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Abstract

We examine various related instances of automatic properties of
functions �that is, cases where a weaker property necessarily implies
a stronger one under suitable side-conditions, e.g. connecting geomet-
ric and combinatorial features of their domains. The side-conditions
o¤er a common approach to (mid-point) convex, subadditive and reg-
ularly varying functions (the latter by way of the uniform convergence
theorem). We examine generic properties of the domain sets in the
side-conditions - properties that hold typically, or o¤ a small excep-
tional set. The genericity aspects develop earlier work of Kestelman
[Kes] and of Borwein and Ditor [BoDi]. The paper includes proofs of
three new analytic automaticity theorems announced in [BOst7].
Classi�cation: 26A03
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1 Introduction

The term �automatic continuity�, whose �rst occurrence (according to Math-
SciNet) is in a paper by Brooks of 1967 [Broo] (see MR0216291, 35 #7126),
and most prominent in the theory of Banach algebras, is used conventionally
to describe theorems identifying �general circumstances�when group homo-
morphisms are continuous ([Dal1], [Dal2], [THJ]). In the context of real
analysis, the analogous broader term �automatic property�may be speci�-
cally de�ned. Given a set F � RR; i.e. a class of functions f : R ! R �
e.g. additive functions, those with f(x + y) = f(x) + f(y) �and properties
(regarded as sets) of functions P,Q � RR, call P strong and Q weak if all
functions f in F with property P have Q: The strong property P is then
described as holding automatically if it is implied by the weak property Q
holding on a test set T � R with some side-condition governing T . The
�rst classic example is Darboux�s theorem of 1875 ([Dar], [AD] Section 21.6)
asserting that, for additive functions, boundedness on an interval T implies
continuity (so that implicitly the weak property Q is �local boundedness�).
The second is the Bernstein-Doetsch theorem of 1915 [BeDoe], that a (mid-
point) convex function, de�ned on Rd and bounded above on a non-empty
open set T; is continuous.
Ostrowski�s result of 1929 [Ostr], that a convex, so a fortiori an additive,

function bounded above on some test set T of positive measure is continuous,
may be regarded as weakening the Darboux, or the Bernstein-Doetsch, side
condition in a �rst major step towards thinning out the assumed weak prop-
erty. However, despite the break-through, this thinning out may be regarded
as slight from the perspective of Littlewood�s First Principle (that sets of
positive measure are almost open sets, cf. [Lit] Ch. 4 and [Roy] Section 3.6
p.72).
It was not until 1942, in course of studying measure and descriptive set-

theoretic properties of Hamel bases (de�ned by Hamel in [Ham] in 1905),
that Jones [Jones] discovered that an additive function continuous on a set
T; with T both analytic and containing a Hamel basis, is continuous on R
(for de�nition and background on analytic sets see [Rog]). For convenience,
let us say brie�y that T is a spanning set, when R regarded as a vector space
over Q has T as a spanning set of vectors. (In the presence of the Axiom of
Choice a spanning set contains a Hamel basis.) Since an additive function
is fully speci�ed by its values on a basis, Burton Jones in his formulation
concentrated on the character of the test set T and on spanning as the natural
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side-condition on T ; his theorem thus required continuity on a spanning,
analytic set T .
The Bernstein-Doetsch result (in Rd) was taken through its �rst step

towards a thinning out by Császár in 1958 [Csa], who showed that it is
enough for the test set T to have positive measure, or to be non-meagre (see
Proposition 3 below).
The matter of alternative side-conditions and also the convex function

case lay dormant until the initiation in 1970 of the Ger-Kuczma programme
for the study of automatic continuity [GerKucz], almost a response to Barry
Johnson�s ground-breaking result on automatic continuity in Banach algebras
[Jo] of 1969. As one of the programme�s important contributors it fell to Z.
Kominek [KomZ] in 1981 to make explicit the generalization of Ostrowski�s
theorem in the ultimate thinned-out form, albeit for the additive function
case: such a function is continuous if it bounded above on any analytic
spanning set T (in particular, on one of measure zero).
Though the proofs of Jones�s and Kominek�s theorem are similar in spirit

(both based on Steinhaus�s theorem), their inter-relation remained unclari-
�ed. Our recent reappraisal of the foundations of regular variation (see e.g.
[BOst4]) o¤ers two new perspectives on the Jones-Kominek theorem. We
showed in [BOst7] that Kominek�s theorem implies Jones�s Theorem, on the
grounds that an analytic spanning set contains a compact spanning set. (The
implication follows since a function continuous on a compact set is bounded
thereon; in fact continuity on �additively compact�test sets, as de�ned below,
also implies boundedness, for which see [BOst8].) The other is that a related
but distinctive proof exists of a stronger theorem (the analytic automaticity
theorem, [BOst7]) containing as special cases both Jones�and Kominek�s re-
sult. The theorem concentrates on the additive combinatorics at the heart
of the side-conditions, as exhibited by those convergent sequences on which
the behaviour of a function from a class F may be regarded as �good�.
The current paper re-opens the Ger-Kuczma programme by proposing a

broadened scope to include new classes of functions F , new properties (on
both the P and Q fronts), and a fresh approach to side-conditions. On
the function class front F , our contribution is concerned with the subaddi-
tive functions and the slowly varying functions and with a review of convex
functions, given our sequential approach to side-conditions. This includes
automatic analyticity theorems for the subadditive and for the convex func-
tions, though we require additionally that some translate of the spanning test
set T is symmetric (about the origin). On the properties front, we study the
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case P = Q described by the uniform convergence theorem UCT of regular
variation theory and obtain a corresponding analytic automaticity theorem.
Altogether there are thus three, new, analytic automaticity theorems.
On the side-condition front, we pay considerable attention to the role of

sets T such that for any null sequences fzng ! 0; some translated subse-
quence ft + zm : m 2 Mg lies in T for an in�nite M. When M is co-�nite
Kestelman [Kes] terms such sets T universal. For general in�nite M we call
this property of T subuniversal � see [BOst8] for the alternative topological
terminology additive compactness.
We make explicit additional geometric (a¢ ne) features for use as side-

conditions in the derivation of automatic properties of convex functions. Such
�a¢ ne compactness�features are implicit in Császár�s cited work as well as in
Kominek [KomZ]. It follows from the theorems of Kestelman and of Borwein
and Ditor that for measurable and Baire sets these features are generic. In a
companion paper [BOst9] we show that these features are in fact generic in
an even stronger sense.

2 Side-conditions

Given a convergent sequence of real numbers fung ! u, or a null sequence,
i.e. converging to zero �identi�ed as such for clarity as fzng ! 0 with the
convention that un = u+zn �we will be concerned with inclusion, in speci�ed
ways, of its images in certain sets. By �image�we will mean the transform
of some subsequence, the transform often being a simple translation (shift).
Sometimes, however, some scaling may be applied to the subsequence or the
shift (creating a �similarity�: see e.g. Miller [Mil]). Image-inclusion (regarded
as embedding properties in the more general setting of [BOst11]) will assist
weak properties of functions in entailing their strong properties �automati-
cally�(see Section 3). Much of this is readily generalizable to the Euclidean
context. A further step is to replace the null sequences zn of reals by null
sequences of functions zn(:) subject to some local regularity restrictions (for
which see [BOst9]).
For the simple kind of inclusion, we begin by recalling some combinatorial

de�nitions from [BOst3] which have been used to unify measure/category
dualities (for which see [Oxt]) in the theory of regular variation. We follow
the set-theorists and denote the set of natural numbers by ! = f0; 1; 2; :::g.
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De�nition 1 (The Kestelman universal and subuniversal class).
Let T � R:
(i) We call T universal, and write T 2 K (Gothic �K�for Kestelman), if

for any null sequence fzng ! 0 in R there is a co-�nite M � !; and t 2 R
such that

ft+ un : n 2Mg � T: (1)

(ii) If (1) holds with M arbitrary but in�nite, we call T subuniversal and
write T 2 S (Gothic �S�for �subsequence�). Clearly

K � S:
(iii) We will say that T is generically subuniversal, and write T 2 Sgen,

if for any null sequence of real numbers fzng ! 0 there are t 2 T and an
in�nite set Mt such that

ft+ zm : m 2Mtg � T:
The distinction here is that the translator is now required to be in T which
implies that it is a limit point of T: This observation forms the basis for
a useful connection with (sequential) compactness [BOst8]. Evidently, the
closed members of S form a subclass, S say, of Sgen:
For � non-zero, note that T 2 S i¤ �T 2 S, so S = �S. Similarly,

T 2 Sgen i¤ �T 2 Sgen, so Sgen = �Sgen.
The property of T in de�nition (iii) is typical in the sense captured by the

following theorem, due in the measure case in this form to Borwein and Ditor
[BoDi], but already known much earlier albeit in somewhat weaker form by
Kestelman ([Kes] Th. 3), and rediscovered by Trautner [Trau]. We will need
a de�nition.

De�nition 2 (Genericity). Suppose � is L or Ba; the class of measur-
able sets or Baire sets (i.e. sets with the Baire property). We will say that
P 2 � holds for generically all t if ft : t =2 Pg is null/meagre according as �
is L or Ba:

As an indication of the use we shall make of these de�nitions we record
here:

Theorem (Kestelman-Borwein-Ditor Theorem). Let fzng ! 0 be
a null sequence of reals. If T is measurable and non-null/Baire and non-
meagre, then for generically all t 2 T there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:
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In particular, T 2 Sgen: Furthermore, for any density point u of T , there is
t 2 T arbitrarily close to u for which the above holds.

A stronger form still is derived in [BOst9] (the Generic Re�ection Theo-
rem); see also [BOst3] Section 2.1 Note 3, [BOst4] Section 2.1 Note 1. For
proofs see the original papers [Kes] and [BoDi]; for a uni�ed treatment see
[BOst9].

Notes.
1. Write S 2 Sk if S has the property that its k-fold sum satis�es

S + ::: + S 2 S. Note that kS � S + ::: + S; hence S 2 S = 1
k
S implies

S 2 Sk; i.e. S � Sk:We will see later that the classes Sk broaden the scope
of applicability of our theorems by permitting a thinning out of the test sets
to null sets.
2. The situation of Note 1 is similar to that in probability theory, where

one distinguishes between the lattice case and the density case �for example,
in renewal theory or in local (central) limit theory. The obvious condition is
that the probability law be absolutely continuous, but one can weaken this
to the condition (called spread-out in English, étalé in French) that some
convolution power have an absolutely continuous component. See e.g. [IbLi],
Th. 4.4.1.
3. A wider class may be sought by requiring weak properties to hold

on a �nite family of sets S1; :::Sk such that a generalized sum of the form
�1S1 + �2S2 + :: + �kSk lies in S. For results on the ability of such classes
to contain an interval see [CGM] and note the remarkable example of a
measurable set S such that S + S is null but S � S = [�1; 1]:
4. In similar vein, the Cantor set C is null; but C + C = [0; 2] (e.g. [Fal]

p. 108, [Kucz] p. 50). For, C is the subset of reals in [0; 1] containing only 0
and 2 in their ternary expansions, and f0; 2g generates Z3. Thus C+C 2 K,
i.e. is universal, and so C 2 S2:
5. Observe that, in the conditions of the theorem, it is enough that our

set, S say, should contain some measurable non-null set, T say, (i.e. that S
should have positive inner measure) �S itself need not be measurable, and
similarly in the Baire case; one can specialize to the result stated above by
shrinking S to this measurable/Baire subset T . We retain the formulation
above for convenience in expressing the conclusion: �for generically all t 2 T�.
6. See [MilH] for another generalization of the (Kestelman-) Borwein-

Ditor Theorem.
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7. The theorem implies the Strong No Trumps Theorem of [BOst4]. See
also [BOst10].

While subuniversality is the key combinatorial concept for this paper,
we need to rephrase it geometrically to suit the needs of various arguments
which are geometric in nature. This is done below.

Averaging Lemma. A set T is subuniversal i¤ it is �averaging�, that is,
for any null sequence fzng ! 0; any given point u 2 T; and with un := u+zn
(thus an arbitrary convergent sequence, but with limit in T ), there are w 2 R
(an averaging translator) and fvng � T such that, for in�nitely many n 2 !;
we have:

un =
1

2
w +

1

2
vn:

Equivalently, there are w 2 R (a re�ecting translator) and fvng � T such
that, for in�nitely many n 2 !; we have:

vn =
1

2
w +

1

2
un:

Proof. In the averaging case, it is enough to show that 1
2
T is subuniversal

i¤ T is averaging. If 1
2
T is subuniversal then, given un ! u; there are w 2 R

and some in�nite M so that f�1
2
w + un : n 2 Mg � 1

2
T ; hence, putting

vn := 2un � w; we have fvn : n 2 Mg � T: Conversely, if T is averaging
and fzng ! 0; then for some x and some M; f2x + 2zn : n 2 Mg � T; so
fx + zn : n 2 Mg � 1

2
T and hence 1

2
T is subuniversal. Similar reasoning

yields the re�ecting case. �

The averaging notion appears implicitly in [KomZ] and the re�ecting
notion in [Csa]. The latter name is suggested by the re�ecting property:

(vn � u) � (vn � un) = �(vn � w):

The Lemma may thus be summarized symbolically:

Sref =
1

2
S = S = 2S = Sav:

A further de�nition, more general still, will be needed later.

De�nition 3. Say that a set S is strongly averaging if some T � S
(henceforth a strong core of S) has the following property:
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For any null fzng ! 0; and any bounded sequence f
ng and any fun =
u+ zng ! u 2 T; there are w 2 R (a translator) and an increasing sequence
m(n) such that, for n 2 !; we have

vn := 
nw + (1� 
n)um(n) 2 T:

Equivalently, for any null fzng ! 0; and any sequence f�ng bounded
away from zero, there are points tn 2 T and an increasing sequence m(n)
such that for n 2 ! the following a¢ ne combinations are constant, i.e.

�ntn + (1� �n)um(n) := w for some w 2 R.
Thus �n � �1 and �n � 2 (or 
n � 1

2
) yield respectively the re�ecting

and the averaging case.

The following result is implicit in [Csa]; for the proof of a more general
result see [BOst9].

Theorem (Császár�s Genericity Theorem, [Csa], or [Kucz] p 223). If
S is Baire, non-meagre/measurable, non-null, then S is strongly averaging.
In a neighbourhood of the relevant limit point, generically all t 2 S are
translators.

In our �nal de�nition, the term a¢ nely compact is used by close anal-
ogy with the term additively compact of [BOst8] (a synonym for �generically
subuniversal�). This notion is generalized in a functional setting in [BOst9].

De�nition 4 (A¢ ne compactness). For T � R; we say that T is
a¢ nely compact to mean that, for any fzng ! 0 and any non-zero �, there
are u 2 T and some in�nite Mu so that, for all n 2Mu;

(1� �)u+ �un 2 T; for all n 2Mu, with un = u+ zn:

Proposition 1. For T 2 �; T is generically subuniversal, T 2 Sgen,
i¤ T is a¢ nely compact generically, i.e. for any fzng ! 0 and any � with
� 6= 0, for generically all u 2 T; there is some in�nite Mu such that for all
m 2Mu the a¢ ne combinations vn := (1� �)u+ �un satisfy

(1� �)u+ �um 2 T; where um = u+ zm:
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Proof. Supose T 2 Sgen. Then for any fzng ! 0 and any �; we have,
for generically all u 2 T; that for some in�nite Mu

un = u+ �zn = u+ �(un � u) 2 T; for all n 2Mu, with un = u+ zn:

That is, the a¢ ne combinations (1� �)u+ �un satisfy

(1� �)u+ �un 2 T; for all n 2Mu.

Conversely, let fzng ! 0 be given and let � be non-zero. Suppose that, for
generically all u 2 T; there is some in�nite Mu such that for all n 2Mu

u+ �(un � u) 2 T; where un = u+ zn=� = u+ ~zn;

say. Then
u+ zn 2 T:

That is, T 2 Sgen. �

3 Automatic properties: theory

We are concerned with properties of functions h : T! R, for T � Rd; here
interpreted as a family Q(T ) �so that h has Q i¤ h 2 Q. The perspective on
sequences guiding the preceding section motivates the �rst few de�nitions.
De�nition 1. Let us say that f : T ! R is extensibly continuous or,

more simply, precompact to mean that f is continuous on T and if ftng � T
is Cauchy then so is ff(tn)g:
To motivate the terms, note that the de�nition may be rephrased equiv-

alently to require that f has a continuous extension to the closure �T ; in this
case f carries compacts of �T to compacts. (See [Bou] Section 8.5 Th. 1, and
[Eng] Lemma 4.3.16.)
If T is closed the condition demands simply that f be continuous on

T: However, regarding T as a test set (testing on a restriction for global
continuity), one might not wish absence from T of a limit point to reduce
information carried by T: This is why we prefer this stronger de�nition in
automatic continuity work �compare [Kucz]. Of course weaker hypotheses
yield stronger theorems, ceteris paribus.
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De�nition 2. Let us denote a convergent sequence with limit x0; by
fxng ! x0: We say the property Q of functions is sequential on T if

f 2 Q i¤ (8fxn : n > 0g � T )[(fxng ! x0) =) f jfxn : n > 0g 2 Q(fxn : n > 0g)]:
(2)

Q is completely sequential on T if

f 2 Q i¤ (8fxng � T )[(fxng ! x0) =) f jfxng 2 Q(fxng)]:

Since the former de�nition (2) does not require the limit point to be enumer-
ated, sequential includes completely sequential.
Note that if Q is sequential then f jfxng 2 Q(fxng) i¤ f jfxn : n 2Mg 2

Q(fxn : n 2Mg); for every in�nite M.
Motivating examples: The property that f is locally bounded on T; in

symbols f 2 Bloc(T ); is sequential and completely sequential (does not de-
pend on the limit point being enumerated). The property that f is continuous
on T is completely sequential, whereas the property that f is extensibly con-
tinuous on T , f 2 C(T ), is sequential since such a function f is continuous
on the closure �T :

De�nition 3. Let F be any family of functions h : RN! R. Let FjT;
or F(T ); denote the functions of F with domains restricted to T; so that
F = F(RN): We are concerned with the following families (below �convex�
means mid-point convex, see Section 6):

K = convex, Add = additive, Sub = subadditive,
C = continuous, C = precompact, Sv = slowly varying,
B = bounded on precompacts; B� = bounded above/below on precompacts,

Bloc = locally bounded, B�loc = locally bounded above/below,
L = measurable, Ba = Baire,

U(T ) = fh : (8 bounded fung � T )(8fxng ! 1)[h(un + xn)� h(xn)! 0]g:

De�nition 4. Let P � Q . Say that a property P is automatic for F in
Q, or that F is automatically P in Q, if every h 2 F \Q is in P : Thus, for
f in F , P i¤Q.

Example. Recall the following.

Ostrowski�s Theorem. ([Ostr], [BOst3], [BGT] Th. 1.1.7) An additive
function bounded above on a set of positive measure is continuous.
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Accordingly, continuity is automatic for measurable additive functions,
i.e. additive functions are automatically continuous if measurable, or in
symbols: Add is automatically C in L.

De�nition 5. Generalizing the approach of Ger and Kuczma (see [GerKucz],
or [Kucz] p. 206), automatic classes corresponding to the function classes of
De�nition 3 may be de�ned in uni�ed fashion thus:

AF(Q;P); or AF(Q =) P); := fT : (8f 2 F)[f jT 2 QjT =) f 2 P ]g:
That is, domains taken from this class guarantee that the functions in F
having Q on a domain automatically have P on R:
Examples. The class BC = AAdd(C, C) thus denotes the family of sets T

such that any additive function precompact on T is necessarily continuous
on R. The class C = AAdd(B, C) denotes the family of sets T such that any
additive function bounded on T is necessarily continuous on R.

Ger-Kuczma classes
In the terminology of De�nition 5, the various Ger-Kuczma classes of

[GerKucz] can be summarized symbolically as

A = AK(B+, C); B = AAdd(B+, C); C = AAdd(B, C)
AC = AK(C, C); BC = AAdd(C, C);
AC = AK( �C, C); BC = AAdd(C, C);
D = AAdd(B�, B�loc); Bsub = ASub(B+, B+loc);
U = ASv(U , U);

or in words,

A = AF(Bounded above =) Continuous); F = K = Convex;
B = AF(Bounded above =) Continuous); F = Add = Additive,
C = AF(Bounded =) Continuous); F = Add = Additive,
AC = AF(Continuous =) Continuous); F = K = Convex,
BC = AF(Continuous =) Continuous); F = Add = Additive,
AC = AF(Precompact =) Continuous); F = K = Convex,
BC = AF(Precompact =) Continuous); F = Add = Additive,
D = AF(Bounded below =) Loc. bounded below); F = Add = Additive,

Bsub = AF(Bounded above =) Loc. bounded above); F = Sub = Subadditive,
U = AF(Uniformly convergent =) Uniformly convergent); F = Sv = Slowly varying.
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These are respectively: the Ger-Kuczma classes A;B;C ([GerKucz], [Kucz] p.
206), the Kominek classes AC;BC and the variants AC;BC (see [Kom-Kom],
[Kucz] p. 227 and 249, but here we have required �precompactness�in place
of continuity), the Smítal class D (see [Sm], [Kucz] p. 223 and 244). We
o¤er some new results concerning these classes in Section 4. The last two
classes are new �Bsub is studied in Section 4, and U, the automatic uniform
convergence class, in Section 7 below.

4 Elementary automatic continuity theorems

Theorem (First Automatic Continuity Theorem �additive func-
tions). For S 2 S; the set S has the property that any additive function
bounded above on the set is continuous, i.e. in symbols:

S � B:

In particular
Sgen � S (= Sref = Sav) � B:

Proof. Let T 2 Sgen: Suppose that f 2 Add(R) is bounded on T but
not continuous. By Ostrowski�s Theorem we may suppose that f(zn) ! 1
for some zn ! 0. Now, for some t 2 R and for some in�nite Mt; we have
ft+ zm : m 2Mtg � T: So, for m 2Mt; we see that

f(zm) = f(t+ zm)� f(t)

is bounded, a contradiction. �

Remarks. For a related result see part (iii) of the next theorem requiring
the use of Sgen. The class Sk (see Section 2) thus provides an improvement
to the theorem above through thinning out the test sets. Suppose that the
additive function f is bounded on a set S 2 Sk: If now, for some t 2 T =
S + ::: + S and some in�nite Mt; we have ft + zm : m 2 Mtg � T; then,
putting zm = s1m + :::+ s

k
m with s

1
m; :::; s

k
m 2 S; we have, for m 2Mt;

f(zm) = f(s
1
m) + :::+ f(s

k
m)� f(t)

and so f(zm) is again bounded.
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Recall that a function f(:) is sublinear if f(nx) = nf(x) for all x and
all non-negative integer n; or equivalently f(qx) = qf(x) for non-negative
rational q: Thus a sublinear function is subadditive i¤ it is convex, as follows
from

f

�
x+ y

2

�
� f

�x
2

�
+ f

�y
2

�
=
1

2
f (x) +

1

2
f(y):

Indeed, it is su¢ cient for f to be �doubling�, that is, f(2x) = 2f(x) for all x
(equivalently f(x=2) = f(x)=2):
Also recall the theorem due to M.E. Kuczma ([KuczME]) asserting coin-

cidence of the sets of automatic continuity for convex and additive functions
when these are bounded above, in symbols

A : = AK(B+; C) = B : = AAdd(B+; C):

A similar closeness exists between additivity and subadditivity:

Theorem (Second Automatic Continuity Theorem �subadditive
functions).
(i) Let T have the property that a subadditive function, locally bounded

above on T; is necessarily locally bounded on R: If f 2 Add(R) is bounded
above on T; then f is continuous on R. In symbols: Bsub � B:
(ii) For f 2 Sub(R); if T 2 S and f is bounded above on T then f is

locally bounded above on R. In symbols: S � Bsub:
(iii) For T 2 Sgen and f 2 Add(R); if f is continuous on T then f is

continuous on R. In symbols: Sgen � BC:

Proof. (i) Let f be additive and T 2 Bsub: Suppose f is bounded above
on T: Then f is locally bounded, so is continuous by Ostrowski�s Theorem
(as above). So T 2 B:
(ii) For T 2 S and f subadditive and bounded above byM on T , suppose

that f is not locally bounded at 0 and so not locally bounded above (cf.
Lemma 1 of [BOst5], or [Kucz] Th 2. p. 404). Then for some null sequence
zn we have f(zn) > n: But, for some t and some in�nite M, we have, for
m 2M, that

f(zm) = f(zm + t� t) � f(t+ zm) + f(�t) �M + f(�t);

a contradiction for m large enough.
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This also proves (iii) because ft + zm : m 2 Mg �T with t 2 T implies
t + zm ! t 2 T and so limM f(t + zm) = f(t): Hence, if f is additive,
limM f(zm) = 0; a contradiction. �

Remark. The class Sk (see Section 2) again provides an improvement
to the theorem above through thinning out the test sets. Suppose that the
additive function f is bounded on a set S 2 Sk: If now, for some t 2 T =
S + ::: + S and some in�nite Mt; we have ft + zm : m 2 Mtg � T; then,
putting zm = s1m + :::+ s

k
m with s

1
m; :::; s

k
m 2 S; we have here, for m 2Mt;

f(zm + t� t) � f(s1m) + :::+ f(skm)� f(t) � kM + f(�t);

again leading to a contradiction.

5 Two NewAutomatic Analyticity Theorems

We will need some de�nitions.
De�nition 1.
(i) Let � + T := f� + t : t 2 Tg: Say that F preserves Q under shifts if

Q(� + T ) � Q(T ); for all sets T�more precisely, for all f 2 F and for all � ,
the condition f j(� + T ) 2 Qj(� + T ) implies f jT 2 QjT:
(ii) Say that F preserves Q under vector addition and subtraction on

bounded/compact domains if for f 2 F and S; T bounded/compact, if f jS 2
F(S) and f jT 2 F(T ) then f j(S � T ) 2 F(S � T ):

Notes.
1. For Q sequential/completely sequential the de�nitions of (ii) may be

expressed equivalently in terms of bounded/convergent sequences.
2. The de�nition is similar in spirit, but di¤erent in detail, to notions such

as the AF(Q;P)-conservative set operations of Ger and Kuczma (compare
[Kucz], Ch. IX), in that our approach refers only to Q.

We record:

Lemma. If F preserves Q under shift, then T 2 AF(Q;P) i¤ t + T 2
AF(Q;P):

Examples.
Example 1. The additive class preserves C and C under shift.

15



Example 2. Similarly, the additive class preserves B under shift.
Example 3a. Add preserves C, the continuous functions, under vector

sums and di¤erences on compact domains, i.e. for f 2 Add and S; T compact,
if f jS 2 C(S) and f jT 2 C(T ) then f jS � T 2 C(S � T ): Indeed let un =
sn� tn 2 S�T: Then fsn : n 2 !g and ftn : n 2 !g are precompact sets. By
compactness of S and T; without loss of generality we may assume that sn !
s 2 S and tn ! t 2 T: Then by additivity, lim f(sn�tn) = lim[f(sn)�f(tn)];
and by continuity lim[f(sn)� f(tn)] = f(s)� f(t): Thus f is continuous on
S � T:
Example 3b. Add preserves Bloc, the locally bounded functions, under

vector sums and di¤erences on compact domains, i.e. for f 2 Add and S; T
compact, if f jS 2 Bloc(S) and f jT 2 C(T ) then f jS � T 2 Bloc(S � T ); for a
similar reason.
Example 3c. Sub preserves Bloc, the locally bounded functions, under shift

and vector sums on compact domains, i.e. for f 2 Sub and S; T compact, if
f jS 2 Bloc(S) and f jT 2 Bloc(T ) then f jS + T 2 Bloc(S + T ); for much the
same reasons. Indeed, f(� + un) � f(�) + f(un) implies that ff(� + un)g is
bounded if ff(un)g is, and f(un + vn) � f(un) + f(vn) implies that ff(un +
vn)g is bounded if both ff(un)g and ff(vn)g are.

As preliminaries to two of our main results, Theorems 1, 2 below, we quote
below three results, Theorems A-C, from [BOst7]. Recall the comments in
the introduction regarding Darboux�s theorem for additive functions (on local
boundedness on R implying continuity), namely that Ostrowski�s Theorem
may be regarded as thinning out the weak property (�local boundedness�)
from holding on an interval to holding on a set of positive measure, and that
Jones�s theorem is a further thinning out. The main theorem of [BOst7]
and two variants identify circumstances when a weak property that has been
given �analytic thinning out�still implies the strong property. The theorem
calls for three ingredients: an initial �weak implies strong (on R)�hypothesis,
sequential character of the weak property (De�nition 2 of Section 3), and a
modicum of additive structure (given by the theorem, see below for a de�n-
ition of additive structure). The canonical �weak implies strong�hypothesis
is Darboux�s theorem, a reversal of C implies Bloc to

(8f 2 Add)[f 2 Bloc =) f 2 C]:

Theorem A (Analytic Automaticity Theorem). Suppose that func-
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tions of F having Q on Rd have P on Rd; where Q is a property of functions
from Rd to R that is completely sequential on Rd.
Suppose that F preserves Q under shift and also under vector addition

and subtraction of compact sets, that is:
(i) functions of F having Q on any T have Q on t+ T for any t;
(ii), for compact sets S and T; functions of F having Q on S and T

have Q on S � T:
Then, for any analytic set T spanning R as a vector space over Q (e.g.

containing a Hamel basis), functions of F having Q on T have P on R; i.e.
in symbols:

T 2 AF(Q;P):

Theorem B. (Symmetric Analytic Automaticity Theorem). Sup-
pose that functions of F having Q on Rd have P on Rd; where Q is a
property of functions from Rd to R that is completely sequential on Rd.
Suppose that F preserves Q under shift and under vector addition on

compact sets, that is:
(i) functions of F having Q on any T � Rd have Q on � +T := f� + t :

t 2 Tg; for any � 2 Rd;
(ii), for compact sets S and T; functions of F having Q on S and T

have Q on S + T:
Then, for any analytic set T spanning Rd as a vector space over Q (e.g.

containing a Hamel basis) such that S = � + T is, for some � , symmetric
(i.e. S = �S), functions of F having Q on T have P on Rd:

As to the the third variant note that as the property Q of the Theorem A
is completely sequential, the requirements (i) and (ii) of the theorem need to
hold only for compact sets that are convergent sequences. The following de-
�nition from [BOst7] formalizes the three properties of convergent sequences
needed in Theorem A:

De�nition 2. A set G of convergent sequences u = fung in Rd is a
sequential additive structure if it is closed under shift, addition, subtraction
and subsequence formation, that is:
(i) u 2 G implies t+ u = ft+ ung 2 G, for each t in Rd;
(ii) u;v 2 Q implies that u� v 2 G,

17



(iii) u 2 G implies that uM = fum : m 2Mg 2 G for every in�nite M.

Say that a sequence u = fung is Q-good for h if

hjfung 2 Qjfung:

If Q is completely sequential then u is Q-good for the function h i¤ every
subsequence of u is Q-good for h. Thus letting GhQ be the set of sequences
that are Q-good for the function h; one has:

Lemma. If Q is completely sequential and F preserves Q under shift
and under vector addition and subtraction on compact sets, then GhQ is, for
h 2 F , a sequential additive structure.

One thus also has:

Theorem C (Analytic Automaticity Theorem �additive struc-
ture).
Suppose that functions of F having Q on R have P on R; where Q is a

property of functions from R to R that is sequential on R.
For h 2 F ; suppose that GhQ, the family of Q-good sequences good for h,

is an additive structure (closed under shift, vector addition and subtraction
and subsequence formation). Then, for any analytic set T spanning R as a
vector space over Q (e.g. containing a Hamel basis), functions of F having
Q on T have P on R; i.e. in symbols:

T 2 AF(Q;P):

Notes
1. Theorem C is stated for the one-dimensional context, as the application

in view concerns regular variation. See [BGT], [BOst4] for the real case,
[BGT] Appendix A1.4, [BOst1] Section 5 for higher-dimensional aspects.
2. The examples 1-3 quoted at the beginning of this Section demon-

strate that this theorem implies the two known instances of the Analytic
Automaticity Theorem:
(i) Jones�s Theorem ([Jones], or [Kucz] p. 227): For any analytic T

containing a Hamel basis, T 2 BC; the weaker result with BC replaced by
B �C also holds by Example 3b.
(ii) Kominek�s Theorem, ([KomZ], or [Kucz] p. 214): For any analytic T

containing a Hamel basis, T 2 C.
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3. Kominek�s theorem implies Ostrowski�s Theorem when the latter is
restricted to analytic sets T of positive measure on which an additive function
is bounded; indeed then T spans R over Q, as T + T contains an interval.

We are now able to give the �rst of three new results on analytic auto-
maticity mentioned in [BOst7].

Theorem 1 (Symmetric analytic automaticity �subadditive func-
tions). For any analytic set T spanning Rd as a vector space over Q (e.g.
containing a Hamel basis) such that S = � + T is, for some � , symmetric
(i.e. S = �S), functions of Sub that are locally bounded on T are locally
bounded (on Rd ). In symbols:

T 2 Bsub = ASub(B+loc, B+loc):

Proof. Apply Theorem B taking P = Q = B+loc: �

The next theorem links analytic automaticity with convexity. We include
it here because of its a¢ nity with the result above, rather than in the next
section, where other results on convexity appear. In it, we obtain a thinned-
out version of Ostrowski�s theorem for convex functions, though at the cost
of a condition of symmetry.

Theorem 2 (Symmetric analytic automaticity � convex func-
tions). For any analytic set T spanning Rd as a vector space over Q (e.g.
containing a Hamel basis) such that S = � + T is, for some � , symmetric
(i.e. S = �S), functions of K that are locally bounded on T are continuous
(on Rd ). In symbols:

T 2 A = AK(B+loc; C):
Proof. We take P = C and Q = B+loc and consider a function f convex

on Rd: As shifting preserves both the analyticity and spanning properties,
we may without loss of generality assume that T is symmetric. Argue as in
the proof of the Main Theorem of [BOst7] to deduce that, for some compact
subset K of T and some integer j; the j-fold sum S = K + ::: + K has
positive measure. Let u be a density point of S: We appeal to part (iv) of
the Portmanteau Theorem for convex functions of Section 6 below; if f is
not continuous, then f is not locally bounded above at u and so we may
choose un ! u with ff(un)g unbounded. We now make use of an averaging
property much as in the proof ([Kucz] p. 223) of Császár�s First Theorem
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(again, see Section 6). Taking � = 1=2j; then for some sn 2 S; some w 2 R
and some in�nite Mw we have, for m 2Mw, that

�sm + (1� �)w = um:

Now, write sm = k1m+:::+k
j
m with k

i
m 2 K:We recall that Jensen�s inequality

applies to mid-point convex functions, provided rational convex combinations
are taken (see e.g. [HLP] Section 3.6 p. 72, or [Kucz] Th 5.3.5 and Lemma
5.3.2 p. 125-6). Thus we deduce from

1

2j
k1m + :::+

1

2j
kjm +

1

2

�
2j � 1
j

w

�
= um;

that

f(um) �
1

2
f

�
2j � 1
j

w

�
+
1

2j
f(k1m) + :::+

1

2j
f(knm);

for m 2 Mw. But the right-hand side is bounded for m 2 M; since f
is bounded on T and so on K: This contradiction shows that in fact f is
continuous. �

We delay the third new theorem on analytic automaticity to Section 7 as
its context is regular variation.

6 Convexity

In the interest of transparency, in this section we work in R rather than Rd:
All the results are, however, generalizable.
De�nition 1. Here f is called convex if it is mid-point convex, i.e.

f

�
1

2
x+

1

2
y

�
� 1

2
f(x) +

1

2
f(y);

see [HLP] Section 3.5 p.71. This is to be contrasted with the stronger condi-
tion

f(�x+ (1� �)y) � �f(x) + (1� �)f(y) (8� 2 [0; 1]);
which for �nite-valued f implies local boundedness and so yields continuity,
by way of the Bernstein-Doetsch Theorem (see below and the Introduction).
We note there is one further, the Linear Minorant, de�nition, for which see
[HLP] section 3.19 p. 95.
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Remarks. 1. We refer to [Kucz] for the case where the domain of
de�nition of f is restricted to convex open sets. We note that the current
theory applies to such a context, ultimately because the Kestelman-Borwein
Theorem, as stated in Section 2, holds when relativized to an open subset.
2. Similarly, we refer to [Rock] for the case where one uses ordinary rather

than mid-point convexity, but allows f to take values in the extended real
line.

De�nition 2. The lower hull mf (x) is de�ned by

mf (x) = lim inf
�!0+

ff(t) : jt� xj < �g:

We begin by recalling some classical theorems on convex functions.

Császár Convexity Theorem For convex f; either mf � �1; or mf

is �nite, convex and continuous ([Kucz] p. 141).

Portmanteau Theorem for Convex Functions For convex f :
(i) If f is locally bounded above at some point, then f is locally bounded

above at all points ([Kucz] p. 138).
(ii) If f is locally bounded below at some point, then f is locally bounded

below at all points ([Kucz] p. 139).
(iii) If f is locally bounded above at some point, then it is everywhere

locally bounded ([Kucz] p. 140).
(iv) If f(x) 6= mf (x) for some x; then f is not locally bounded at x

([Kucz] p. 144).

The common feature here is that the sequence witnessing bad behaviour
at one point yields by translation a sequence witnessing bad behaviour at
any desired point.
The �nal two classical results may be viewed as early examples of auto-

matic properties. So too are the Propositions following them.

Bernstein-Doetsch Theorem ([BeDoe], [Kucz] p. 145) For convex f;
if f is locally bounded above at some point, then f is continuous.

Dichotomy Theorem for convex functions ([Kucz] p. 147) For con-
vex f (so in particular for additive f) either f is continuous everywhere, or
it is discontinuous everywhere.
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Proposition 2. If f is convex and bounded below on a re�ecting (that
is, subuniversal) set S, then f is locally bounded below.

Proof. Suppose not. Let T be a re�ecting core of S: Let K be a lower
bound on T: If f is not locally bounded from below, then at any point u in
�T there is a sequence fung ! u with ff(un)g ! �1: For some w 2 R; we
have vn = 1

2
w + 1

2
un 2 T; for in�nitely many n: Then

K � f(vn) �
1

2
f(w) +

1

2
f(un); or 2K � f(w) � f(un);

i.e. f(un) is bounded from below, a contradiction. �

Remark. Here again we may thin out the hypothesis. For example, sup-
pose that f is bounded on S and T = S + S 2 S2. Then for some w 2 R
there are points vn 2 T such that

w =
3

4
un +

1

4
vn

We may now write

w =
1

2

�
3

2
un

�
+
1

4
s1n +

1

4
s2n;

so that

f(w) � 1

2

�
3

2
un

�
+
1

4
f(s1n) +

1

4
f(s2n);

and this again leads to a contradiction.

Proposition 3 (cf. [Meh] Th. 3). If f is convex and bounded above on
an averaging (that is, subuniversal) set S, then f is continuous.

Proof. Let T be an averaging core of S: Suppose that f is not continuous,
but is bounded above on T by K. Then f is not locally bounded above at
some point of u 2 �T : Then there is a null sequence zn ! 0 with f(un)!1;
where un = u+ zn: Select fvng and w in R so that, for in�nitely many n; we
have

un =
1

2
w +

1

2
vn:

But for such n;we have

f(un) �
1

2
f(w) +

1

2
f(vn) �

1

2
f(w) +

1

2
K;
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contradicting the unboundedness of f(un): �

Remarks.
1. Here again we may thin-out the hypothesis. For example, suppose

again that f is bounded on S and S + S 2 S2. Then we may write

un =
3

4
w +

1

4
(s1n + s

2
n) =

1

2

�
3

2
w

�
+
1

4
s1n +

1

4
s2n;

for some w 2 R. Thus

f(un) �
1

2
f(
3

2
w) +

1

4
f(s1n) +

1

4
f(s2n) �

1

2
f(
3

2
w) +

1

2
K;

and again we contradict unboundedness.
2. Specialization of the Proposition above yields again the First Auto-

matic Continuity Theorem.

Corollary. Any additive function bounded above on an averaging set is
continuous, i.e. in symbols

Sgen � S (= Sref = Sav) � B:

Proposition 3, together with subuniversality and the Kestelman-Borwein-
Ditor Theorem of Section 2, implies the classical result below, another early
automaticity theorem.

Császár-Ostrowski Theorem ([Csa], [Kucz] p. 210). A convex func-
tion f : R!R bounded above on a set of positive measure/non-meagre set is
continuous.

Our next result locates the re�ecting and averaging sets within the estab-
lished automatic property classes.

Theorem (Hukuhara Theorem, [Huk], or [Kucz] p. 226)

(i) S ( = Sref) � D; and (ii) S ( = Sav) � AC:

Proof. Immediate: (i) follows from Proposition 2, while (ii) follows from the
argument of Proposition 3. �
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Note that the measure and Baire version of (ii) appear in [Kom-Kom] and
[KomZ] resp.(cf. [Kucz] p. 229-230). Note that AC � BC:

We now need to recall further combinatorial de�nitions from [BOst4]
(for use only in the rest of this section). The notation NT, referring to
No Trumps, follows the card-suit notation used by set-theorists for various
combinatorial principles (see [BOst3] for motivation and for their relation
with the condensation principles of set-theory).

De�nition 3 (No Trumps). For a family fTk : k 2 !g of subsets R;
NT(fTk : k 2 !g) means that:
for any convergent sequence fung in R there is k 2 !; an in�nite M � !;
and t 2 Rd such that

ft+ un : n 2Mg � Tk:
In words: for every convergent sequence fung in R; some Tk contains a trans-
late of a subsequence of fung:
In applications the family fTk : k 2 !g will be a strati�cation induced

by some function h : R ! R with the substrata either the symmetric lower
level sets, or just the upper or lower level sets (as in De�nition 5 below)

Hk = ft 2 Rd : jh(t)j < kg for k 2 !:

If Tk � T; NT(T ) reduces to subuniversality of T:

De�nition 4. Say that the function f is Weak No Trumps (f is
Weak NT, f 2WNT), if NT(fHk : k 2 !g) holds, with Hk as above.

Theorem (Weak No Trumps Theorem). If f is Baire/measurable,
then f is WNT.

Proof. For completeness, we quote the proof from[BOst3] Section 4, cf.
[BOst4] Section 2.2. In the Baire case, as

R =
S
k2!
Hk;

some set Hk is non-meagre, and so is averaging. Similar considerations apply
to a measurable function f: �
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As the terminology implies, the Weak No Trumps Theorem is weaker
than the No Trumps Theorem ([BOst1] Section 1.2), which in turn is weaker
than the Strong No Trumps Theorem ([BOst4] Section 2).
The following result generalizes to the convex case a theorem proved in

[BOst3] in the additive case.

Theorem. For f convex (in particular, for f additive), f is continuous
i¤ f is WNT.

This is immediate from De�nition 4 by the Proposition 3. �

The last two theorems imply the following classical result due to Sierpiński
[Sier], again an early automaticity theorem. This is slightly weaker than the
Császár-Ostrowski Theorem above; cf. [BGT] p. 5.

Corollary (Sierpínski�s Theorem [Sier], [Kucz] p. 218). A measur-
able/Baire convex function f : R!R is continuous.

We will soon need the following strengthening of a classical result (for
completeness we include the proof, as it is short).

Theorem (Császár�s First Theorem) ([Kucz] p. 223.) Suppose f is
convex and bounded below by K on a strongly averaging set S. Then mf is
bounded below by K on the closure of any strong core set of S.

Proof. Suppose otherwise. Let 
n ! 0 rational (e.g. 
n = 2
�n), let f be

convex and let T be a strong core of S: For some u 2 �T there is a sequence
un ! u with f(un)! L < K: By assumption there is w and m(n) such that
vn := 
nw + (1� 
n)um(n) 2 T: Hence

K � f(vn) � 
nf(w) + (1� 
n)f(um(n)):

Passing to the limit we obtain the contradiction K � L: �

De�nition 5. For a function f : RN ! R de�ne its upper and lower
level sets Ur; Lr by

Ur = fx : r < f(x)g; Lr = fx : f(x) < rg:

We now give the counterpart for functions of our previous de�nition of
�strongly averaging�for sets.
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De�nition 6. Say that a function f : RN ! R is strongly averaging if
for any family of open sets fGq : q 2 Qg covering RN there are r; q such that
the set

Ur \Gq is strongly averaging.

Theorem. If f is measurable/Baire, then f is strongly averaging.
Proof. We have

RN =
[
r2Q

Ur \
[
q2Q

Gq =
[
r;q2Q

Ur \Gq:

In the measurable case, we have for some r; q that Ur \ Gq has positive
measure and so is strongly averaging. Likewise in the Baire case we have
that for some r; q that Ur \Gq is second category. �

Theorem (Császár�s Non-separation Theorem, [Kucz] p. 226). For
f convex, there is no strongly averaging g with

mf (x) < g(x) � f(x); for all x:

Proof. Take Ur = fx : r < g(x)g and note that by Császár�s convexity
Theorem ([Kucz] p. 140) if f is locally bounded from below then mf is
convex and continuous but otherwise mf (x) � �1: In the latter case take
Gq = R. In the former case, by continuity, the sets Gq = fx : mf (x) < qg
constitute an open cover. In either case, if S = Ur \Gq is strongly averaging
then on S we have

mf (x) < q < g(x) � f(x):
Thus f > q on a strongly averaging set, so by Császár�s First Theoremmf (x)
is bounded below by q on the closure of a core set of S; whereas it is in fact
bounded above by q: This is a contradiction. �

Note. Taking g measurable, we obtain the result as Császár gave it.

Comment. Much of the proof structure in this section has relied on se-
quential combinatorics, so it is worth noting the presence here of a hierarchy
of combinatorial properties, or more properly of various forms of additive
compactness. The key here is the idea that a set T contains a point t ap-
proachable (from within the set T ) in a speci�ed way, along a null sequence
z:
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(i) Subuniversality: for a given null sequence z, there is a translator t 2 T
such that: t = limM(t + zm) through T; that is, we regard z as specifying a
mode of approach through T and so t is a z-limit from within T:
The equivalent a¢ ne formulation is:
(i0) A¢ ne compactness with �xed weight 
: for a given convergent se-

quence u, there is an �a¢ ne translator�w 2 R that is a w-limit through T;
where wn = (1 � 
)zn. That is, 
w + (1 � 
)u is the limit limM(
w + (1 �

)u+ (1� 
)zm) through T:
In this light strong averaging may be restated as follows.
(ii) A¢ ne compactness with varying/converging weights f
ng: For con-

verging weights 
n ! 
 and for a given convergent sequence u = fu + zng,
there is an �a¢ nizing translator�w 2 R; i.e., a w-limit through T; where
wn = (1�
n)zm(n). That is, 
w+(1�
)u is the limit lim(
nw+(1�
n)u+
(1� 
n)zm(n)) through T:
The case (i0) o¤ers only a sequence of a¢ ne translators wk; each term

depending on the weighted term (1 � 
k)zn; whereas case (ii) creates a di-
agonalization of translators to a �one �ts all weights�. In this context, the
�folklore�theorem below, concerned with �one �ts two�, is illuminating.

De�nition 7. Say that a set S is bilateral if there is T � S such that,
for any fzng ! 0; there is t 2 T (a bilateral translator) and in�nite Mt such
that

fxm = t+ zm; ym = t� zm : m 2Mtg � T:
Thus t = 1

2
xm +

1
2
ym: The de�ning clause implies that NT(�T ) holds for

� = �1, as
t+ zm 2 T and � t+ zm = �ym 2 �T:

Theorem (Bilateral Genericity Theorem). If S is non-meagre/non-
null, then S is bilateral. In fact generically all t 2 S are bilateral translators.

The proof is in [BOst9]. Compare Kemperman [Kem], [Kucz] Lemma 2,
p. 70.

7 Automatic Uniform Convergence

We return here to the Uniform Convergence Theorem (UCT) for slowly vary-
ing functions, the subject of [BOst1], from our present perspective.
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De�nitions 1. Let h : R! R be slowly varying.
(i) UCTh is the assertion that for any fxng ! 1; the convergence

lim
n!1

jh(u+ xn)� h(xn)j = 0

is uniform for u restricted to compact sets.
(ii) Say that a convergent sequence u = fung is good (for h) if, for all

fxng ! 1;
lim
n!1

jh(un + xn)� h(xn)j = 0:

Say that a convergent sequence u = fung is "-good if, for all fxng ! 1;

jh(un + xn)� h(xn)j < ";

for large enough n:

Bounded Equivalence Principle ([BOst1]). UCTh is equivalent to the
assertion that all convergent sequences are good for h.

Recalling the de�nition of U in Section 3, we note that a set T is in U
provided that, for any slowly varying function h; if all subsequences of T are
good for h; then UCTh holds. That is, if all subsequences of T are good,
then all sequences are good.

Lemma 1. (i) u is good i¤ it is good for each " > 0:
(ii) if u = fun : n 2 !g is good then so is fun : n 2 Mg for any in�nite

M.

Proof. Immediate from the de�nition. �

The next two lemmas identify the additive structure of good sequences.

Lemma 2 (Shift Lemma). (i) If u is "-good, then t+ u = ft+ ung is
2"-good, and hence
(ii) u is good, i¤ t+ u = ft+ ung is good.

Proof. (i) Notice that if yn = xn + t and x!1; then also yn !1: So
ultimately

jh(un + yn)� h(yn)j < ":
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But, as h is slowly varying, pointwise convergence at t yields

jh(t+ xn)� h(xn)gj < "; for n > Mt;

for some Mt: For such n we have

jh(t+ un + xn)� h(xn)j � jh(un + xn + t)� h(xn + t)j+ jh(t+ xn)� h(xn)j
� "+ " = 2":

(ii) If u is good, then u is "-good for all " > 0: Thus t+ u = ft+ ung is
2"-good, for all " > 0: Thus t + u = ft + ung is good. Obviously if t + u is
good, then u = �t+ (t+ u) is good. �

Thus whether or not UCTh holds is determined by behaviour local to the
origin.

Lemma 3 (Addition and subtraction lemma). (i) If u;v are "-good,
then u+ v = fun + vng; and u� v = fun � vng are 2"-good. Hence
(i) If u;v are good, then u� v is good.

Proof. (i) Notice that if yn = xn � vn and x ! 1; then also yn ! 1:
So

jh(un + yn)� h(yn)gj < "; for n > My;

and
jh(un + xn)� h(xn)gj < "; for n > Mx:

Consequently,

jh(un + vn + xn)� h(xn)j � jh(un + (xn + vn)� h(xn + vn)j+
+jh(vn + xn)� h(xn)j

� "+ " = 2";

as asserted. Analogously, writing zn = xn � vn and noting that for some Mz

jh(un + zn)� h(zn)gj < "; for n > Mz and

jh(vn + zn)� h(zn)gj < "; for n > Mz
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we ultimately have

jh(un � vn + xn)� h(xn)j � jh(un + (xn � vn))� h(xn � vn)j
+jh(xn � vn)� h(xn)j

= jh(un + zn)� h(zn)j
+jh(zn)� h(vn + zn)j

� "+ " = 2": �

Corollary. If u is good, then 1
2
u is good i¤�1

2
u is good.

Proof. Immediate, as 1
2
u� u = �1

2
u:�

Theorem (Third Automatic Continuity Theorem �slowly vary-
ing functions).
Let T be subuniversal. For any slowly varying function h; if

lim
n!1

jh(un + xn)� h(xn)j = 0; for all fxng ! 1;

for all sequences fung lying in T; then UCTh holds. In symbols: S � U:

Proof. Suppose that T 2 S, but T =2 U. Then there are a slowly varying
h and a sequence fu+ zng ! u which is not good (for h): Hence fzng ! 0 is
not good. But, for some w and in�nite M, we have fw + zm : m 2 Mg � T:
Now by assumption we have UCT on the subsequence fw + zm : m 2Mg of
T: So fw + zm : m 2 Mg is good, as is fzm : m 2 Mg; contrary to Lemma 1
(ii) after all. �

For h slowly varying let Gh be the set of convergent sequences u = fung
good for h: Then, by Lemmas 1-3, Gh is a sequential additive structure (De�-
nition 2, Section 5). Applying the Analytic Automaticity Theorem of [BOst7]
(see Section 3.1) we obtain a �thinned out�version of the last theorem.

Theorem (Analytic Automaticity Theorem �uniform conver-
gence). If T is an analytic set spanning R as a vector space over Q (e.g.
if T contains a Hamel basis) and

lim
n!1

jh(un + xn)� h(xn)j = 0; for all fxng ! 1;

for all sequences fung lying in T; then UCTh holds, that is, T 2 U:
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Postscript. The reader will have observed how extensive a debt we
owe here to the work of Marek Kuczma, both in his paper [GerKucz] that
initiated the Ger-Kuczma programme, and in his book [Kucz], unfortunately
not widely accessible outside Poland. Kuczma is widely acknowledged as
the father of the subject of functional equations, and as the founder of a
�ourishing school. Functional equations lie at the heart of the subject of
regular variation, our motivation in [BOst1] and [BOst4]. It is a pleasure to
dedicate this paper to Marek Kuczma�s memory.
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