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Abstract. We prove a generalization of the �Subadditive Limit Theorem�and
of the corresponding Berz Theorem in a class of functions that includes both
the measurable functions and the �Baire functions�(those with the Baire prop-
erty). The generic subadditive functions are de�ned by a combinatorial prop-
erty previously introduced for the study of the foundations of regular variation
in [BOst1]. By specialization we thus provide the previously unknown Baire
variants of the fundamental theorems of subbaditive functions, answering an
old question ([BGT], 2.12.4 p. 123).

1. Introduction and De�nitions

The class of subadditive functions is interesting from the point of view of both
theory and applications. Regarding theory � for which see e.g. [Ros], [HP],
[Kucz]�they have connections with both additive functions and convex functions.
All three classes share pathologies in general �the Hamel pathology ; see e.g. [BGT],
p.5, where they occur in connection with the class of regularly varying functions
� but have good properties under minimal regularity assumptions. In [BOst1],
[BOst3], [BOst4] we undertook the programme of developing the theory of regu-
lar variation under minimal assumptions; the resulting theory of regular variation
was there called generic because it gave a common generalization of the measurable
and Baire cases ([Kech] (8.5) p. 42). It turns out that the methods developed
there lend themselves to the corresponding programme for subadditive functions.
Accordingly, we call the resulting theory that of generic subadditive functions. Re-
garding applications: for analysis, the principal theorem is the �widely used �limit
theorem for subadditive functions, generalized below as the �First Limit Theorem�.
This has a probabilistic version, the subadditive ergodic theorem (see [King], [Lig]),
extension of which provided additional motivation for this paper.

We o¤er here a generalization of the �Subadditive Limit Theorem�applicable
to a class of real-valued subadditive functions de�ned on RN that includes both
the measurable functions and functions with the Baire property (brie�y the Baire
functions), namely the class of WNT functions as de�ned below. This is a less
restrictive class of functions permitting a uni�ed treatment of the two classical cases,
and still adequate, since, as we will show, a sublinear function on RN is continuous
i¤ it is in WNT. The conclusion that the theorem applies to Baire subadditive
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functions appears to be new. We extend several fundamental theorems concerning
subadditive functions on RN to the classWNT and prove a Uniform Convergence
Theorem as a contribution to the understanding of the Subadditive Limit Theorem.
We note that other approaches are known: [MatŚw] consider one-to-one instead
of measurable or Baire.

We begin by recalling some combinatorial de�nitions from [BOst3]. We follow
the set-theorists and denote the set of natural numbers by ! = f0; 1; 2; :::g.

Definition 1. For a family fTk : k 2 !g of subsets RN ; NT(fTk : k 2 !g)
means that, for every bounded/convergent sequence fung in RN ; some Tk contains
a translate of a subsequence of fung; i.e. there is k 2 !; in�nite M � !; t 2 RN
such that

ft+ un : n 2Mg � Tk:
For the function h : RN ! R, its (symmetric) level sets are de�ned by

Hr; or Hr(h); := ft 2 RN : jh(t)j < rg:
Definition 2. (WNT-functions).

(1) Let h : RN ! R. We will say that h is aWNT-function, h 2WNT, if,
for each r > 0; NT(fHk : k 2 !g) holds.

(2) Let h : RN ! [�1;1]. We will say that h is a WNT-function, h 2
WNT, if, for each r > 0; NT(fHk : k 2 !g [ H�1) holds, where
H�1 = ft 2 RN : jh(t)j =1g:

Theorem 1. No Trumps Theorem (Csiszár and Erdös [CsEr]; see [BOst1]).
If T is an interval and T =

S
k2! Tk with each Tk measurable/Baire, then NT(fTk :

k 2 !g) holds.

Corollary 1. If h is measurable/Baire, then h 2 WNT.

Proof. Taking T = R and Tk = Hk; a measurable/Baire set, this follows since

R =
[
k2!

Hk:

�

2. Subadditive Limit Theorem

We begin by extending the basic limit theorem for subadditive functions (Rosen-
baum [Ros], Hille and Phillips [HP] p. 255).

Theorem 2. Subadditive Limit Theorem (First Limit Theorem � at
In�nity). If the subadditive function f : RN ! R is in WNT, then the limit
function

(2.1) F (x) := lim
s!+1

f(sx)

s
; for x 2 RN ;

is �nite, positively homogeneous, convex and continuous. Moreover,

F (x) = inf
t>0

f(tx)

t
:
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Remark 1. For x 6= 0; write v(x) = x=jjxjj; then

F (x) = jjxjj lim
s!+1

f(sv(x))

s
= jjxjjF (v(x)); for x 2 RN :

Note that, as F is in particular sublinear (subadditive and also F (nx) = nF (x)
for n 2 !), this formula is in agreement with the theorem of Berz (see below) for
measurable sublinear F ([Kucz] p. 415). We will see later circumstances under
which this convergence is uniform. For the mean time we note:

Corollary 2. The Limit Theorem at In�nity holds if the subadditive function
f is measurable/Baire.

In preparation for the proof of the main theorem we need some auxiliary results.

Lemma 1. For any subadditive function f : RN ! R, if f is locally bounded
above at a point, then it is locally bounded at every point.

Proof. For a proof see [Kucz] p. 404 Th 2. �

Lemma 2. For any function f : RN ! R, if f is locally bounded, then f is
bounded on any bounded set.

Proof. If A is bounded, then its closure �A is compact. Appealing to com-
pactness, the result follows by covering �A with a �nite number of open sets on each
of which f is bounded. �

Proposition 1. (cf.[Kucz] p 404 Th 3). If f : RN ! R inWNT is subaddi-
tive, then f is locally bounded.

Proof. By assumption, NT(fHk : k 2 !g) holds for Hk = fx : jf(x)j < kg:
Suppose that f is not locally bounded; then it is not locally bounded above at some
point u; i.e. there exists un ! u with

f(un)! +1:

For some k 2 !; t 2 R and an in�nite M we have

ft+ un : n 2Mg � Hk:

For n in M we have

f(un) = f(t+ un � t) � f(t+ un) + f(�t) � k + f(�t);

which contradicts f(un)! +1: �



4 N. H. BINGHAM AND A. J. OSTASZEWSKI

Proof. (Proof of the First Limit Theorem.) Fix x 6= 0: Put

� = �+(x) = inf
t>0

f(tx)

t
� �1:

(We have adapted the notation of [HP] for clarity and to suit later needs.) As
� < 1; consider b 2 R with b > � and select t0 with f(t0x)=t0 < b: Now consider
any t > 3t0 and let m = [t=t0]: Thus

mt0 < t < (m+ 1)t0:

As f isWNT, we may, by Proposition 1 and Lemma 2, select an M which bounds
f on the interval [2t0x; 3t0x]: Writing n = m� 2; we have

2t0 � t� (m� 2)t0 = t� nt0 � 3t0:
Hence, by subadditivity, since f(nz) � nf(z); we have

f(tx) = f(nt0x) + f((t� nt0)x) � nf(t0x) + f((t� nt0)x) � nf(t0x) +M;
and so

� � f(tx)

t
� nt0

t

f(t0x)

t0
+
M

t
� nt0

t
b+

M

t
:

But, we have
m� 2
m+ 1

� (m� 2)t0
t

� m� 2
m

;

so, as t!1; we see that nt0=t! 1: Thus in the limit we have

� � lim
t!1

inf
f(tx)

t
� lim

t!1
sup

f(tx)

t
� b:

But b > � was arbitrary, so we have

� = lim
t!1

f(tx)

t
= F (x) <1:

Now let

� = ��(x) = sup
t<0

f(tx)

t
� 1:

Evidently � > �1: Now substituting t = �s; we have

� = � inf
s>0

f(�sx)
s

= �F (�x) > �1:

But, since f(tx) + f(�tx) � f(tx� tx) = f(0) � 0; we have

F (x) + F (�x) = lim
t!1

�
f(tx)

t
+
f(�tx)
t

�
� 0:

Thus �1 < �F (�x) � F (x): So F (x) is �nite. Clearly F (x) is positively homoge-
nous. Moreover, F is subadditive; indeed f(tx) + f(ty) � f(t(x+ y)); so

(2.2) F (x+ y) = lim
t!1

�
f(t(x+ y))

t

�
� lim

t!1

�
f(tx)

t
+
f(ty)

t

�
= F (x) + F (y):

Hence F (x) is convex in x: since it is subadditive and positively homogenous we
have

(2.3) F (�u+ �v) � F (�u) + F (�v) = �F (u) + �F (v);
as �; � � 0: Thus ([Rock], Cor. 10.1.1, or [Kucz], Th. 7.1.1 p. 149) F (:) is thus
continuous. �
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Remark 2. We recall the proof of continuity: one shows that F is locally
bounded at any point u, as follows. Take v1; :::; vN+1 so that u 2 int[conv(v1; :::; vN+1)]:
Now F is bounded on the �nite set fv1; :::; vN+1g; and hence on conv(v1; :::; vN+1);
by virtue of (2.3). Hence, by the Bernstein-Doetsch theorem ([BD] or [Kucz] p.
145), F is continuous.

Example 1. The renewal function of probability theory is always subadditive
(and measurable); see [Dal] Section 4, [Fell] Ch. XI. If � is the mean of the lifetime
distribution F �of lightbulbs, say �then the renewal function

U(x) :=
1X
n=0

F �n(x);

where * denotes convolution; U(x); the expected number of bulbs needed by time x;
satis�es

U(x+ h)� U(x) � h=� (x!1);
whence the weaker result

U(x)=x � 1=� (x!1);
o¤ering a nice illustration of the Limit Theorem at In�nity.

We will need the following result in the next section.

Proposition 2. (cf. [Kucz] p 406 Th 7). Let f : RN ! [�1;1] in WNT
be subadditive. Put � = lim infx!0 f(x): Then � � 0; or � = �1: If j�j = +1;
then f is in�nitary (takes one at least of the values �1).

Proof. For some null-sequence un we have f(un) ! �: For some k 2 !; an
in�nite M and t we have

ft+ un : n 2Mg � Hk:

For n in M, we have again
f(un) = f(t+ un � t) � f(t+ un) + f(�t) � k + f(�t):

Passing to the limit, we have
� � k + f(�t):

Thus if � = +1; the function f is in�nitary at �t: Also, since f(2u) � 2f(u); we
have

� � lim inf f(2un) � lim inf 2f(un) = 2 lim inf f(un) = 2�;
so for � �nite we conclude � � 0: If f assumes only �nite values, then by Proposition
1 f is locally bounded and so � 6= �1: Hence if j�j = 1; the function f is
in�nitary. �

If f is in�nitary it may assume either or both the values �1: If the subadditive
f does not assume the value 1; suppose that f(t) = �1: Then, for all x; we have

f(x) = f(x� t+ t) � f(x� t) + f(t) = �1:
(Here for each k 2 !, the level sets Hk(f) are empty.) On the other hand the
subadditive function f; with f(t) = 1 if t 2 RnQ and +1 otherwise, is in WNT
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and plainly does not assume the value �1: See [HP] p. 240 for other examples.
The �nal result, clarifying the behaviour of subadditive functions taking negative
values, mimicks its classical counterpart. For subadditive f , recall that f(0) � 0.

Theorem 3. (cf. [HP] p. 243 and [Kucz] p 406 Th 8). Let f : RN ! R be
subadditive and in WNT. Suppose that there exists x0 2 RN s.t. f(x0) < 0: Then
f(tx0) < 0 for all t > 0 su¢ ciently large and f(tx0) � 0 for all t � 0:

Proof. The proof in Kuczma applies with Lemma 2 as above in place of his
Th. 6. �

3. Sublinear functions: Berz�s Theorem

For this section recall that a sublinear function is subadditive and satis�es

f(nx) = nf(x); for n = 1; 2; :::

Such functions are characterized by Berz�s Theorem ([Berz], see below). We note,
as a canonical example, that the norm function is sublinear. For continuous sub-
linear functions, it turns out that f(0) = 0; so the alternative de�nition that
f(nx) = nf(x); for n 2 !; turns out to be equivalent.

The characterization theorem is usually deduced from Berz�s Lemma, as quoted
below, by way of an additive minorant lemma for measurable functions (see [Kucz]
p. 218 for the convex minorant lemma). Such a proof is also possible in our context,
since the corresponding additive minorant lemma holds also for WNT functions.
However, we prefer to deduce the characterization theorem from Berz�s Lemma by
way of the First Limit Theorem, as then the relevant majorization is explicitly by
way of a linear function.

Lemma 3. Additive Minorant Lemma. Suppose that f; g : RN ! R satisfy

g(x) � f(x) for all x 2 RN ;

with g additive and f a WNT function. Then g is linear and continuous.

Proof. Suppose not. Then, by Ostrowski�s Lemma (see e.g. [BGT] Lemma
1.1.6 p. 4 and [BOst3]), there is a convergent sequence un with g(un) unbounded
from above. For some t and in�nite M we have

ft+ um : m 2Mg � Hk = fx : jf(x)j < kg:

Hence, for m 2M, we have

g(t) + g(um) = g(t+ um) � f(t+ um) < k;

a contradiction. �

Corollary 3. (Ostrowski�s Theorem). AWNT additive function is con-
tinuous.

Proof. Take f = g: �
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Lemma 4. Subadditive Majorant Lemma. For T � RN suppose that
NT(T ) holds (e.g. if T is non-empty and open) and that f; g : RN ! R satisfy

g(t) � f(t) for t 2 T;
with g additive, and f a subadditive WNT function. Then g(t) is linear and con-
tinuous.

Proof. Suppose not. Then there is a convergent sequence un with g(un)
unbounded from above. For some t and in�nite M � ! we have ft + um : m 2
Mg � T: As ft+ um : m 2Mg is convergent there are a real z; some k 2 ! and an
in�nite M0 �M such that

fz + t+ um : m 2M0g � Hk = fx : jf(x)j < kg:
Hence, for m 2M0; we have

g(t+ um) � f(t+ um) and jf(z + t+ um)j < k:
Thus, for m 2M0; since t+ um 2 T; we have

g(um) = g(t+ um)� g(t) � f(t+ um)� g(t)
� f(z + t+ um) + f(�z)� g(t)
� k + f(�z)� g(t);

as z + t+ um 2 Hk, and so g(um) is bounded, a contradiction. �

We now recall a Lemma due to Berz.

Lemma 5. Berz�s Lemma. ([Berz]) For f : RN ! R sublinear

f(x) = supfg(x)jg : RN ! R additive and g � fg:

Proof. [Kucz] p. 414. �

Theorem 4. Berz�s Characterization Theorem. ([Berz]) For sublinear
f : RN ! R in WNT:

(3.1) f(x) = jjxjjf(v(x)) = jjxjjF (v(x)); for x 6= 0;
where F is the limit function de�ned by (2.1), and so f is positively homogeneous,
so f(0) = 0; and continuous.

Proof. Fix x 6= 0: For any additive h � f , de�ne gh(t) = h(tx): Then,
gh : R! R is additive.
Let " > 0: By the First Limit Theorem we have for all t > 0

(3.2) F (v(x)) � f(tx)

t
; i.e. F (v(x))t � f(tx);

and also for some t0 > 0 we have, for t � t0; that

(3.3) F (v(x)) � f(tx)

t
� F (v(x)) + ":

Thus, for t � t0; we have
gh(t) = h(tx) � f(tx) � t(F (v(x)) + "):
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Thus the additive function gh is locally bounded above far enough to the right by
a linear form, and so, by the Subadditive Majorant Lemma, is continuous. Write
gh(t) = ch(x)t: Thus we now have, for all t; that

ch(x)t = gh(t) = h(tx) � f(tx):
It follows from (3.3) that ch(x) � F (v(x)): Hence, by the Berz Lemma, we have for
�xed t � 0 that

f(tx) = supfch(x)tjch(x)s � f(sx) all sg
= t supfch(x)jch(x)s � f(sx) all sg
� tF (v(x)):

From here and (3.2) we have, as asserted, that

(3.4) f(tx) = tF (v(x)) for t � 0:
For x with x =v(x) we obtain F (v(x)) = f(v(x)); and so (3.4) implies

f(x) = f(jjxjjv(x)) = jjxjjF (v(x)) for t � 0;
whence (3.1) and positive homogeneity. Since v(x) is continuous for x 6= 0; and
since F (:) is continuous, so is f(x) for all x: �

As a corollary, we have again an equivalence result.

Theorem 5. Equivalence Theorem. For f sublinear, f is continuous i¤
f 2 WNT.

Proof. Immediate from Berz�s Theorem, since continuous functions are in
WNT. �

Remark 3. In the sublinear case, even if the de�nition does not require so,
f(0) = 0; by Berz�s Theorem. By contrast, a general subadditive function f in
WNT may satisfy f(0) = 0; be locally bounded and yet not continuous. Proposition
2 puts this in perspective. It is the case however, that such a function f is continuous
i¤ it is continuous at the origin. (See [Kucz] Th. 1 p. 404, or [HP] p. 247.)

4. Di¤erentiability, Lipschitz condition, uniform convergence

Several fundamental theorems on subadditive functions concerning di¤erentia-
bility (see e.g. [Kucz] Ch. XVI or [HP] Ch. VII for a review of these) remain valid
when measurability is replaced by membership of the class WNT. We note some
examples in this section and sketch the proofs where these di¤er in a signi�cant
detail from the classical setting; we refer to results and ideas of the last section.
We begin by extending the notation of the Subadditive Limit Theorem, to take in
the following quantities with which we are concerned in this section, namely

��(x) = inf
t<0

f(tx)

t
; �+ = sup

t>0

f(tx)

t
;

where
�1 � ��(x) <1 and �1 < �+(x) � 1:
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Theorem 6. Theorem (Second Limit Theorem � at Zero). Let f :
RN ! R in WNT be subadditive. Then

(1) The following inequality holds:

��(x) � ���(�x) = sup
t>0

f(tx)

t
= �+(x);

in which the left-hand side may be �1 and the right +1:
(2) If ��(x) is �nite, then

(4.1) ��(x) = G(x) := lim
t!0�

f(tx)

t
:

Similarly, if ���(�x) is �nite, then

���(�x) = �G(�x) = lim
t!0+

f(tx)

t
:

(3) The equation (4.1) is also valid under either of the hypotheses

lim
x!0

f(x) = 0; or lim inf
x!0

f(x) > 0:

(4) If G(x) is well-de�ned for all x (i.e. ��(x) is �nite for all x), then G(x)
is positively homogenous and subadditive, hence convex and continuous.

Proof. The proof of (i)-(iii) depends on Proposition 2 that � = lim infx!0 f(x) �
0 and may be taken verbatim from [Kucz] p. 410. Now note, as in the Subadditive
Limit Theorem, that ��(x) is positively homogeneous, so (iv) follows from (ii) and
a calculation of subadditivity similar to that in (2.2). �

Definition 3. The four Dini derivatives (upper-right, upper-left etc.) in di-
rection h are as follows:

D+
h f(x) = lim sup

t!0+

f(x+th)� f(x)
t

; D�
h f(x) = lim sup

t!0�

f(x+th)� f(x)
t

;

d+h f(x) = lim inf
t!0+

f(x+th)� f(x)
t

; d�h f(x) = lim inf
t!0�

f(x+th)� f(x)
t

:

The notation here, adapted from Kuczma [Kucz], is more convenient for iden-
tifying directions than that in [HP].

Theorem 7. (Theorem on Dini derivative bounds, [HP] p. 251). Let
f : RN ! R in WNT be subadditive. Then

(1) The Dini derivatives are bounded as follows:

D+
h f(x) � ���(�h); D�

h f(x) � ���(�h);
��(h) � d+h f(x); ��(h) � d�h f(x):

(2) If ��(x) = ���(�x); then

f(tx) = ��(x)t:
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Proof. (i) Only the �nite-valued versions require checking. All four cases
require an identical approach, so we do just the �rst. Evidently,

f(x+th) �f(x) + f(th);

so for t > 0 we have
f(x+th)�f(x)

t
� f(th)

t
:

But if �(�x) 6= �1; then ��(�x) is �nite, so by the last theorem we have

(4.2) D+
h f(x) = lim sup

t!0+

f(x+th)� f(x)
t

� lim
t!0+

f(th)

t
= ���(�h):

(ii) If �(x) = ��(�x); then both these quantities are �nite. By positive homogene-
ity, �(tx) = t�(x) for all t: Hence f restricted to the linear span of x is di¤erentiable
and

d

dt
f(tx)jt=0= ��(x):

So, for some constant c; we have

f(sx) = s��(x) + c:

But, if c 6= 0; suppose w.l.o.g. that c > 0; then we have the contradiction

��(x) = lim
t!0�

f(tx)

t
= lim

t!0�

�
��(x) +

c

t

�
= �1:

�

Theorem 8. (The Lipschitz condition). Let f : RN ! R in WNT be
subadditive. Suppose also that ��(x) is �nite for all x. Then f is a Lipschitz
function with constant L provided

(4.3) L > supfjG(h)j : jjhjj = 1g;

with G as in Theorem 6.

Proof. In view of Second Limit Theorem, part (iv), under the current circum-
stances G is a continuous function. Fix a direction h and a number L satisfying the
condition (4.3). Let " = L� supfjG(h)j : jjhjj = 1g: Then " > 0: Let V = spanfhg:
We now follows [Kucz] p. 413. As in (4.2), given x 2 V; we have, for some
� = �(x) > 0; that

��(h)� " �
f(x+ th)� f(x)

t
� ���(�h) + ";

whenever 0 < jtj < �(x): That is,����f(x+ th)� f(x)t

���� � maxfj��(h)j; j��(�h)jg+ " � L.
Let y 2 V: Appealing to the compactness of the line segment from x to y; we see
that there is a �nite sequence xi;yi such that

x = x0 < y0 < x1 < ::: < yn�1 < xn = y;
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with yi 2 (xi� �(xi);xi+ �(xi)) and the segments (xi� �(xi);xi+ �(xi)) covering
the line segment from x to y: Hence

jf(y)� f(x)j �
n�1X
i=0

jf(xi+1)� f(yi)j+
n�1X
i=0

jf(xi+1)� f(yi)j

� L
n�1X
i=0

jxi+1 � yij+ L
n�1X
i=0

jxi+1 � yij

� Ljy � xj:
Thus f has Lipschitz constant L on any line segment from x to y lying in V: This
establishes the theorem, since h was arbitrary. �

The previous result has the following corollary.

Corollary 4. Let f : RN ! R in WNT be subadditive. Suppose also that
��(x) is �nite for all x. Then f is absolutely continuous.

Our next result is inspired by the fundamental result of regular variation, the
uniform convergence theorem ([BGT] Section 1.2 and [BOst1]).

Theorem 9. Let f : RN ! R in WNT be subadditive. Suppose also that
��(x) is �nite for all x. Then the convergence

F (x) := lim
s!+1

f(sx)

s
; for x 2 RN ;

is uniform on compacts.

Proof. Recall that, for all t > 0; we have

F (x) � f(tx)

t
;

and, according to the First Limit Theorem, for each " > 0; there is s = s(x) such
that, for s > s(x);

F (x) � f(sx)

s
� F (x) + ":

Suppose the Proposition is false. Then, for some " > 0; there are sn > n and xn,
with jjxnjj = 1; such that

f(snxn)

sn
> F (xn) + 3":

Since jjxnjj = 1; we may as well assume that xn ! x0: By the continuity of F at
x0; we may and will restrict n to be so large that F (xn) > F (x0) � ". Thus, for
such n; we have

(4.4)
f(snxn)

sn
> F (x0) + 2":

According to the limit theorem, we may choose t0 so that for t > t0

F (x0) �
f(tx0)

t
� F (x0) + ":
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By the last Theorem, for any �xed L satisfying (4.3), we may appeal to the Lipschitz
condition to choose N so large that, for n > N ,����f(snxn)� f(snx0)sn

���� � Ljxn � x0j �":
From here we deduce that, for all large enough n;

f(snxn)

sn
� f(snx0)

sn
+ " � F (x0) + 2";

and this contradicts (4.4). �

Example 2. As an example, note that, for f not only subadditive but also
sublinear; Berz�s Theorem yields an identity

F (x) =
f(tx)

t
; for t > 0;

and so here convergence to the limit F is trivially uniform on compact sets.
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