough�domain set (see [BOst-RVWL], [BGT] Ch. 2,3 for
the classical context of R�+). We need the following de�nitions generalizing
their R counterparts (in [BOst-RVWL]) to the normed group context.

De�nitions. 1. Say that NT�(fTkg) holds, in words No Trumps holds
generically, if for any null sequence zn ! eX there is k 2 ! and an in�nite
M such that

ftzm : m 2Mg � Tk and t 2 Tk:
For the de�nition of NT see [BOst1], [BOst4] where bounded, rather

than null sequences zn appear and the location of the translator t need not
be in Tk. [Of course NT�(fTk : k 2 !g) implies NT(fTk : k 2 !g):]

2. For X a normed group, h : T ! Y or R+; with T � X; where Y is a
normed group and R+ refers to the set of positive reals, for x = fxng with
jjxnjj ! 1; put

Tk(x) :=
\
n>k

ft 2 T : h(txn)h(xn)�1 < ng

or
T Yk (x) :=

\
n>k

ft 2 T : jjh(txn)h(xn)�1jjY < ng;

according to whether h takes values in R+ or Y:
Let us say that h is NT� on T if for any xn !1 and any null sequence

zn ! 0; NT�(fTk(x)g); resp. NT�(fT Yk (x)g); holds.

Theorem 6.8 (Generic No Trumps Theorem or No Trumps* The-
orem). In a normed group X; for T Baire non-meagre/measurable non-null
and h Baire/measurable with h�(t) < +1 on T; h is NT� on T:

Proof. The sets Tk(x) are Baire/measurable. Fix t 2 T: Since h�(t) <
1 suppose that h�(t) < k 2 N: Then w.l.o.g., for all n > k, we have
h(txn)h(xn)

�1 < n and so t 2 Tk(x): Thus

T =
[
k

Tk(x);

75



and so for some k; the set Tk(x) is Baire non-meagre/measurable non-null.
The result now follows from the topological or measurable Kestelman-Borwein-
Ditor Theorem (Cor to Th. 5.2 or Th. 6.6). �
We now have two variant generalizations of Theorem 7 of [BOst-RVWL].

Theorem 6.9A (Combinatorial Uniform Boundedness Theorem
� cf. [Ost-knit]). In a normed group X; for h : X ! R+ suppose that
h�(t) <1 on a set T on which h is NT�: Then for compact K � T

lim sup
jjxjj!1

sup
u2K

h(ux)h(x)�1 <1:

Proof. Suppose not: then for some fung � K � T and jjxnjj unbounded
we have, for all n;

h(unxn)h(xn)
�1 > n3: (4)

W.l.o.g. un ! u 2 K: Now jjuxnjj ! 1; as jjxnjj � jjujj � jjuxnjj, by the
triangle inequality. Thus we may put yn := uxn; then

Tk(y) :=
\
n>k

ft 2 T : h(tuxn)h(uxn)�1 < ng;

andNT�(Tk(y)) holds. Now zn := unu
�1 is null. So for some k 2 !; t 2 Tk(y)

and in�nite M,
ft(umu�1) : m 2Mg 2 Tk(y).

So
h(tumu

�1uxm)h(uxm)
�1 < m and t 2 T:

Now jjunxnjj ! 1; as jjxnjj � jjunjj � jjunxnjj and jjunjj is bounded. But
t 2 T so, as before since h�(t) <1; for all n large enough

h(tunxn)h(unxn)
�1 < n:

Now also u 2 K � T: So for all n large enough

h(uxn)h(xn)
�1 < n:

But

h(unxn)h(xn)
�1 = h(unxn)h(tunxn)

�1

�h(tunxn)h(uxn)�1

�h(uxn)h(xn)�1:
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Then for m large enough and in Mt we have

h(umxm)h(xm)
�1 < m3;

a contradiction for such m to (4). �

We note a generalization with an almost verbatim proof (requiring, mu-
tatis mutandis, the replacement of h(ux)h(x)�1 by jjh(ux)h(x)�1jj). Note
that one cannot deduce Th. 6.7A from this variant by referring to the normed
group Y = R�+; because the natural norm on R�+ is jjxjjY = j log xj (cf. Re-
marks to Corollary 2.9).

Theorem 6.9B (Combinatorial Uniform Boundedness Theorem).
For h : X ! Y a mapping between normed groups, put

h�(u) := lim sup jjh(ux)h(x)�1jjY ;

and suppose that h�(t) <1 on a set T on which h is NT�: Then for compact
K � T

lim sup
jjxjj!1

sup
u2K

jjh(ux)h(x)�1jj <1:

We may now deduce the result referred to in the remarks to Corollary
2.9, regarding � : X ! Y a group homomorphism,.by reference to the case
h(x) = �(x) treated in the Lemma below.

Theorem 6.10 (NT� property of quasi-isometry). If X is a Baire
normed group and � : X ! Y a group homomorphism, where jj:jjY is (�-
)-quasi-isometric to jj:jjX under the mapping �, then for any non-meagre
Baire set T , � is NT� on T:

Proof. Note that

jjh(txn)h(xn)�1jj = jj�(txn)�(xn)�1jj = jj�(t)jj:

Hence, as �(e) = e (see Examples A4),

ft 2 T : h(txn)h(xn)�1 < ng = ft 2 T : jj�(t)jj < ng = B�
n(e);

and so \
n�k

Tn(xn) = ft 2 T : jj�(t)jj < kg = B�
k (e):
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Now
1

�
jjtjjX �  � jj�(t)jjY �

1

�
jjtjjX + ;

hence B�
n(e) is approximated from above and below by the closed sets T�n :

T+n := ft 2 T :
1

�
jjtjjX+ � ng � T (xn) = B�

n(e) � T�n := ft 2 T :
1

�
jjtjjX� � ng;

which yields the equivalent approximation:

�B�(k�) \ T = ft 2 T : jjtjjX � �(k � )g =
\
n�k

T+n

� Tk(x) �
\
n�k

T�n = ft 2 T : jjtjjX � �(k + )g = T \ �B�(k+):

Hence,
T =

[
k

Tk(x) =
[
k

T \ �B�(k+):

Hence, by the Baire Category Theorem, for some k the set Tk(x) contains a
Baire non-meagre set �B�(k�) \ T and the proof of Th. 6.8 applies. Indeed if
T \ �B�(k0+) is non-meagre for some k0, then so is T \ �B�(k0+) for k � k0+2
and hence also Tk(x) is so. �

Theorem 6.11 (Global bounds at in�nity �Global Bounds Theo-
rem). Let X be a locally compact group with with norm having a vanishingly
small global word-net.
For h : X ! R+; if h� is globally bounded, i.e.

h�(u) = lim sup
jjxjj!1

h(ux)h(x)�1 < B (u 2 X)

for some positive constant B; independent of u; then there exist constants
K;L;M such that

h(ux)h(x)�1 < jjujjK (u � L; jjxjj �M):

Hence h is bounded away from 1 on compact sets su¢ ciently far from the
identity.

Proof. As X is locally compact, it is a Baire space (see e.g. [Eng] Section
3.9). Thus, by Th. 6.8, the Combinatorial Boundedness Theorem Th. 6.8A
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may be applied with T = X to a compact closed neighbourhood K = �B"(eX)
of the identity eX ; where w.l.o.g. 0 < " < 1; hence we have

lim sup
jjxjj!1

sup
u2K

h(ux)h(x)�1 <1:

Now we argue as in [BGT] page 62-3, though with a normed group as the
domain. Choose X1 and � > maxfM; 1g such that

h(ux)h(x)�1 < � (u 2 K; jjxjj � X1):

Fix v. Now there is some word w(v) = w1:::wm(v) using generators in the
compact set Z� with jjwijj = �(1 + "i) < 2�; as j"ij < 1 (so jjwijj < 2� < ");
where

d(v; w(v)) < �

and

1� " � m(v)�

jjxjj � 1 + ";

and so

m+ 1 < 2
jjvjj
�
+ 1 < Ajjvjj+ 1; where A = 2=�:

Put wm+1 = w�1v; v0 = e; and for k = 1; :::m+ 1;

vk = w1:::wk;

so that vm+1 = v: Now (vk+1x)(vkx)�1 = wk+1 2 K: So for jjxjj � X1 we
have

h(vx)h(x)�1 =
m+1Y
k=1

[h(vkx)h(vk�1x)]
�1

� �m+1 � jjvjjK

(for large enough jjvjj); where

K = (A log �+ 1):

Indeed, for jjvjj > log �; we have

(m+1) log � < (Ajjvjj+1) log � < jjvjj(A log �+(log �)jjvjj�1) < log jjvjj(A log �+1):

79



For x1 with jjx1jj � M and with t such that jjtx�11 jj > L; take u = tx�11 ;
then since jjujj > L we have

h(ux1)h(x1)
�1 = h(t)h(x1)

�1 � jjujjK = jjtx�11 jjK ;

i.e.
h(t) � jjtx�11 jjKh(x1);

so that h(t) is bounded away from1 on compact t-sets su¢ ciently far from
the identity. �

Remarks. 1. The one-sided result in Th. 6.11 can be re�ned to a
two-sided one (as in [BGT] Cor. 2.0.5): taking s = t�1; g(x) = h(x)�1 for
h : X ! R+; and using the substitution y = tx; yields

g�(s) = sup
jjyjj!1

g(sy)g(y)�1 = inf
jjxjj!1

h(tx)h(x)�1 = h�(s):

2. A variant of Th. 6.11 holds with jjh(ux)h(x)�1jjY replacing h(ux)h(x)�1:
3. Generalizations of Th. 6.11 along the lines of [BGT] Theorem 2.0.1

may be given for h� �nite on a �large set�(rather than globally bounded), by
use of the Semigroup Theorem (Th. 8.5).

Taking h(x) := jj�(x)jjY ; Lemma 2.9, Th. 6.10 and Th. 6.11 together
immediately imply the following.

Corollary 6.12. If X is a Baire normed group and � : X ! Y a
group homomorphism, where jj:jjY is (�-)-quasi-isometric to jj:jjX under
the mapping �, then there exist constants K;L;M such that

jj�(ux)jjY / jj�(x)jjY < jjujjKX (u � L; jjxjjX �M):

7 The Subgroup Theorem

In this section G is a normed locally compact group with left-invariant Haar
measure. We shall be concerned with two topologies onG : the norm topology
and the density topology. Under the latter the binary group operation need
not be jointly continuous (see Heath and Poerio [HePo]); nevertheless a right-
shift x! xa; for a constant, is continuous, and so we may say that the density
topology is right-invariant. We note that if S is measurable and non-null
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then S�1 is measurable and non-null under the corresponding right-invariant
Haar and hence also under the original left-invariant measure. We may thus
say that both the norm and the density topologies are inversion-invariant.
Likewise the First and Second Veri�cation Theorems (Theorems 5.2 and 6.5)
assert that under both these topologies shift homeomorphisms satisfy (wcc).
This motivates a theorem that embraces both topologies as two instances.

Theorem 7.1 (Topological, or Category, Interior Point Theo-
rem). Let fzng ! e be a null sequence (in the norm topology). Let G be
given a right-invariant and inversion-invariant topology � , under which it
is a Baire space and for which the shift homeomorphisms hn(x) = xzn sat-
isfy (wcc). For S Baire and non-meagre in � ; the di¤erence set S�1S; and
likewise SS�1, is an open neighbourhood of e.

Proof. Suppose otherwise. Then for each positive integer n we may
select

zn 2 B1/n(e)n(S�1S):
Since fzng ! e (in the norm topology), the Category Embedding Theorem
(Th. 5.1) applies, and gives an s 2 S and an in�nite Ms such that

fhm(s) : m 2Msg � S:

Then for any m 2Ms,

szm 2 S , i.e. zm 2 S�1S;

a contradiction. Replacing S by S�1 we obtain the corresponding result for
SS�1: �

Corollary 7.2 (Piccard Theorem, Piccard [Pic1], [Pic2]). For S Baire
and non-meagre in the norm topology; the di¤erence sets SS�1 and S�1S
have e as interior point.

First Proof. Apply the preceeding Theorem , since by the First Veri�-
cation Theorem (Th. 5.2), the condition (wcc) holds. �
Second Proof. Suppose otherwise. Then, as before, for each posi-

tive integer n we may select zn 2 B1/n(e)n(S�1S): Since zn ! e, by the
Kestelman-Borwein-Ditor Theorem (Th. 6.1), for quasi all s 2 S there is an
in�nite Ms such that fszm : m 2Msg � S: Then for any m 2Ms, szm 2 S ,
i.e. zm 2 SS�1; a contradiction. �
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Corollary 7.3 (Steinhaus�Theorem, [St], [We]; cf. Comfort [Com]
Th. 4.6 p. 1175, Beck et al. [BCS]). For S of positive measure; the di¤erence
sets S�1S and SS�1 have e as interior point.

Proof. Arguing as in the �rst proof above, by the Second Veri�cation
Theorem (Th. 6.5), the condition (wcc) holds and S; in the density topology,
is Baire and non-meagre (by the Category-Measure Theorem, Th. 6.3). The
measure-theoretic form of the second proof above also applies. �

The following corollary to the Steinhaus Theorem Th. 5.7 (and its Baire
category version) have important consequences in the Euclidean case. We
will say that the group G is (weakly) Archimedean if for each r > 0 and each
g 2 G there is n = n(g) such that g 2 Bn where B := fx : jjxjj < rg is the
r-ball.

Theorem 7.4 (Category [Measure] Subgroup Theorem). For a
Baire [measurable] subgroup S of a weakly Archimedean locally compact group
G; the following are equivalent:
(i) S = G;
(ii) S is non-meagre [non-null].

Proof. By Th. 7.1, for some r-ball B;

B � SS�1 � S;

and hence G =
S
nB

n = S: �

We will see in the next section a generalization of the Pettis extension of
Piccard�s result asserting that, for S; T Baire non-meagre, the product ST
contains interior points. As our approach will continue to be bitopological, we
will deduce also the Steinhaus result that, for S; T non-null and measurable,
ST contains interior points.

8 The Semigroup Theorem

In this section G is a normed group which is locally compact. The aim
here is to prove a generalization to the normed group setting of the following
classical result due to Hille and Phillips [H-P] Th. 7.3.2 (cf. Beck et al. [BCS]
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Th. 2, [Be]) in the measurable case, and to Bingham and Goldie [BG] in the
Baire case; see [BGT] Cor. 1.1.5.

Theorem 8.1 (Category [Measure] Semigroup Theorem). For an
additive Baire [measurable] subsemigroup S of R+; the following are equiva-
lent:
(i) S contains an interval ;
(ii) S � (s;1); for some s;
(iii) S is non-meagre [non-null].

We will need a strengthening of the Kestelman-Borwein-Ditor Theorem,
Th. 6.1. First we capture a key similarity (their topological �common basis�,
adapting a term from logic) between the Baire and measure cases. Recall
([Rog2] p. 460) the usage in logic, whereby a set B is a basis for a class C of
sets whenever any member of C contains a point in B:

Theorem 8.2 (Common Basis Theorem). For V;W Baire non-
meagre in G equipped with either the norm or the density topology, there
is a 2 G such that V \ (aW ) contains a non-empty open set modulo meagre
sets common to both, up to translation. In fact, in both cases, up to transla-
tion, the two sets share a norm G� subset which is non-meagre in the norm
case and non-null in the density case.

Proof. In the norm topology case if V;W are Baire non-meagre, we may
suppose that V = InM0[N0 and W = JnM1[N1; where I; J are open sets.
Take V0 = InM0 and W0 = JnM1: If v and w are points of V0 and W0; put
a := vw�1: Thus v 2 I \ (aJ): So I \ (aJ) di¤ers from V \ (aW ) by a meagre
set. Since M0 [N0 may be expanded to a meagre F� set M; we deduce that
InM and JnM are non-meagre G�-sets.
In the density topology case, if V;W are measurable non-null let V0 and

W0 be the sets of density points of V and W: If v and w are points of V0 and
W0; put a := vw�1: Then v 2 T := V0 \ (aW0) and so T is non-null and v
is a density point of T: Hence if T0 comprises the density points of T; then
TnT0 is null, and so T0 di¤ers from V \ (aW ) by a null set. Evidently T0
contains a non-null closed, hence G�-subset (as T0 is measurable non-null, by
regularity of Haar measure). �

Theorem 8.3 (Conjunction Theorem). For V;W Baire non-meagre/measurable
non-null, there is a 2 G such that V \ (aW ) is Baire non-meagre/ measur-
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able non-null and for any null sequence zn ! eG and quasi all (almost all)
t 2 V \ (aW ) there exists an in�nite Mt such that

ftzm : m 2Mtg � V \ (aW ):

Proof. In either case applying Theorem 8.2, for some a the set T :=
V \ (aW ) is Baire non-meagre/measurable non-null. We may now apply the
Kestelman-Borwein-Ditor Theorem to the set T: Thus for almost all t 2 T
there is an in�nite Mt such that

ftzm : m 2Mtg � T � V \ (aW ): �

See [BOst-KC] for other forms of countable conjuction theorems. The last
result motivates a further strengthening of generic subuniversality (compare
Section 6).

De�nitions. Let S be generically subuniversal.
1. Call T similar to S if for every null sequence zn ! eG there is t 2 S\T

and Mt such that
ftzm : m 2Mtg � S \ T:

Thus S is similar to T and both are generically subuniversal.
Call T weakly similar to S if if for every null sequence zn ! 0 there is

s 2 S and Ms such that

fszm : m 2Msg � T:

Thus again T is subuniversal.
2. Call S subuniversally self-similar, or just self-similar (up to inversion-

translation), if for some a 2 G and some T � S; S is similar to aT�1:
Call S weakly self-similar (up to inversion-translation) if for some a 2 G

and some T � S; S is weakly similar to aT�1:

Theorem 8.4 (Self-similarity Theorem). For S Baire non-meagre/measurable
non-null, S is self-similar.

Proof. Fix a null sequence zn ! 0: If S is Baire non-meagre/measurable
non-null then so is S�1; thus we have for some a that T := S \ (aS�1) is
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likewise Baire non-meagre/measurable non-null and so for quasi all (almost
all) t 2 T there is an in�nite Mt such that

ftzm : m 2Mtg � T � S \ (aS�1);

as required. �

Theorem 8.5 (Semigroup Theorem �cf. [BCS], [Be]). If S; T are
generically subuniversal with T (weakly) similar to S, then ST�1 contains a
ball about the identity eG. Hence if S is generically subuniversal and (weakly)
self-similar, then SS has interior points. Hence for G = Rd, if additionally
S is a semigroup, then S contains an open sector.

Proof. For S; T (weakly) similar, we claim that ST�1 contains B�(e) for
some � > 0: Suppose not: then for each positive n there is zn with

zn 2 B1/n(e)n(ST�1):

Now z�1n is null, so there is s in S and in�nite Ms such that

fz�1m s : m 2Mtg � T:

For any m in Mt pick tm 2 T so that z�1m s = tm; then we have

z�1m = tms
�1; so zm = st�1m ;

a contradiction. Thus for some � > 0 we have B�(e) � ST�1:
For S self-similar, say S is similar to T := aS�1; for some a; thenB�(e)a �

ST�1a = S(aS�1)�1a = SSa�1a; i.e. SS has non-empty interior. �

For information on the structure of semigroups see also [Wr]. For ap-
plications see [BOst-RVWL]. By the Common Basis Theorem (Th. 8.2),
replacing T by T�1; we obtain as an immediate corollary of Theorem 8.5
a new proof of two classical results, extending the Steinhaus and Piccard
Theorem and Kominek�s Vector Sum Theorem.

Theorem 8.6 (Product Set Theorem, Steinhaus [St] measure case,
Pettis [Pet2] Baire case, cf. [Kom1] in the setting of topological vector spaces
and [Be] and [BCS] in the group setting).
If S; T are Baire non-meagre/measurable non-null, then ST contains in-

terior points.
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9 Convexity

This section begins by developing natural conditions under which the Port-
manteau theorem of convex functions (cf. [BOst6]) remains true when re-
formulated for a normed group setting, and then deduces generalizations of
classical automatic continuity theorems for convex functions on a group.

De�nitions.
1. A group G will be called 2-divisible (or quadratically closed) if the

equation x2 = g for g 2 G always has a unique solution in the group to be
denoted g1=2. See [Lev] for a proof that any group may be embedded as a
subgroup in an overgroup where the equations over G are soluble (compare
also [Lyn1]).
2. In an arbitrary group, say that a subset C is 1

2
-convex if, for all x; y

x; y 2 C =) p
xy 2 C;

where
p
xy signi�es some element z with z2 = xy: We recall the following

results.

Theorem 9.1 (Eberlein-McShane Theorem, [Eb], [McSh]). Let X be
a 2-divisible topological group of second category. Then any 1

2
-convex Baire

set has a non-empty interior. If X is abelian and each sequence de�ned by
x2n+1 = xn converges to eX then the interior of a 1

2
-convex set C is dense in

C:

Theorem 9.2 (Convex Minorant Theorem, [McSh]). Let X be 2-
divisible abelian topological group. Let f and g be real-valued functions de-
�ned on a non-meagre subset C with f convex and g Baire such that

f(x) � g(x); for x 2 C:

Then f is continuous on the interior of C:

De�nition. We say that the function h : G ! R is 1
2
-convex on the

1
2
�convex set C if, for x; y 2 C;

h(
p
xy) � 1

2
(h(x) + h(y)) ;

with
p
xy as above.
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Example. For G = R�+ the function h(x) = x is 1
2
-convex on G; since

2xy � x2 + y2:

Lemma 9.3 (Averaging Lemma). A non-meagre set T is �averaging�,
that is, for any given point u 2 T and for any sequence fung ! u; there are
v 2 G (a right-averaging translator) and fvng � T such that, for in�nitely
many n 2 !; we have

u2n = vnv:

There is likewise a left-averaging translator such that for some fwng � T
such that, for in�nitely many n 2 !; we have

u2n = wwn:

Proof. De�ne null sequences by

zn = unu
�1; and ~zn = u�1un:

We are to solve

u2nv
�1 = vn 2 T;

u~znznuv
�1 = vn 2 T;

~znznuv
�1 = u�1vn 2 T 0 = u�1T:

Now put  n(x) := ~znznx; then

d(x; ~znznx) = d(e; ~znzn) = jj~znznjj � jj~znjj+ jjznjj ! 0:

By the Category Embedding Theorem (Th. 5.1), for some � 2 T 0 = u�1T;
we have with � = u�1t and for in�nitely many n

u�1vn : = ~znzn� 2 T 0 = u�1T;

u~znzn� = vn 2 T;
u~znznuu

�1� = vn 2 T;
u2nu

�1� = vn 2 T;
u2n = vn�

�1u = vnv

(with v = ��1u = t�1u2 2 T�1u2):
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As for the remaining assertion, note that u�1n ! u�1; v�1n 2 T�1 and

u�2n = v�1v�1n :

Thus noting that T�1 is non-meagre (since inversion is a homeomorphism)
and replacing T�1 by T we obtain the required assertion by a right-averaging
translator. �

Note the connection between the norms of the null sequences is only by
way of the conjugate metrics:

jjznjj = d(e; unu
�1) = d(u; un); and jj~znjj = d(e; u�1un) = d(u�1n ; u�1) = ~d(un; u):

Whilst we may make no comparisons between them, both norms nevertheless
converge to zero.

De�nition. We say that f : G! H is locally Lipschitz at g if, for some
neighbourhood Ng of g and for some constants Kg and all x; y in Ng;����f(x)f(y)�1����

H
� Kgjjxy�1jjG:

We say that f : G! H is locally bi-Lipschitz at g if, for some neighbourhood
Ng of g and for some positive constants Kg; �g; and all x; y in Ng;

�gjjxy�1jjG �
����f(x)f(y)�1����

H
� Kgjjxy�1jjG:

If f : G ! H is invertible, this asserts that both f and its inverse f�1 are
locally Lipschitz at g and f(g) respectively.
We say that the norm on G is n-Lipschitz if the function fn(x) := xn from

G to G is locally Lipschitz at all g 6= e; i.e. for each there is a neighbourhood
Ng of g and positive constants �g; Kg so that

�gjjxy�1jjG �
����xny�n����

G
� Kgjjxy�1jjG:

In an abelian context the power function is a homomorphism; we note that
[HJ] p. 381 refers to a semigroup being modular when each fn (de�ned as
above) is an injective homomorphism. The condition on the right withK = n
is automatic, and so one need require only that for some positive constant �

�jjgjj � jjgnjj:
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Note that, in the general context of an n-Lipschitz norm, if xn = yn; then as
(xny�n) = e; we have �gjjxy�1jjG � jjxny�njjG = jjejj = 0; and so jjxy�1jjG =
0; i.e. the power function is injective. If, moreover, the group is n-divisible,
then the power function fn(x) is an isomorphism.
We note that in the additive group of reals x2 fails to be locally bi-

Lipschitz at the origin (since its derivative there is zero): see [Bart]. However,
the following are bi-Lipschitz.
Examples.
1. In Rd with additive notation, we have jjx2jj := jj2xjj = 2jjxjj; so the

norm is 2-Lipschitz.
2. In R�+ we have jjx2jj := j log x2j = 2j log xj = 2jjxjj and again the norm

is 2-Lipschitz.
3. In a Klee group the mapping f(x) := xn is uniformly (locally) Lip-

schitz, since ����xny�n����
G
� njjxy�1jjG;

proved inductively from the Klee property (Th. 2.18) via the observation
that ����xn+1y�(n+1)����

G
=
����xxny�ny�1����

G
�
����xny�n����

G
+
����xy�1����

G
:

Lemma 9.4 (Re�ecting Lemma). Suppose the norm is everywhere
locally 2-Lipschitz. Then, for T non-meagre, T is re�ecting i.e. there are
w 2 G (a right-re�ecting translator) and fvng � T such that, for in�nitely
many n 2 !; we have

v2n = unw:

There is likewise a left-re�ecting translator.

Proof. Let T 2 := fg : g = t2 for some t 2 Tg: By assumption, T 2
is non-meagre. With un = uzn; put S = T 2 and notice that unw 2 S i¤
uznw 2 S i¤ znw 2 u�1S: Now u�1S is non-meagre and  n(x) := znx as
usual converges to the identity, so the existence of w 2 u�1S is assured such
that znw = u�1v2n. �

Remarks. 1. Note that the assertion here is

u�1n vn = wv�1n ;
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so that
d(vn; w) = d(v�1n ; u�1n ) =

~d(vn; un) � ~d(vn; u);

or
d(vn; w) � ~d(vn; u);

suggesting the terminology of re�ection.
2. Boundedness theorems for re�ecting and averaging sets follow as in

[BOst6] since the following are true in any group, as we see below.

Theorem 9.5. For f a 1
2
-convex function, if f is locally bounded above

at x0 then it is locally bounded below at x0 (and hence locally bounded at x0):

Proof. Say f is bounded above in B := B�(x0) by M: Consider u 2
~B�(x0): Thus ~d(x0; u) = jju�1x0jj < �: Put t = u�1x20; then tx

�1
0 = u�1x0;

and so
d(t; x0) = jjtx�10 jj = jju�1x0jj = ~d(u; x0) < �:

Then t 2 B; and since x20 = ut we have

2f(x0) � f(u) + f(t) � f(u) +M;

or
f(u) � 2f(x0)�M:

Thus 2f(x0)�M is a lower bound for f on the open set ~B�(x0): �

As a corollary a suitably rephrased Bernstein-Doetsch Theorem ([Kucz],
[BOst6]) is thus true.

Theorem 9.6 (Bernstein-Doetsch Theorem). For f a 1
2
-convex

function, if f is locally bounded above at x0; then f is continuous at at
x0:

Proof. We repeat the �Second proof�of [Kucz] p. 145. Choose yn ! x0
with f(yn) ! mf (x0) and zn ! x0 with f(zn) ! Mf (x0): Let un := y2nx

�1
n :

Thus y2n = unxn and so

2f(yn) � f(un) + f(zn);

i.e. f(un) � 2f(yn)� f(zn): Hence in the limit we obtain

Mf (x0) � lim inf f(un) � 2Mf (x0)�mf (x0):
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One thus has that Mf (x0) � mf (x0): But mf (x0) � f(x0) � Mf (x0); and
both hull values are �nite (by the result above). Thus mf (x0) = f(x0) =
Mf (x0); from which continuity follows. �

We now consider the transferability of upper and lower local boundedness.
Our proofs work directly with de�nitions (so are not modelled after those in
Kuczma [Kucz]). We do not however consider domains other than the whole
metric group. For clarity of proof structure we give separate proofs for the
two cases, �rst when G is abelian and later for general G.

Theorem 9.7 (Local upper boundedness). For f a 1
2
-convex func-

tion de�ned on a group G, if f is locally bounded above at some point x0;
then f is locally bounded above at all points.

Proof. Case (i) The Abelian case. Say f is bounded above in B :=
B�(x0) by M: Given a �xed point t; put z = zt := x�10 t2; so that t2 = x0z:
Consider any u 2 B�=2(t): Write u = st with jjsjj < �=2: Now put y = s2;
then jjyjj = jjs2jj � 2jjsjj < �: Hence yx0 2 B�(x0): Now

u2 = (st)2 = s2t2 = yx0z;

as the group is abelian. So

f(u) � 1

2
f(yx0) +

1

2
f(z) � 1

2
M +

1

2
f(zt):

That is, 1
2
(M + f(zt)) is an upper bound for f in B�=2(x0):

Case (ii) The general case. Now we consider the general case. As before,
suppose f is bounded above in B := B�(x0) by M; and let t be a given a
�xed point; put z = zt := x�10 t2 so that t2 = x0z:
For this �xed t the mapping y ! �(y) := ytyt�1y�2 is continuous with

�(e) = e; so �(y) is o(y) as jjyjj ! 0: Now

sts = [stst�1s�2]s2t = �(s)s2t;

and we may suppose that, for some � < �=2; we have jj�(s)jj < �=2; for
jjsjj < �: Note that

stst = �(s)s2t2:
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Consider any u 2 Br(t) with r = minf�; �=2g: Write u = st with jjsjj < r �
�=2: Now put y = s2: Then jjyjj = jjs2jj � 2jjsjj < � and jjo(s)yjj � �+�=2 <
�: Hence o(s)yx0 2 B�(x0). Now

u2 = stst = �(s)s2t2 = �(s)yx0z:

Hence, by convexity,

f(u) � 1

2
f(o(s)yx0) +

1

2
f(z) � 1

2
M +

1

2
f(zt): �

As an immediate corollary of the last theorem and the Bernstein-Doetsch
Theorem (Th. 9.6) we have the following result.

Theorem 9.8 (Dichotomy Theorem for convex functions �[Kucz]
p. 147). For 1

2
-convex f (so in particular for additive f) either f is contin-

uous everywhere, or it is discontinuous everywhere.

The de�nition below requires continuity of �square-rooting��taken in the
form of an algebraic closure property of degree 2 in a group G; expressed as
the solvability of certain �quadratic equations�over the group. Its status is
clari�ed later by reference to Bartle�s Inverse Function Theorem. We recall
that a group is n-divisible if xng = e is soluble for each g 2 G: (In the absence
of algebraic closure of any degree an extension of G may be constructed in
which these equations are solvable �see for instance Levin [Lev].)

De�nition. We say that the normed group G is locally convex at � = t2

if, for any " > 0; there is � > 0 such that for all g with jjgjj < "; the equation

xtxt = gt2;

equivalently xtxt�1 = g; has its solutions satisfying jjxjj < �:
Thus G is locally convex at e if, for any " > 0; there is � > 0 such that

for all g with jjgjj < "; the equation

x2 = g

has its solutions with jjxjj < �:
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Remark. Putting u = xt the local convexity equation reduces to u2 =
gt2; asserting the local existence of square roots (local 2-divisibility). If G is
abelian the condition at t reduces to the condition at e:

Theorem 9.9 (Local lower boundedness). Let G be a locally convex
group with a 2-Lipschitz norm, i.e. g ! g2 is a bi-Lipschitz isomorphism
such that, for some � > 0;

�jjgjj � jjg2jj � 2jjgjj:

For f a 1
2
-convex function, if f is locally bounded below at some point, then

f is locally bounded below at all points.

Proof. Case (i) The Abelian case. We change the roles of t and x0 in the
preceeding abelian theorem, treating t as a reference point, albeit now for
lower boundedness, and x0 as some arbitrary other �xed point. Suppose that
f is bounded below by L on B�(t): Let yx0 2 B��(x0); so that 0 < jjyjj < ��:
Choose s such that s2 = y: Then,

�jjsjj � jjyjj < ��;

so jjsjj < �: Thus u = st 2 B�(t): Now the identity u2 = s2t2 = yx0z implies
that

L � f(u) � 1

2
f(yx0) +

1

2
f(zt);

2L� f(zt) � f(yx0);

i.e. that 2L� f(zt) is a lower bound for f on B��(x0):
Case (ii) The general case. Now we consider the general case. Suppose

as before that f is bounded below by L on B�(t): Since the map �(�) :=
�t�t�1��2 is continuous and �(e) = e; we may choose � such that jj�(�)jj <
��=2; for jj�jj < �: Now choose " > 0 such that, for each y with jjyjj < "; the
solution u = �t to

u2 = yt2

has jj�jj < �: Let r = minf��=2; "g:
Let yx0 2 Br(x0); then 0 < jjyjj < ��=2 and jjyjj < ": As before put

z = zt := x�10 t2 so that t2 = x0z: Consider u = �t such that u2 = yx0z; thus
we have

u2 = �t�t = yx0z = yx0x
�1
0 t2 = yt2:
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Hence jj�jj < � (as jjyjj < "): Now we write

u2 = �t�t = [�t�t�1��2]�2t2 = �(�)�2t2 = yt2:

We compute that
y = �(�)�2

and

��=2 � jjyjj = jj�(�)�2jj � jj�2jj � jj�(�)jj � �jj�jj � jj�(�)jj;

so
jj�jj � �=2 + jj�(�)jj=� < �=2 + �=2 < �:

Thus u 2 B�(t): Now the identity u2 = yx0z together with convexity implies
as usual that

L � f(u) � 1

2
f(yx0) +

1

2
f(zt);

2L� f(zt) � f(yx0);

i.e. 2L� f(zt) is a lower bound for f on B��(x0): �

The local 2-divisibility assumption at t2 asserts that ft(�) := �t�t�1 is
invertible locally at e. Bartle�s theorem below guarantees that ft has uniform
local inverse under a smoothness assumption, i.e. that for jj�jj = jjf�1t (y)jj <
�, for all small enough y; say for jjyjj < ��: To state the theorem we need
some de�nitions.
De�nitions.
1. f is said to have a derivative at x0 if there is a continuous homomor-

phism f 0(x0) such that

lim
jjujj!0+

1

jjujj jjf(ux0)f(x0)
�1[f 0(x0)(u)]

�1jj = 0:

2. f is of class C 0 on the open set U if it has a derivative at each point u
in U and, for each x0 and each " > 0; there is � > 0 such that, for all x1; x2
in B�(x0) both

jjf 0(x1)(u)[f 0(x2)(u)]�1jj < "jjujj
and

jjf(x1)f(x2)�1f 0(x0)(x1x�12 )�1jj < "jjx1x�12 jj:

94



The two conditions may be rephrased relative to the right-invariant metric d
on the group as

d(f 0(x1)(u); f
0(x2)(u)) < "jjujj;

and
d(f(x1)f(x2)

�1; f 0(x0)(x1x
�1
2 ) < "d(x1; x2):

3. Suppose that y0 = f(x0): Then f is smooth at x0 if there are positive
numbers �; � such that if 0 < d(y; y0) < � then there is x such that y = f(x)
and d(x; x0) � � � d(y; y0): If f is invertible, then this asserts that

d(f�1(y); f�1(y0)) � � � d(y; y0):

Example. Let f(x) = tx with t �xed. Here f is smooth at x0 if there
are positive numbers �; � such that

jjxx�10 jj � �jjtx(tx0)�1jj = �jjtxx�10 t�1jj:

Note that in a Klee group jjtxx�10 t�1jj = jjt�1txx�10 jj = jjxx�10 jj:

Theorem 9.10 (Bartle�s Inverse Function Theorem, [Bart] Th.
2.4). Suppose that
(i) f is of class C 0 in the ball Br(x0) = fx 2 G : jjxx�10 jj < rg, for some

r > 0; and
(ii) f 0(x0) is smooth (at e and so anywhere).
Then f is smooth at x0 and hence open.
If also the derivative f 0(x0) is an isomorphism, then f has a uniformly

continuous local inverse at x0:

Corollary 9.11. If ft(�) := �t�t�1 is of class C 0 on Br(e) and f 0t(e) is
smooth, then G is locally convex at t:

Proof. Immediate since ft(e) = e: �

We are now in a position to state generalizations of two results derived
in the real line case in [BOst6].

Proposition 9.12. Let G be any locally convex group with a 2-Lipschitz
norm. If f is 1

2
-convex and bounded below on a re�ecting subset S of G,

then f is locally bounded below on G.
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Proof. Suppose not. Let T be a re�ecting subset of S: Let K be a lower
bound on T: If f is not locally bounded from below, then at any point u in
�T there is a sequence fung ! u with ff(un)g ! �1: For some w 2 G; we
have v2n = wun 2 T; for in�nitely many n: Then

K � f(vn) �
1

2
f(w) +

1

2
f(un); or 2K � f(w) � f(un);

i.e. f(un) is bounded from below, a contradiction. �

Theorem 9.13 (Generalized Mehdi Theorem �cf. [Meh] Th. 3).
A 1

2
-convex function f : G ! R on a normed group, bounded above on an

averaging subset S, is continuous on G.

Proof. Let T be an averaging core of S: Suppose that f is not continuous,
but is bounded above on T by K. Then f is not locally bounded above at
some point of u 2 �T : Then there is a null sequence zn ! e with f(un)!1;
where un = uzn: Select fvng and w in G so that, for in�nitely many n; we
have

u2n = wvn:

But for such n;we have

f(un) �
1

2
f(w) +

1

2
f(vn) �

1

2
f(w) +

1

2
K;

contradicting the unboundedness of f(un): �

The Generalized Mehdi Theorem, together with the Averaging Lemma,
implies the classical result below and its generalizations.

Theorem 9.14 (Császár-Ostrowski Theorem [Csa], [Kucz] p. 210).
A convex function f : R!R bounded above on a set of positive measure/non-
meagre set is continuous.

Theorem 9.15 (Topological Császár-Ostrowski Theorem). A 1
2
-

convex function f : G ! R on a normed group, bounded above on a non-
meagre subset, is continuous.

Reference to the Generalized Borwein-Ditor Theorem yields the following.

Theorem 9.16 (Haar-measure Császár-Ostrowski Theorem). A
1
2
-convex function f : G! R on a normed group carrying a Radon measure,
bounded above on a set of positive measure, is continuous.
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10 Automatic continuity: the Jones-Kominek
Theorem

This section is dedicated to generalizations to normed groups and to a more
general class of topological groups of the following result for the real line.
Here we regard R as a vector space over Q and so we say that T is a spanning
subset of R if any real number is a �nite rational combination of members of
T: See below for the de�nition of an analytic set.

Theorem 10.1 (Theorems of Jones and Kominek). Let f be addi-
tive on R and either have a continuous restriction, or a bounded restriction,
f jT , where T is some analytic set spanning R. Then f is continuous.

The result follows from the Expansion Lemma and Darboux�s Theorem
(see below) that an additive function bounded on an interval is continuous. In
fact the bounded case above (Kominek�s Theorem, [Kom2]) implies the con-
tinuous case (Jones�s Theorem, [Jones1], [Jones2]), as was shown in [BOst7].
[OC] develops limit theorems for sequences of functionals whose properties
are given on various kinds of spanning sets including spanning in the sense
of linear rational combinations.
Before stating the current generalizations we begin with some preliminar-

ies on analytic subsets of a topological group.
We recall ([Jay-Rog], p. 11, or [Kech] Ch. III for the Polish space setting)

that in a Hausdor¤spaceX aK-analytic set is a setA that is the image under
a compact-valued, upper semi-continuous map from NN; if this mapping takes
values that are singletons or empty, the set A is said to be analytic. In either
case A is Lindelöf. (The topological notion of K-analyticity was introduced
by Choquet, Frolik, Sion and Rogers under variant de�nitions, eventually
found to be equivalent, as a consequence of a theorem of Jayne, see [Jay-Rog]
Sect. 2.8 p. 37 for a discussion.) If the space X is a topological group, then
the subgroup hAi spanned (generated) by an analytic subset A is also analytic
and so Lindelöf (for which, see below); note the result due to Loy [Loy] and
Christensen [Ch] that an analytic Baire group is Polish (cf. [HJ] Th. 2.3.6
p. 355). Note that a Lindelöf group need not be metric; see for example
the construction due to Oleg Pavlov [Pav]. If additionally the group X is
metric, then hAi is separable, and so in fact this K-analytic set is analytic
(a continuous image of NN �see [Jay-Rog] Th. 5.5.1 (b), p. 110).
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De�nition. We say that a set S is Souslin-H if it is of the form

S =
[
�2!!

\1n=1H(�jn);

with each H(�jn) 2 H. We will often take H to be F(X); the family of
closed subsets of the space X:

We recall that a set is meagre if it is a countable union of nowhere dense
sets, a set is Baire if it is open modulo a meagre set, or equivalently if it is
closed modulo a meagre set (cf. Engelking [Eng] especially p.198 Section 4.9
and Exercises 3.9.J, although we prefer �meagre�to �of �rst category�).

De�nition. Let G be any group. For any positive integer n and for any
subset S let S(n); the n-span of S; denote the set of S-words of length n: Say
that a subset H of G spans G ( in the sense of group theory), or generates
the group G, if for any g 2 G; there are h1; :::; hn in H such that

g = h"11 � ::: � h"nn ; with "i = �1:

(If H is symmetric, so that h�1 2 H i¤ h 2 H; there is no need for inverses.)
We begin with results concerning K-analytic groups.

Proposition 10.2. The span of a K-analytic set is K-analytic; likewise
for analytic sets.

Proof. Since f(v; w) = vw is continuous, S(2) = f(S � S) is K-analytic
by [Jay-Rog] Th 2.5.1 p. 23. Similarly all the sets S(n) areK-analytic. Hence
the span, namely

S
n2N S

(n) is such ([Jay-Rog], Th. 2.5.4 p. 23). �

Theorem 10.3 (Intersection Theorem �[Jay-Rog] Th 2.5.3, p. 23).
The intersection of a K-analytic set with a Souslin-F(X) in a Hausdor¤
space X is K-analytic.

Theorem 10.4 (Projection Theorem �[RW] and [Jay-Rog] Th 2.6.6,
p. 30). Let X and Y be topological spaces with Y a K-analytic set. Then
the projection on X of a Souslin-F(X � Y ) is Souslin-F(X).

Theorem 10.5 (Nikodym�s Theorem �[Nik]; [Jay-Rog] p. 42) The
Baire sets of a space X are closed under the Souslin operation. Hence
Souslin-F(X) sets are Baire.
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De�nitions.
1. Say that a function f : X ! Y between two topological spaces is

H-Baire, for H a class of sets in Y; if f�1(H) has the Baire property for each
set H in H. Thus f is F(Y )-Baire if f�1(F ) is Baire for all closed F in Y:
Taking complements, since

f�1(Y nH) = Xnf�1(H);

f is F(Y )-Baire i¤ it is G(Y )-Baire, when we will simply say that f is Baire
(�f has the Baire property�is the alternative usage).
2. One must distinguish between functions that are F(Y )-Baire and those

that lie in the smallest family of functions closed under pointwise limits of se-
quences and containing the continuous functions (for a modern treatment see
[Jay-Rog] Sect. 6). We follow tradition in calling these last Baire-measurable.
3. We will say that a function is Baire-continuous if it is continuous when

restricted to some co-meagre set. In the real line case and with the density
topology, this is Denjoy�s approximate continuity ([LMZ], p.1); recall ([Kech],
17.47) that a set is (Lebesgue) measurable i¤ it has the Baire property under
the density topology.

The connections between these concepts are given in the theorems below.
See the cited papers for proofs.

Theorem 10.6 (Banach-Neeb Theorem �[Ban-T] Th. 4 pg. 35, and
Vol I p. 206; [Ne]).
(i) A Baire-measurable f : X ! Y with X a Baire space and Y metric

is Baire-continuous; and
(ii) a Borel-measurable f : X ! Y with X; Y metric and Y separable is

Baire-measurable.

Remarks. In fact Banach shows that a Baire-measurable function is
Baire-continuous on each perfect set ([Ban-T] Vol. II p. 206). Neeb assumes
in addition that Y is arcwise connected, but as Pestov [Pes] remarks the
arcwise connectedness may be dropped by referring to a result of Hartman
and Mycielski [HM] that a separable metrizable group embeds as a subgroup
of an arcwise connected separable metrizable group.

Theorem 10.7 (Baire Continuity Theorem). A Baire function f :
X ! Y is Baire continuous in the following cases:
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(i) Baire condition (see e.g. [HJ] Th. 2.2.10 p. 346): Y is a second-
countable space
(ii) Emeryk-Frankiewicz-Kulpa ([EFK]): X is µCech-complete and Y has

a base of cardinality not exceeding the continuum;
(iii) Pol condition ([Pol]): f is Borel, X is Borelian-K and Y is metriz-

able and of nonmeasurable cardinality;
(iv) Hansell condition ([Han]): f is �-discrete and Y is metric.

We will say that the pair (X; Y ) enables Baire continuity if the spaces
X; Y satisfy either of the two conditions (i) or (ii). In the applications below
Y is usually the additive group of reals R, so satis�es (i). Building on [EFK],
Fremlin ([Frem] Section 10), characterizes a space X such that every Baire
function f : X ! Y is Baire-continuous for all metric Y in the language
of �measurable spaces with negligibles�; reference there is made to disjoint
families of negligible sets all of whose subfamilies have a measurable union.
For a discussion of discontinuous homomorphisms, especially counterexam-
ples on C(X) withX compact (e.g. employing Stone-µCech compacti�cations,
X = �NnN ), see [Dal] Section 9.

Remarks. Hansell�s condition, requiring the function f to be �-discrete,
is implied by f being analytic when X is absolutely analytic (i.e. Souslin-
F(X) in any complete metric space X into which it embeds). Frankiewicz
[Fr] considers implications of the Axiom of Constructibility.

The following result provides a criterion for verifying that f is Baire.

Theorem 10.8 (Souslin criterion). Let X and Y be Hausdor¤ topo-
logical groups with Y a K-analytic set. If f : X ! Y has Souslin-F(X�Y )
graph, then f is Baire.

Proof. Let G � X � Y be the graph of f which is Souslin-F(X � Y ):
For F closed in Y; we have

f�1(F ) = prX [G \ (X � F )];

which, by the Intersection Theorem, is the projection of a Souslin-F(X�Y )
set. By the Projection Theorem, f�1(F ) is Souslin-F(X): Closed sets have
the Baire property by de�nition, so by Nikodym�s Theorem f�1(F ) has the
Baire property. �
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Before stating our next theorem we recall a classical result in the sharper
form resulting from the enabling condition (ii) above.

Theorem 10.9 (Banach-Mehdi Theorem � [Ban-T] 1.3.4, p. 40,
[Meh], [HJ] Th. 2.2.12 p. 348, or [BOst14]). A Baire-continuous homomor-
phism f : X ! Y between complete metric groups is continuous, when Y is
separable, or has base of cardinality less than the continuum.

The Souslin criterion and the next theorem together have as immediate
corollary the classical Souslin-graph Theorem; in this connection recall (see
the corollary of [HJ] Th. 2.3.6 p. 355) that a normed group which is Baire
and analytic is Polish.

Theorem 10.10 (Baire Homomorphism Theorem). Let X and
Y be topological groups with Y a K-analytic group and X non-meagre. If
f : X ! Y is a Baire homomorphism, then f is continuous.

Proof. Here we refer to the proof in [Jay-Rog] §2.10 of the Souslin-graph
theorem; that proof may be construed as having two steps: one establishing
the Souslin criterion (Th. 10.8 above), the other the Baire homomorphism
theorem. �
Corollary 1 (Souslin-graph Theorem, Schwartz [Schw], cf. [Jay-Rog]

p.50). Let X and Y be topological groups with Y a K-analytic group and
X non-meagre. If f : X ! Y is a homomorphism with Souslin-F(X � Y )
graph, then f is continuous.

Proof. This follows from Theorems 10.8 and 10.10. �

Corollary 2 (Generalized Jones Theorem: Thinned Souslin-graph
Theorem). Let X and Y be topological groups with X non-meagre and Y
a K-analytic set. Let S be a K-analytic set spanning X and f : X ! Y a
homomorphism with restriction to S continous on S: Then f is continuous.

Proof. Since f is continuous on S; the graph f(x; y) 2 S�Y : y = f(x)g
is closed in S�Y and so is K-analytic by [Jay-Rog] Th. 2.5.3. Now y = f(x)
i¤, for some n 2 N; there is (y1; :::; yn) 2 Y n and (s1; :::; sn) 2 Sn such that
x = s1 � ::: � sn; y = y1 � ::: � yn; and, for i = 1; ::; n; yi = f(si): Thus
G := f(x; y) : y = f(x)g is K-analytic. Formally,

G = prX�Y

"[
n2N

"
Mn \ (X � Y � Sn � Y n) \

\
i�n

Gi;n

##
;
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where

Mn := f(x; y; s1; ::::; sn; y1; :::; yn) : y = y1 � ::: � yn and x = s1 � ::: � sng;

and

Gi;n := f(x; y; s1; ::::; sn; y1; :::; yn) 2 X�Y�Xn�Y n : yi = f(si)g; for i = 1; :::; n:

Here each set Mn is closed and each Gi;n is K-analytic. Hence, by the In-
tersection and Projection Theorems, the graph G is K-analytic. By the
Souslin-graph theorem f is thus continuous. �

This is a new proof of the Jones Theorem. We now consider results for
the more special normed group context. Here again one should note the
corollary of [HJ] Th. 2.3.6 p. 355 that a normed group which is Baire and
analytic is Polish.
Our next result has a proof which is a minor adaptation of the proof in

[BoDi]. We recall that a Hausdor¤ topological space is paracompact ([Eng]
Ch. 5, or [Kel] Ch. 6, especially Problem Y) if every open cover has a locally
�nite open re�nement and that (i) Lindelöf spaces and (ii) metrizable spaces
are paracompact. Paracompact spaces are normal, hence topological groups
need not be paracompact, as exempli�ed again by the example due to Oleg
Pavlov [Pav] quoted earlier or by the example of van Douwen [vD] (see also
[Com] Section 9.4 p. 1222); however, L. G. Brown [Br-2] shows that a locally
complete group is paracompact (and this includes the locally compact case,
cf. [Com] Th. 2.9 p. 1161). The assumption of paracompactness is thus
natural.

Theorem 10. 11 (Second Generalized Measurable Kestelman-
Borwein-Ditor Theorem �cf. Th. 6.6). Let G be a paracompact topo-
logical group equipped with a locally-�nite, inner regular Borel measure m
(Radon measure) which is left-invariant, resp. right-invariant, (for example,
G locally compact, equipped with a Haar measure).
If A is a (Borel) measurable set with 0 < m(A) < 1 and zn ! e;

then, for m-almost all a 2 A; there is an in�nite set Ma such that the
corresponding right-translates, resp. left-translates, of zn are in A; i.e., in
the �rst case

fzna : n 2Mag � A:

Proof. Without loss of generality we consider right-translation of the
sequence fzng. Since G is paracompact, it su¢ ces to prove the result for
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A open and of �nite measure. By inner-regularity A may be replaced by a
�-compact subset of equal measure. It thus su¢ ces to prove the theorem for
K compact with m(K) > 0 and K � A: De�ne a decreasing sequence of
compact sets Tk :=

S
n�k z

�1
n K; and let T =

T
k Tk: Thus x 2 T i¤, for some

in�nite Mx;
znx 2 K for m 2Mx;

so that T is the set of �translators�x for the sequence fzng: Since K is closed,
for x 2 T; we have x = limn2Mx znx 2 K; thus T � K: Hence, for each k;

m(Tk) � m(z�1k K) = m(K);

by left-invariance of the measure. But, for some n; Tn � A: (If z�1n kn =2 A
on an in�nite set M of n; then since kn ! k 2 K we have z�1n kn ! k 2 A;
but k = lim z�1n kn =2 A; a contradiction since A is open.) So, for some n;
m(Tn) < 1; and thus m(Tk) ! m(T ): Hence m(K) � m(T ) � m(K): So
m(K) = m(T ) and thus almost all points of K are translators. �

Remark. It is quite consistent to have the measure left-invariant and
the metric right-invariant.

Theorem 10.12 (Analytic Dichotomy Lemma on Spanning). Let
G be a connected, normed group. Suppose that an analytic set T � G spans
a set of positive measure or a non-meagre set. Then T spans G.

Proof. In the category case, the result follows from the Banach-Kuratowski
Dichotomy, Th. 5.8 ([Ban-G, Satz 1], [Kur-1, Ch. VI. 13. XII], [Kel, Ch. 6
Prob. P p. 211]) by considering S; the subgroup generated by T ; since T
is analytic, S is analytic and hence Baire, and, being non-meagre, is clopen
and hence all of G, as the latter is a connected group.
In the measure case, by the Steinhaus Theorem, Th. 5.7 ([St], [BGT,

Th. 1.1.1], [BOst3]), T 2 has non-empty interior, hence is non-meagre. The
result now follows from the category case. �

Our next lemma follows directly from Choquet�s Capacitability Theorem
[Choq] (see especially [Del2, p. 186], and [Kech, Ch. III 30.C]). For complete-
ness, we include the brief proof. Incidentally, the argument we employ goes
back to Choquet�s theorem, and indeed further, to [ROD] (see e.g. [Del1, p.
43]).
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Theorem 10.13 (Compact Contraction Lemma). In a normed
group carrying a Radon measure, for T analytic, if T �T has positive Radon
measure, then for some compact subset S of T , S � S has positive measure.

Proof. We present a direct proof (see below for our original inspiration
in Choquet�s Theorem). As T 2 is analytic, we may write ([Jay-Rog]) T 2 =
h(H); for some continuous h and some K�� subset of the reals, e.g. the set H
of the irrationals, so that H =

T
i

S
j d(i; j); where d(i; j) are compact and,

without loss of generality, the unions are each increasing: d(i; j) � d(i; j+1).
The map g(x; y) := xy is continuous and hence so is the composition f =
g � h: Thus T � T = f(H) is analytic. Suppose that T � T is of positive
measure. Hence, by the capacitability argument for analytic sets ([Choq],
or [Si, Th.4.2 p. 774], or [Rog1, p. 90], there referred to as an �Increasing
sets lemma�), for some compact set A; the set f(A) has positive measure.
Indeed if jf(H)j > � > 0; then the set A may be taken in the form

T
i d(i; ji);

where the indices ji are chosen inductively, by reference to the increasing
union, so that jf [H \

T
i<k d(i; ji)]j > �; for each k: (Thus A � H and

f(A) =
T
i f [H \

T
i<k d(i; ji)] has positive measure, cf. [EKR].)

The conclusion follows as S = h(A) is compact and S �S = g(S) = f(A):
�

Note. The result may be deduced indirectly from the Choquet Capac-
itability Theorem by considering the capacity I : G2 ! R; de�ned by
I(X) = m(g(X)); where, as before, g(x; y) := xy is continuous and m
denotes a Radon measure on G (on this point see [Del2, Section 1.1.1, p.
186]). Indeed, the set T 2 is analytic ([Rog2, Section 2.8, p. 37-41]), so
I(T 2) = sup I(K2); where the supremum ranges over compact subsets K of
T: Actually, the Capacitability Theorem says only that I(T 2) = sup I(K2);
where the supremum ranges over compact subsets K2 of T 2; but such a set
may be embedded in K2 where K = �1(K)[ �2(K); with �i the projections
onto the axes of the product space.

Corollary 10.14. For T analytic and "i 2 f�1g, if T "1 � ::: � T "d has
positive measure (measure greater than �) or is non-meagre, then for some
compact subset S of T , the compact set K = S"1 � ::: � S"d has K � K of
positive measure (measure greater than �).

Proof. In the measure case the same approach may be used based now
on the continuous function g(x1; :::; xd) := x"11 � ::: � x

"d
d ; ensuring that K
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is of positive measure (measure greater than �): In the category case, if
T 0 = T "1 � ::: � T "d is non-meagre then, by the Steinhaus Theorem ([St], or
[BGT, Cor. 1.1.3]), T 0�T 0 has non-empty interior. The measure case may now
be applied to T 0 in lieu of T: (Alternatively one may apply the Pettis-Piccard
Theorem, Th. 5.3, as in the Analytic Dichotomy Lemma, Th. 10.12.) �

Theorem 10.15 (Compact Spanning Approximation). For T an-
alytic in X, if the span of T is non-null or is non-meagre, then there exists
a compact subset of T which spans X:

Proof. If T is non-null or non-meagre, then T spans all the reals (by
the Analytic Dichotomy Lemma); then for some "i 2 f�1g, T "1 � ::: � T "d has
positive measure/ is non-meagre. Hence for some K compact K"1 � ::: �K"d

has positive measure/ is non-meagre. Hence K spans some and hence all
reals. �

Theorem 10.16 (Analytic Covering Lemma �[Kucz, p. 227], cf.
[Jones2, Th. 11]). Given normed groups G and H; and T analytic in G; let
f : G! H have continuous restriction f jT: Then T is covered by a countable
family of bounded analytic sets on each of which f is bounded.

Proof. For k 2 ! de�ne Tk := fx 2 T : jjf(x)jj < kg \ Bk(eG): Now
fx 2 T : jjf(x)jj < kg is relatively open and so takes the form T \Uk for some
open subset Uk of G. The Intersection Theorem shows this to be analytic
since Uk is an F� set and hence Souslin-F . �

Theorem 10.17 (Expansion Lemma �[Jones2, Th. 4], [Kom2, Th.
2], and [Kucz, p. 215]). Suppose that S is Souslin-H, i.e. of the form

S =
[
�2!!

\1n=1H(�jn);

with each H(�jn) 2 H, for some family of analytic sets H on which f is
bounded. If S spans the normed group G, then, for each n; there are sets
H1; :::; Hk each of the form H(�jn); such that for some integers r1; :::; rk

T = H1 � ::: �Hk

has positive measure/ is non-meagre, and so T � T has non-empty interior.
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Proof. For any n 2 ! we have

S �
[
�2!!

H(�jn):

Enumerate the countable family fH(�jn) : � 2 !ng as fTh : h 2 !g: Since S
spans G, we have

G =
[
h2!

[
k2Nh

(Tk1 � ::: � Tkh) :

As each Tk is analytic, so too is the continuous image

Tk1 � ::: � Tkh ;

which is thus measurable. Hence, for some h 2 N and k 2 Nh the set

Tk1 � ::: � Tkh

has positive measure/ is non-meagre. �

De�nition. We say that S is a pre-compact set if its closure is compact.
We will say that f is a pre-compact function if f(S) is pre-compact for each
pre-compact set S:

Theorem 10.18 (Jones-Kominek Analytic Automaticity Theo-
rem for Metric Groups). Let be G be either a non-meagre normed group,
or a group supporting a Radon measure, and let H be K-analytic (hence
Lindelöf, and so second countable in our metric setting). Let h : G! H be
a homomorphism between metric groups and let T be an analytic set in G
which �nitely generates G:
(i) (Jones condition) If h is continuous on T; then h is continuous.
(ii) (Kominek condition) If h is pre-compact on T; then h is precompact.

Proof. As in the Analytic Covering Lemma (Th. 10.16), write

T =
[
k2N

Tk:

(i) If h is not continuous, suppose that xn ! x0 but h(xn) does not converge
to h(x0): Since

G =
[
m2N

[
k2N

T
(m)
k ;
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G is a union of analytic sets and hence analytic ([Jay-Rog] Th. 2.5.4 p. 23).
Now, for some m; k the m-span T (m)k is non-meagre, as is the m-span S(m)k of
some compact subset Sk � Tk: So for some shifted subsequence txn ! tx0;
where t and x0 lie in S

(m)
k : Thus there is an in�nite set M such that, for

n 2M,
txn = t1n:::t

m
n with t

i
n 2 Sk:

W.l.o.g., as Sk is compact,

t(i)n ! t
(i)
0 2 Sk � T;

and so
txn = t1n:::t

m
n ! t10:::t

m
0 = tx0 with ti0 2 Sk � T:

Hence, as tin ! ti0 � T; we have, for n 2M,

h(t)h(xn) = h(txn) = h(t1n:::t
m
n ) = h(t1n):::h(t

m
n )

! h(t10):::h(t
m
0 ) = h(t10:::t

m
0 )

= h(tx0) = h(t)h(x0):

Thus
h(xn)! h(x0);

a contradiction.
(ii) If fh(xn)g is not precompact with fxng precompact, by the same

argument, for some S(n)k and some in�nite set M, we have txn = t1n:::t
m
n and

tin ! ti0 � T , for n 2 M. Hence h(txn) = h(t)h(xn) is precompact and so
h(xn) is precompact, a contradiction. �

The following result connects the preceeding theorem to Darboux�s The-
orem, that a locally bounded additive function on the reals is continuous
([Dar], or [AD]).

De�nition. Say that a homomorphism between normed groups is N-
homogeneous if jjf(xn)jj = njjf(x)jj; for any x and n 2 N. (cf. Section
2 where N-homogeneous norms were considered, for which homomorphisms
are automatically N-homogeneous). Thus any homomorphism into the ad-
ditive reals is N-homogeneous. More generally, say that the norm is N-
subhomogeneous if there are constants �n with �n ! 1 such that for all
elements z of the group

�njjzjj � jjznjj;
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or equivalently

jjz1=njj � 1

�n
jjzjj:

Thus z1=n ! e; a related condition was considered by McShane in [McSh] (cf.
the Eberlein-McShane Theorem, Th. 9.1). In keeping with the convention
of functional analysis (appropriately to our usage of norm) the next result
refers to a locally bounded homomorphism as bounded.

Theorem 10.19 (Generalized Darboux Theorem �[Dar]). A bounded
homomorphism from a normed group to an N-subhomogeneous normed group
is continuous. In particular, a bounded, additive function on R is continuous.

Proof. Suppose that f : G ! H is a homomorphism to a normed N-
subhomogeneous group H; thus jjf(xn)jj � �njjf(x)jj; for any x 2 G and
n 2 N. Suppose that f is bounded by M and, for jjxjj < �; we have

jjf(x)jj < M:

Let " > 0 be given. Choose N such that �N > M="; i.e. M=�N < ": Now
x! xN is continuous, hence there is � = �N(�) > 0 such that, for jjxjj < �;

jjxN jj < �:

Consider x with jjxjj < �N(�): Then �N jjf(x)jj � jjf(x)N jj = jjf(xN)jj < M:
So for x with jjxjj < �N(�) we have

jjf(x)jj < M=�N < ";

proving continuity at e: �

Compare [HJ] Th 2.4.9 p. 382.
The Main Theorem of [BOst7] may be given a combinatorial restatement

in the group setting. We need some further de�nitions.

De�nition. For G a metric group, let C(G) = C(N; G) := fx 2 GN : x is
convergent}. For x 2 C(G) we write

L(x) = lim
n
xn:

We make C(G) into a group by setting

x � y : = hxnyn : n 2 Ni:
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Thus e = heGi and x�1 = hx�1n i:We identify G with the subgroup of constant
sequences, that is

T = fhg : n 2 Ni : g 2 Gg:
The natural action of G or T on C(G) is then tx := htxn : n 2 Ni: Thus
hgi = ge; and then tx = te � x:

De�nition. For G a group, a set G of convergent sequences u = hun :
n 2 Ni in c(G) is a G-ideal in the sequence space C(G) if it is a subgroup
closed under the mutiplicative action of G; and will be termed complete if it
is closed under subsequence formation. That is, a complete G-ideal in C(G)
satis�es
(i) u 2 G implies tu = htuni 2 G, for each t in G;
(ii) u;v 2 G implies that uv�1 2 G,
(iii) u 2 G implies that uM := fum : m 2Mg 2 G for every in�nite M.

If G isatis�es (i) and u;v 2 G implies only that uv 2 G, we say that G is
a G-subideal in C(G):
Remarks.
0. In the notation of (iii) above, if G is merely an ideal then G� = fuM :

for u 2 t and M � Ng is a complete G-ideal; indeed tuM = (tu)M and
uMv

�1
M = (uv�1)M and uMM0 = uM0 for M0�M.
1. We speak of a Euclidean sequential structure when G is the vector

space Rd regarded as an additive group.
2. The conditions (i) and (ii) assert that G is similar in structure to a

left-ideal, being closed under multiplication by G and a subgroup of C(G):
3. We refer only to the combinatorial properties of C(G); but one may

give C(G) a pseudo-norm by setting

jjxjjc := dG(Lx; e) = jjLxjj; where Lx := lim xn:

The corresponding pseudo-metric is

d(x; y) := lim dG(xn; yn) = dG(Lx;Ly):

We may take equivalence of sequences with identical limit; then C(G)� be-
comes a normed group. However, in our theorem below we do not wish to
refer to such an equivalence.

De�nitions. For a family F of functions from G to H, we denote by
F(T ) the family ff jT : f 2 Fg of functions in F restricted to T � G. Let
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us denote a convergent sequence with limit x0; by fxng ! x0: We say the
property Q of functions (property being regarded set-theoretically, i.e. as a
family of functions from G to H) is sequential on T if

f 2 Q i¤ (8fxn : n > 0g � T )[(fxng ! x0) =) f jfxn : n > 0g 2 Q(fxn : n > 0g)]:

If we further require the limit point to be enumerated in the sequence, we
call Q completely sequential on T if

f 2 Q i¤ (8fxng � T )[(fxng ! x0) =) f jfxng 2 Q(fxng)]:

Our interest rests on properties that are completely sequential; our theo-
rem below contains a condition referring to completely sequential properties,
that is, the condition is required to hold on convergent sequences with limit
included (so on a compact set), rather than on arbitrary sequences.
Note that if Q is (completely) sequential then f jfxng 2 Q(fxng) i¤

f jfxn : n 2Mg 2 Q(fxn : n 2Mg); for every in�nite M.

De�nition. Let h : G ! H; with G;H metric groups. Say that a
sequence u = fung is Q-good for h if

hjfung 2 Qjfung;

and put
GhQ = fu : hjfung 2 Qjfungg:

If Q is completely sequential, then u is Q-good for h i¤ every subsequence of
u is Q-good for h, so that GhQ is a G-ideal i¤ it is a complete G-ideal. One
then has:

Lemma 10.20. If Q is completely sequential and F preserves Q under
shift and multiplication and division on compacts, then GhQ for h 2 F is a
G-ideal.

Theorem 10.21 (Analytic Automaticity Theorem - combinator-
ial form). Suppose that functions of F having Q on G have P on G; where
Q is a property of functions from G to H that is completely sequential on G.
Suppose that, for all h 2 F , GhQ, the family of Q-good sequences is a

G-ideal. Then, for any analytic set T spanning G, functions of F having Q
on T have P on G:
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This theorem is applied withG = Rd andH = R in [BOst6] to subadditive
functions, convex functions, and to regularly varying functions (de�ned on
Rd) to derive automatic properties such as automatic continuity, automatic
local boundedness and automatic uniform boundedness.

11 Duality in normed groups

In this section �to distinguish two contexts �we use the generic notation of
S for a group with metric dS; recall from Section 3 that Auth(S) denotes the
auto-homeomorphisms of S;H(S) denotes the bounded elements of Auth(S):
WewriteA � H(S) for a subgroup of auto-homeomorphisms of S:Wework in
the category of normed groups. However, by specializing to A = Hu(S); the
homeomorphisms that are bi-uniformly continuous (relative to dS), we can
regard the development as also taking place inside the category of topological
groups, by Th. 3.11. We assume that A is metrized by the supremum metric

dT (t1; t2) = sup
s2S

dX(t1(s); t2(s)):

Note that eA = idS: The purpose of this notation is to embrace the two cases:
(i) S = X and A = Hu(X); and
(ii) S = Hu(X) and A = Hu(Hu(X)):
In what follows, we regard the group Hu(X) as the topological (uniform)

dual ofX and verify that (X; dX) is embedded in the second dualHu(Hu(X)).
As an application one may use this duality to clarify, in the context of a non-
autonomous di¤erential equation with initial conditions, the link between its
solutions trajectories and �ows of its varying �coe¢ cient matrix�. See [Se1]
and [Se2], which derive the close relationship for a general non-autonomous
di¤erential equation u0 = f(u; t) with u(0) = x 2 X; between its trajectories
in X and local �ows in the function space � of translates ft of f (where
ft(x; s) = f(x; t+ s)):
One may alternatively capture the topological duality as algebraic com-

plementarity �see [Ost-knit] for details. A summary will su¢ ce here. One
�rst considers the commutative diagram below where initially the maps
are only homeomorphisms (herein T � Hu(X) and �T (t; x) = (t; tx) and
�X(x; t) = (t; xt) are embeddings). Then one extends the diagram to a di-
agram of isomorphisms, a change facilitated by forming the direct product
group G := T�X: Thus G = TGXG where TG and XG are normal subgroups,
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commuting elementwise, and isomorphic respectively to T and X; moreover,
the subgroup TG; acting multiplicatively on XG; represents the T -�ow on X
and simultaneously the multiplicative action of XG on G represents the X-
�ow on TX = ftx : t 2 T; x 2 Xg; the group of right-translates of T , where
tx(u) = �x(t)(u) = t(ux): If G has an invariant metric dG; and TG and XG are
now regarded as groups of translations on G; then they may be metrized by
the supremum metric d̂G; whereupon each is isometric to itself as subgroup
of G: Our approach here su¤ers a loss of elegance, by dispensing with G; but
gains analytically by working directly with dX and d̂X :

(t; x) �
�T - (t; tx)

(x; t)
?

6

� �X - (t; xt)
?

6

Here the two vertical maps may, and will, be used as identi�cations, since
(t; tx)� (t; x)� (t; xt) are bijections (more in fact is true, see [Ost-knit]).

De�nitions. Let X be a topological group with right-invariant metric
dX . We de�ne for x 2 X a map �x : H(X)! H(X) by putting

�x(s)(z) = s(��1x (z)) = s(x�1z); for s 2 Hu(X); z 2 X:

We set
� := f�x : x 2 Xg:

By restriction we may also write �x : Hu(X)! Hu(X).

Proposition 11.1. Under composition � is a group of isometries of
Hu(X) isomorphic to X:

Proof. The identity is given by e� = �e; where e = eX . Note that

�x(eS)(eX) = x�1;

so the mapping x! �x from X to � is bijective. Also, for s 2 H(X);

(�x � �y(s))(z) = �x(�y(s))(z) = (�y(s))(x
�1z)

= s(y�1x�1z) = s((xy)�1z) = �xy(s)(z);
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so � is an isomorphism from X to � and so ��1x = �x�1 :
For x �xed and s 2 Hu(X), note that by Lemma 3.8 and Cor. 3.6 the

map z ! s(x�1z) is in Hu(X): Furthermore

dH(�x(s); �x(t)) = sup
z
dX(s(x�1z); t(x�1z)) = sup

y
dX(s(y); t(y)) = dH(s; t);

so �x is an isometry, and hence is continuous. �x is indeed an auto-homeomorphism
of Hu(X); as �x�1 is the continuous inverse of �x: �

Remark. The de�nition above lifts the isomorphism � : X ! TrL(X)
to Hu(X): If T � Hu(X) is �-invariant, we may of course restrict � to
operate on T: Indeed, if T = TrL(X); we then have �x(�y)(z) = �y�

�1
x (z), so

�x(�y) = �yx�1 :
In general it will not be the case that �x 2 Hu(Hu(X)); unless dX is

bounded. Recall that

jjxjj1 := sup
s2H(X)

jjxjjs = sup
s2H(X)

dXs (x; e) = sup
s2H(X)

dX(s(x); s(e)):

By contrast we have

jjf jj1 = sup
z
sup
g
dXg (f(z); z):

However, for f(z) = �x(z) := xz, putting s = g � �z brings the the two
formulas into alignment, as

jj�xjj1 = sup
z
sup
g
dX(g(xz); g(z)) = sup

z
sup
g
dX(g(�z(x)); g(�z(e))):

This motivates the following result.

Proposition 11.2. The subgroup HX := fx 2 X : jjxjj1 <1g equipped
with the norm jjxjj1 embeds isometrically under � into Hu(Hu(X)) as

�H := f�x : x 2 HXg:

Proof. Writing y = x�1z or z = xy; we have

dH(�x(s); s) = sup
z2X

dX(s(x�1z); s(z)) = sup
y2X

dX(s(y); s(xy))

= sup
y2X

dXs (�ye; �yx) = sup
y
dXs-y(e; x):
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Hence

jj�xjjH = sup
s2H(X)

dH(�x(s); s) = jj�xjj1 = sup
s2H(X)

sup
y2X

dXs (y; xy) = jjxjj1:

Thus for x 2 HX the map �x is bounded over Hu(X) and hence is in
Hu(Hu(X)): �

The next result adapts ideas of Section 3 on the Lipschitz property in Hu

(Th. 3.20) to the context of �x and refers to the inverse modulus of continuity
�(s) which we recall:

�(g) = �1(g) := supf� > 0 : dX(g(z); g(z0)) � 1; for all dX(z; z0) � �g:

Proposition 11.3 (Further Lipschitz properties of Hu). Suppose
that the normed group X has a vanishingly small global word-net. Then for
x; z 2 X and s 2 Hu(X) the s-z-shifted norm (recalled below) satis�es

jjxjjs-z := dXs-z(x; e) = dX(s(z); s(xz)) � 2jjxjj=�(s):

Hence
jj�ejjH(Hu(X)) = sup

s2Hu(X)

sup
z2X

jjejjs-z = 0;

and so �e 2 H(Hu(X)): Furthermore, if f�(s) : s 2 Hu(X)g is bounded away
from 0, then

jj�xjjH(Hu(X)) = sup
s2Hu(X)

dH(X)(�x(s); s) = sup
s2Hu(X)

sup
z2X

dX(s(x�1z); s(z))

� 2jjxjj= inff�(s) : s 2 Hu(X)g;

and so �x 2 H(Hu(X)):
In particular this is so if in addition X is compact.

Proof. Writing y = x�1z or z = xy; we have

dH(�x(s); s) = sup
z2X

dX(s(x�1z); s(z)) = sup
y2X

dX(s(y); s(xy)):

Fix s: Since s is uniformly continuous, � = �(s) is well-de�ned and

d(s(z0); s(z)) � 1;
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for z; z0 such that d(z; z0) < �: In the de�nition of the word-net take " < 1:
Now suppose that w(x) = w1:::wn(x) with jjzijj = 1

2
�(1 + "i) and j"ij < ";

where n(x) = n(x; �) satis�es

1� " � n(x)�

jjxjj � 1 + ":

Put z0 = z, for 0 < i < n(x)

zi+1 = ziwi;

and zn(x)+1 = x; the latter is within � of x: As

d(zi; zi+1) = d(e; wi) = jjwijj < �;

we have
d(s(zi); s(zi+1)) � 1:

Hence
d(s(z); s(xz)) � n(x) + 1 < 2jjxjj=�:

The �nal assertion follows from the subadditivity of the Lipschitz norm
(cf. Theorem 3.25). �

If f�(s) : s 2 Hu(X)g is unbounded (i.e. the inverse modulus of continuity
is unbounded), we cannot develop a duality theory. However, a comparison
with the normed vector space context and the metrization of the translations
x ! t(z + x) of a linear map t(z) suggests that, in order to metrize � by
reference to �x(t); we need to take account of jjtjj: Thus a natural metric here
is, for any " � 0; the magni�cation metric

d"T (�x; �y) := sup
jjtjj�"

dT (�x(t); �y(t)): (5)

By Proposition 2.14 this is a metric; indeed with t = eH(X) = idX we have
jjtjj = 0 and, since dX is assumed right-invariant, for x 6= y; we have with
zxy = e that dX(x�1z; y�1z) = dX(x�1; y�1) > 0: The presence of the case
" = 0 is not fortuitous; see [Ost-knit] for an explanation via an isomorphism
theorem. We trace the dependence on jjtjj in Proposition 11.5 below. We
refer to Gromov�s notion [Gr1], [Gr2] of quasi-isometry under �; in which �
is a mapping between spaces. In a �rst application we take � to be a self-
homeomorphism, in particular a left-translation; in the second �(x) = �x(t)
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with t �xed is an evaluation map appropriate to a dual embedding. We begin
with a theorem promised in Section 3.

Theorem 11.4 (Uniformity Theorem for Conjugation). Let � :
G2 ! G be the conjugation �(g; x) := g�1xg:
Under a bi-invariant Klee metric, for all a; b; g; h ;

dG(a; b)� 2dG(g; h) � dG(gag�1; hbh�1) � 2dG(g; h) + dG(a; b);

and hence conjugation is uniformly continuous.

Proof. Referring to the Klee property, via the cyclic property we have

dG(gag�1; hbh�1) = jjgag�1hb�1h�1jj = jjh�1gag�1hb�1jj
� jjh�1gjj+ jjag�1hb�1jj
� jjh�1gjj+ jjab�1jj+ jjg�1hjj;

for all a; b; yielding the right-hand side inequality. Then substitute g�1ag for
a etc., g�1 for g etc., to obtain

dG(a; b) � 2dG(g�1; h�1) + dG(gag�1; hbh�1):

This yields the left-hand side inequality, as dG is bi-invariant and so

dG(g�1; h�1) = ~dG(g; h) = dG(g; h): �

Proposition 11.5 (Permutation metric). For � 2 H(X); let d�(x; y) :=
dX(�(x); �(y)): Then d� is a metric, and

dX(x; y)� 2jj�jj � d�(x; y) � dX(x; y) + 2jj�jj:

In particular, if dX is right-invariant and �(x) is the left-translation �z(x) =
zx; then

dX(x; y)� 2jjzjj � dXz (x; y) = dX(zx; zy) � dX(x; y) + 2jjzjj:

Proof. By the triangle inequality,

dX(�(x); �(y)) � dX(�(x); x) + dX(x; y) + dX(y; �(y)) � 2jj�jj+ dX(x; y):
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Likewise,

dX(x; y) � dX(x; �(x)) + dX(�(x); �(y)) + dX(�(y); y)

� 2jj�jj+ dX(�(x); �(y)):

If �(x) := zx; then jj�jj = sup d(zx; x) = jjzjj and the result follows. �

Recall from Proposition 2.2 that for d a metric on a group X; we write
~d(x; y) = d(x�1; y�1) for the (inversion) conjugate metric. The conjugate
metric ~d is left-invariant i¤ the metric d is right-invariant. Under such cir-
cumstances both metrics induce the same norm (since d(e; x) = d(x�1; e); as
we have seen above). In what follows note that ��1x = �x�1 :

Theorem 11.6 (Quasi-isometric duality). If the metric dX on X is
right-invariant and t 2 T � H(X) is a subgroup, then

~dX(x; y)� 2jjtjjH(X) � dT (�x(t); �y(t)) � ~dX(x; y) + 2jjtjjH(X);

and hence, for each " � 0, the magni�cation metric (5) satis�es

~dX(x; y)� 2" � d"T (�x; �y) � ~dX(x; y) + 2":

Equivalently, in terms of conjugate metrics,

dX(x; y)� 2" � ~d"T (�x; �y) � dX(x; y) + 2":

Hence,
jjxjj � 2" � jj�xjj" � jjxjj+ 2";

and so jjxnjj ! 1 i¤ dT (�x(n)(t); �e(t))!1:

Proof. We follow a similar argument to that for the permutation metric.
By right-invariance,

dX(t(x�1z); t(y�1z)) � dX(t(x�1z); x�1z) + dX(x�1z; y�1z) + dX(y�1z; t(y�1z))

� 2jjtjj+ dX(x�1; y�1);

so
dT (�x(t); �y(t)) = sup

z
dX(t(x�1z); t(y�1z)) � 2jjtjj+ dX(x; eX):
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Now, again by right-invariance,

dX(x�1; y�1) � d(x�1; t(x�1)) + d(t(x�1); t(y�1)) + d(t(y�1); y�1):

But
d(t(x�1); t(y�1)) � sup

z
dX(t(x�1z); t(y�1z));

so

dX(x�1; y�1) � 2jjtjj+ sup
z
dX(t(x�1z); t(y�1z)) = 2jjtjj+ dT (�x(t); �y(t));

as required. �

We thus obtain the following result.

Theorem 11.7 (Topological Quasi-Duality Theorem).
For X a normed group, the second dual � is a normed group isometric to

X which, for any " � 0; is "-quasi-isometric to X in relation to ~d"T (�x; �y)
and the jj � jj" norm. Here T = Hu(X):

Proof. We metrize � by setting d�(�x; �y) = dX(x; y): This makes � an
isometric copy ofX and an "-quasi-isometric copy in relation to the conjugate
metric ~d"T (�x; �y) which is given, for any " � 0; by

~d"T (�x; �y) := sup
jjtjj�"

dT (��1x (t); �
�1
y (t)):

In particular for " = 0 we have

dT (��1x (e); �
�1
y (e)) = sup

z
dX(xz; yz) = d(x; y):

Assuming dX is right-invariant, d� is right-invariant; since

d�(�x�z; �y�z) = d�(�xz; �yz) = dX(xz; yz) = dX(x; y): �

Remark. Alternatively, working in TrL(X) rather than in Hu(X) and
with dXR again right-invariant, and noting that �x(�y)(z) = �y�

�1
x (z)) =

�yx�1(z); we have

sup
w
dH(�x(�w); �e(�w)) = sup

v
dXv (e; x) = jjxjjX1;
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possibly in�nite. Indeed

sup
w
dH(�x(�w); �y(�w)) = sup

w
sup
z
dXR (�x(�w)(z); �y(�w)(z))

= sup
w
sup
z
dXR (wx

�1z; wy�1z) = sup
w
dXR (vxx

�1; vxy�1)

= sup
v
dXR (vy; vx) = sup

v
dXv (y; x):

(Here we have written w = vx:)
The re�nement metric supv d

X(vy; vx) is left-invariant on the bounded
elements (bounded under the related norm; cf. Proposition 2.12). Of course,
if dX were bi-invariant (both right- and left-invariant), we would have

sup
w
dH(�x(�w); �y(�w)) = dX(x; y):

12 Divergence in the bounded subgroup

In earlier sections we made on occasion the assumption of a bounded norm.
Here we are interested in norms that are unbounded.
For S a space and A a subgroup of Auth(S) equipped with the supremum

norm, suppose ' : A � S ! S is a continuous �ow (see Lemma 3.6, for an
instance). We will write �(s) := '�(s) = '(�; s): This is consistent with A
being a subgroup of Auth(S): As explained at the outset of Section 11, we
have in mind two pairs (A; S); as follows.

Example 1. Take S = X to be a normed topological group andA = T �
H(X) to be a subgroup of automorphisms of X such that T is a topological
group with supremum metric

dT (t1; t2) = sup
x
dX(t1(x); t2(x));

e.g. T = Hu(X): Note that here eT = idX :
Example 2. (A; S) = (�; T ) = (X;T ): Here X is identi�ed with its

second dual � (of the preceding section).

Given a �ow '(t; x) on T �X; with T closed under translation, the action
de�ned by

'(�x; t) := �x�1(t)
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is continuous, hence a �ow on � � T; which is identi�ed with X � T . Note
that �x�1(t)(eX) = t(x); i.e. projection onto the eX coordinate retrieves the
T -�ow ': Here, for � = �x�1 ; writing x(t) for the translate of t, we have

�(t) := '�(t) = '(�; t) = x(t);

so that ' may be regarded as a X-�ow on T:

We now formalize the notion of a sequence converging to the identity and
divergent sequence. These are critical to the de�nition of regular variation
[BOst13].

De�nition. Let  n : X ! X be auto-homeomorphisms.
We say that a sequence  n in H(X) converges to the identity if

jj njj = d̂( n; id) := sup
t2X

d( n(t); t)! 0:

Thus, for all t; we have zn(t) := d( n(t); t) � jj njj and zn(t)! 0: Thus the
sequence jj njj is bounded.

Illustrative examples. In R we may consider  n(t) = t + zn with
zn ! 0: In a more general context, we note that a natural example of a
convergent sequence of homeomorphisms is provided by a �ow parametrized
by discrete time (thus also termed a �chain�) towards a sink. If  : N�X ! X
is a �ow and  n(x) =  (n; x), then, for each t; the orbit f n(t) : n = 1; 2; :::g
is the image of the real null sequence fzn(t) : n = 1; 2; :::g:

Proposition 12.1. (i) For a sequence  n in H(X),  n converges to the
identity i¤  �1n converges to the identity.
(ii) Suppose X has abelian norm. For h 2 H(X); if  n converges to the

identity then so does h�1 nh:

Proof. Only (ii) requires proof, and that follows from jjh�1 nhjj =
jjhh�1 njj = jj njj ; by the cyclic property. �

De�nitions. 1. Again let 'n : X ! X be auto-homeomorphisms. We
say that the sequence 'n in G diverges uniformly if for any M > 0 we have,
for all large enough n; that

d('n(t); t) �M; for all t:
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Equivalently, putting

d�(h; h
0) = inf

x2X
d(h(x); h0(x));

d�('n; id)!1:

2. More generally, let A � H(S) with A a metrizable topological group.
We say that �n is a pointwise divergent sequence in A if, for each s 2 S;

dS(�n(s); s)!1;

equivalently, �n(s) does not contain a bounded subsequence.
3. We say that �n is a uniformly divergent sequence in A if

jj�njjA := dA(eA; �n)!1;

equivalently, �n does not contain a bounded subsequence.
Examples. In R we may consider 'n(t) = t + xn where xn ! 1: In a

more general context, a natural example of a uniformly divergent sequence of
homeomorphisms is again provided by a �ow parametrized by discrete time
from a source to in�nity. If ' : N �X ! X is a �ow and 'n(x) = '(n; x),
then, for each x; the orbit f'n(x) : n = 1; 2; :::g is the image of the divergent
real sequence fyn(x) : n = 1; 2; :::g; where yn(x) := d('n(x); x) � d�('n; id):
Remark. Our aim is to o¤er analogues of the topological vector space

characterization of boundedness: for a bounded sequence of vectors fxng
and scalars �n ! 0 ([Ru-FA2] cf. Th. 1.30), �nxn ! 0: But here �nxn is
interpreted in the spirit of duality as �n(xn) with the homeomorphisms �n
converging to the identity.

Theoretical examples motivated by duality.
1. Evidently, if S = X; the pointwise de�nition reduces to functional

divergence in H(X) de�ned pointwise:

dX(�n(x); x)!1:

The uniform version corresponds to divergence in the supremum metric
in H(X):
2. If S = T and A = X = �; we have, by the Quasi-isometric Duality

Theorem (Th. 11.7), that

dT (�x(n)(t); �e(t))!1
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i¤
dX(xn; eX)!1;

and the assertion is ordinary divergence in X: Since

d�(�x(n); �e) = dX(xn; eX);

the uniform version also asserts that

dX(xn; eX)!1:

Recall that �x(s)(z) = s(��1x (z)) = s(x�1z); so the interpretation of � as
having the action of X on T was determined by

'(�x; t) = �x�1(t)(e) = t(x):

One may write
�x(n)(t) = t(xn):

When interpreting �x(n) as xn in X acting on t; note that

dX(xn; eX) � dX(xn; t(xn)) + d
X(t(xn); eX) � jjtjj+ dX(t(xn); eX);

so, as expected, the divergence of xn implies the divergence of t(xn):

The next de�nition extends our earlier one from sequential to continuous
limits.

De�nition. Let f u : u 2 Ig for I an open interval be a family of
homeomorphisms (cf. [Mon2]). Let u0 2 I: Say that  u converges to the
identity as u! u0 if

lim
u!u0

jj ujj = 0:

This property is preserved under topological conjugacy; more precisely
we have the following result, whose proof is routine and hence omitted.

Lemma 12.2. Let � 2 Hunif (X) be a homeomorphism which is uni-
formly continuous with respect to dX , and write u0 = �z0:
If f z : z 2 B"(z0)g converges to the identity as z ! z0; then as u! u0

so does the conjugate f u = � z�
�1 : u 2 B"(u0); u = �zg:
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Lemma 12.3 Suppose that the homeomorphisms f'ng are uniformly
divergent, f ng are convergent and � is bounded, i.e. is in H(X). Then
f'n�g is uniformly divergent and likewise f�'ng: In particular f'n ng is
uniformly divergent, and likewise f'n� ng; for any bounded homeomorphism
� 2 H(X):

Proof. Consider s := jj�jj = sup d(�(x); x) > 0: For any M; from some
n onwards we have

d�('n; id) = inf
x2X

d('n(x); x) > M;

i.e.
d('n(x); x) > M;

for all x: For such n; we have d�('n�; id) > M � s; i.e. for all t we have

d('n(�(t)); t)) > M � s:

Indeed, otherwise at some t this last inequality is reversed, and then

d('n(�(t)); �(t)) � d('n(�(t)); t) + d(�(t); t)

� M � s+ s =M:

But this contradicts our assumption on 'n with x = �(t):Hence d�('n�; id) >
M � s for all large enough n:
The other cases follow by the same argument, with the interpretation that

now s > 0 is arbitrary; then we have for all large enough n that d( n(x); x) <
s; for all x: �

Remark. Lemma 12.3 says that the �lter of sets (countably) generated
from the sets

f'j' : X ! X is a homeomorphism and jj'jj � ng

is closed under composition with elements of H(X):

We now return to the notion of divergence.

De�nition. We say that pointwise (resp. uniform) divergence is uncon-
ditional in A if, for any (pointwise/uniform) divergent sequence �n,
(i) for any bounded �; the sequence ��n is (pointwise/uniform) divergent;
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and,
(ii) for any  n convergent to the identity,  n�n is (pointwise/uniform) diver-
gent.

Remarks. In clause (ii) each of the functions  n has a bound depending
on n: The two clauses could be combined into one by requiring that if the
bounded functions  n converge to  0 in the supremum norm, then  n�n is
(pointwise/uniform) divergent.
By Lemma 12.3 uniform divergence in H(X) is unconditional. We move

to other forms of this result.

Proposition 12.4. If the metric on A is left- or right-invariant, then
uniform divergence is unconditional in A.

Proof. If the metric d = dA is left-invariant, then observe that if �n is a
bounded sequence, then so is ��n; since

d(e; ��n) = d(��1; �n) � d(��1; e) + d(e; �n):

Since jj��1n jj = jj�njj; the same is true for right-invariance. Further, if  n is
convergent to the identity, then also  n�n is a bounded sequence, since

d(e;  n�n) = d( �1n ; �n) � d( �1n ; e) + d(e; �n):

Here we note that, if  n is convergent to the identity, then so is  
�1
n by

continuity of inversion (or by metric invariance). The same is again true for
right-invariance. �

The case where the subgroup A of auto-homeomorphisms is the transla-
tions �; though immediate, is worth noting.

Theorem 12.5 (The case A = �): If the metric on the group X is left-
or right-invariant, then uniform divergence is unconditional in A = �.

Proof. We have already noted that � is isometrically isomorphic to X:
�

Remarks.
1. If the metric is bounded, there may not be any divergent sequences.
2. We already know from Lemma 12.3 that uniform divergence in A =

H(X) is unconditional.
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3. The unconditionality condition (i) corresponds directly to the technical
condition placed in [BajKar] on their �lter F : In our metric setting, we thus
employ a stronger notion of limit to in�nity than they do. The �lter implied
by the pointwise setting is generated by sets of the form\

i2I
f� : dX(�n(xi); xi) > M ultimatelyg with I �nite.

However, whilst this is not a countably generated �lter, its projection on the
x-coordinate:

f� : dX(�n(x); x) > M ultimatelyg;
is.
4. When the group is locally compact, �bounded�may be de�ned as

�pre-compact�, and so �divergent�becomes �unbounded�. Here divergence is
unconditional (because continuity preserves compactness).
The supremum metric need not be left-invariant; nevertheless we still do

have unconditional divergence.

Theorem 12.6. For A � H(S); pointwise divergence in A is uncondi-
tional.

Proof. For �xed s 2 S; � 2 H(S) and dX(�n(s); s)) unbounded, suppose
that dX(��n(s); s)) is bounded by K: Then

dS(�n(s); s)) � dS(�n(s); �(�n(s))) + dS(�(�n(s)); s)

� jj�jjH(S) +K;

contradicting that dS(�n(s); s)) is unbounded. Similarly, for  n converging
to the identity, if dS( n(�n(x)); x) is bounded by L; then

dS(�n(s); s)) � dS(�n(s);  n(�n(s))) + dS( n(�n(s)); s)

� jj njjH(S) + L;

contradicting that dS(�n(s); s)) is unbounded. �

Corollary 1. Pointwise divergence in A � H(X) is unconditional.

Corollary 2. Pointwise divergence in A = � is unconditional.

Proof. In Theorem 12.6, take �n = �x(n): Then unboundedness of
dT (�x(n)(t); t) implies unboundedness of d

T (��x(n)(t); t) and of d
T ( n�x(n)(t)); t):

�
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