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Main Themes

A: Foundational Motivation

1. Motivation from R: Measure-category duality, Cauchy dichotomy (Hamel pathol-
ogy):

Classical examples: additivity (Ostrowski), subadditivity and convexity (Banach-
Mehdi).

* Background: Measurability and Baire property (also Cantor and Baire Theorems).

2. Classical KBD and general shift theorems.



*. Kestelman versus Parthasarathy shift-compactness: what sort of compactness?

3. Measure-category duality via density topology.

4. Other �ne topologies, associated generic behaviour, needing a Baire Theorem.

5. Category Embedding Theorem and Analytic Cantor and Baire Theorem

B: Semi-Polish Theorem

Theme: shift-compactness � that�s what groups like best.

(Almost as good as local compactness.)

Statement and outline proof of theorem.



C: General Applications.

1. E¤ros Theorem.

2. Jones-Kominek Theorem.

3. Consecutive-form KBD.

4. van der Waerden combinatorics: the Ruziewicz theorem, Steinhaus Theorem from
Ramsey.

5. Kingman�s Theorem.

6. Reprise: Normed groups: KBD, Pettis, Baire homomorphism theorem



Background: almost a G�

Instant recall:

A is Lebesgue measurable �recall A = HnN with H a G� and N of measure zero.
It is almost a G�:

A is somewhere dense if cl(A) has a non-empty interior. If it is not somewhere dense,
then it is nowhere dense.

A set is meagre if it is a countable union of nowhere dense sets. (First category).

A set A is Baire if A = GnM1 [M2 with Mi meagre (quasi almost open)

so A = H [M with H a G� and M meagre. It is almost a G�:



Motivation: Kestelman-Borwein-Ditor Theorem

Theorem. Let fzng ! 0 be a null sequence in R. If T is a measurable/Baire
subset of R, then for generically all (= almost all/quasi all) t 2 T there is an in�nite
set Mt such that

ft+ zm : m 2 Mtg � T: (sub)

H. Kestelman, The convergent sequences belonging to a set, J. London Math. Soc.
22 (1947), 130-136.

H. Kestelman, On the functional equation f(x + y) = f(x) + f(y), Fund. Math.
34 (1947), 144-147.



We call generalized versions of this result (null) shift-compactness theorems. Gen-
eralized versions have lots of applications: Steinhaus-Pettis Theorem (A�A contains
an interval around 0), Continuity of homomorphisms (automatic continuity), Uniform
Boundedness Theorem, Uniform Convergence Theorem of Regular Variation.



Why compactness?

1. If an ! a0 with an 2 T; then zn := an � a0 ! 0.

For some t 2 T; t+ zn 2 T for n 2 Mt (in�nite); take s := t� a0

s+ an = (t� a0) + an = t+ zn 2 A converging through Mt to s+ u0 = t 2 T .

Thus T is shift-compact.

2. Implies an (open) �nite sub-covering theorem (covering after small shifts).



Why generically all?

Generic Dichotomy (Completeness Principle). For F : Ba ! Ba monotonic, if
W \ F (W ) 6= ? for all non-meagre W 2 G�; then, for each non-meagre T 2 Ba;
T \ F (T ) is quasi almost all of T:

That is, either

(i) there is a non-meagre S 2 G� with S \ F (S) = ?; or,

(ii) for every non-meagre T 2 Ba; T \ F (T ) is quasi almost all of T:



Easy Automatic Continuity

Theorem D (Darboux�s Theorem). If f : R! R is additive and locally bounded
at some point, then f is linear.

Proof. By additivity we may assume that f is locally bounded at the origin. So we
may choose � > 0 and M such that, for all t with jtj < �; we have jf(t)j < M: For
" > 0 arbitrary, choose any integer N with N > M=": Now provided jtj < �=N; we
have

N jf(t)j = jf(Nt)j < M; or jf(t)j < M=N < ";

giving continuity at 0: Linearity easily follows. �



Strong Ostrowski Theorem. If f : R! R is additive and bounded (locally, above
or below) on a null-shift-precompact set S, then f is locally bounded and hence
linear.

Proof. Suppose that f in not locally bounded in any neighbourhood of some point
x. Then we may choose zn ! 0 such that f(x+zn) � n; without loss of generality
(otherwise replace f by �f). So f(zn) � n�f(x): Since S is null-shift-precompact,
there are t 2 R and an in�nite Mt such that

ft+ zm : m 2 Mtg � S;

implying that f is unbounded on S locally at t (since f(t+ zn) = f(t) + f(zn)), a
contradiction. So f is locally bounded, and by Darboux�s Theorem f is continuous
and so linear. �



Corollary (Ostrowski Theorem, cf. Kes2). If f : R! R is additive and bounded
(above or below) on a set of positive measure S, then f is locally bounded and hence
linear.

Corollary (Banach-Mehdi Theorem,). If f : R ! R is additive and bounded
(above or below) on a non-meagre Baire set S, then f is locally bounded and hence
linear.



An aside: averaging arguments

If T is null-shift precompact, then T is averaging, for fzng ! 0; any u 2 T; and
with un := u+ zn, there are w 2 Rd and fvng � T such that, for in�nitely many
n 2 !; we have:

un =
1

2
w +

1

2
vn:

Proof. In the averaging case, it is enough to show that 12T is subuniversal i¤ T is
averaging. If 12T is subuniversal then, given un ! u; there are w 2 Rd and some
in�nite M so that f�12w + un : n 2 Mg � 1

2T ; hence, putting vn := 2un � w;
we have fvn : n 2 Mg � T: Conversely, if T is averaging and fzng ! 0; then for
some x and some M; f2x + 2zn : n 2 Mg � T; so fx + zn : n 2 Mg � 1

2T and
hence 12T is subuniversal. Similar reasoning yields the re�ecting case. �



Why Analytic sets �because almost G�

In Polish spaces: Analytic = projection of a Borel set = continuous image of a Polish
space.

K-analytic = continuous image of a Lindelöf µCech-complete space.

* No Hamel basis is analytic. (Sierpínski, Jones)

*For T analytic, spanning Rd over Q (eg containing a Hamel basis) subadditive
functions locally bounded on T are locally bounded above.



*For T analytic, spanning Rd over Q (eg containing a Hamel basis) convex functions
locally bounded on T are continuous.

* Analytic sets are Baire sets, so almost G� and in fact directly provide completeness
arguments.



Two-in-one: weak category convergence

De�nition . A sequence of autohomeomorphisms hn of a topological space X
satis�es the weak category convergence condition if:

For any non-empty open set U; there is an non-empty open set V � U such that,
for each k 2 !; \

n�k
V nh�1n (V ) is meagre. (wcc)

Equivalently, for each k 2 !; there is a meagre set Mk in X such that, for t =2Mk;

t 2 V =) (9n � k) hn(t) 2 V: (approx)



Category Embedding Theorem

Theorem (NHB/AO). Let X be a topological space. Suppose given homeomor-
phisms hn : X ! X which satisfy the weak category convergence condition. Then,
for any Baire subset T; for quasi all t 2 T; there is an in�nite set Mt such that

fhm(t) : m 2 Mtg � T:



Satisfying the wcc

On the real line one proves that, for zn ! 0; the shifts hn(t) = t+ zn satisfy wcc
both

(i) in the usual (Euclidean norm) topology and

(ii) in the density topology.

Hence both versions of KBD follow from CET. The Baire version of KBD generalizes
to metrizable topological groups that are topologically complete, and the measure
version to locally compact topological groups.



D �the density topology on R

Members of D are measurable sets s.t. all points of D are points of density 1. An
arbitrary union of these is also measurable. So E � D and so D is a re�nement
topology. One says it is a �ne topology on R.

A set A is Baire in D i¤ A is measurable

A is meagre in D i¤ jAj = 0.

So D is a Baire space.

Shifts are homeomorphisms: so D gives a semitopological group that is not paratopo-
logical.



Fine topologies in Analysis

One says D is a �ne topology on R. Fine topologies on R capture di¤erent notions
of �randomness�, as in: Cohen reals (generic in the Euclidean topology), Solovay reals
(generic in the density topology),

Gandy �reals� (Gandy-Sacks degrees), ... The Gandy-Harrington topology GH is
used in Silver�s Theorem.

The Ellentuck topology is used to study the Ramsey property (Mathias reals).

Fine topology is a standard tool in potential theory

[Nick�s aphorism: � = 3:1415::: is one of the best fake random reals!].



From wcc to convergence

Theorem (Convergence to the identity). Assume that the homeomorphisms hn :
X ! X satisfy the weak category convergence condition (wcc) and that X is a Baire
space. Suppose there is a countable family B of open subsets of X which generates
a (coarser) Hausdor¤ topology on X: Then, for quasi-all (under the original topology)
t; there is an in�nite Nt such that under the coarser topology

limm2Nt hm(t) = t:



Steinhaus-Picard Theorem

Fine Topology Interior Point Theorem. Let R be given a shift-invariant topology
� under which it is a Baire space and suppose the homeomorphisms hn(x) = x+ zn
satisfy (1), whenever fzng ! 0 is a null sequence (in the Euclidean topology). For
S Baire and non-meagre in �; the di¤erence set S � S contains an interval around
the origin.

Proof. Suppose otherwise. Then for each positive integer n we may select

zn 2 (� 1/n;+ 1/n) n(S � S):

Since fzng ! 0 (in the Euclidean topology), the Category Embedding Theorem
applies, and gives an s 2 S and an in�nite Ms such that

fhm(s) : m 2 Msg � S:



Then for any m 2 Ms,

s+ zm 2 S , i.e. zm 2 S � S;

a contradiction. �



Baire Theorem: a fresh look

Analytic Baire Theorem �Category-heavy (van Mill: fat) sets.

In a Hausdor¤ space X, if An are K-analytic, M-heavy and dense in X, thenT
nAn 6= ;:

Proof. Each An is a Baire set (Nikodym�s Theorem) and co-null, so dense open
modulo a meagre set. So

T
nAn 6= ;: �



K-analytic spaces

Put I = NN (product topology with N discrete) and ijn := (i1; :::; in): K := K(X)
the compact subsets of X:

For X a Hausdor¤ space, a map K : I ! }(X) is

(i) compact-valued if K(i) 2 K for each i 2 I; and

(ii) singleton-valued if each K(i) is a singleton.



K is upper semicontinuous if, for each i 2 I and each open U in X with K(i) � U;

there is n such that K(i0) � U for each i0 with i0jn = ijn:

A � X is aK-analytic set ifA = K(I) for some compact-valued, upper-semicontinuous
map K : I ! }(X) (Frolík, 1962).

X is a K-analytic space if X itself is a K-analytic set.

By Jayne�s thm (1976) this is equivalent to other defns: Choquet 1951, Sion 1960.
Fremlin, 1980, de�nes a more general notion of µCech-analyticity.



µCech-analyticity

A in X is obtained from a family H of subsets of X by the Souslin operation, i.e. is
Souslin-H, if for each ijn there are sets H(ijn) 2 H such that

A =
[
i2I

\
n2!H(ijn):

Theorem Any K-analytic set is Souslin-F .

Proof. If K is upper semicontinuous and X is Hausdor¤, then

K(I) =
[
i2I

\
n2! clK(ijn):

Indeed, as K(i) � T
n2!clK(ijn); the inclusion from left to right is clear; for the

other direction, if x 2 (Tn2!clK(ijn))nK(i) for some i; then there is U open with



x =2clU and K(i) � U; and so K(ijn) � U for some n; yielding the contradiction
that x =2clK(ijn) �clU: �

De�nition (Fremlin). For A completely regular, A is µCech-analytic if A is Souslin-
(F [ G) in some compacti�cation. (See Hansell, Th. 5.3.; Fremlin�s website.)

R. W. Hansell, Descriptive Topology, in Recent Progress in General Topology, 275-
315, Elsevier, 1992.



The Analytic Cantor Theorem

Analytic Cantor Theorem . Let X be a Hausdor¤ space, and let A = K(I) be
K-analytic in X; where K is compact-valued and upper semicontinuous.

Suppose that Fn is a decreasing sequence of (non-empty) closed sets in X such that

Fn \K(I(i1; :::; in)) 6= ;;

for some i = (i1; :::) 2 I and each n: Then

K(i) \
\
n
Fn 6= ;:



Equivalentl,y, if there are open sets Vn in I with clVn+1 � Vn and diamIVn # 0
such that Fn \K(Vn) 6= ;; for each n; then

(i)
T
nclVn is a singleton, fig say,

(ii) K(i) \ Tn Fn 6= ;:
The restatement above is often more useful � i 2 I is usually constructed in a
sequence of approximations Vn:



Corollary: The Gandy-Harrington Baire Theorem

De�nitions. 1. Denote by A(T ) the sets of (X; T ) that are K-analytic

2. The representation K : I ! K(X) is T -circumscribed if there is an upper-
semicontinuous determining system hG(ijn)i consisting of T -open sets with K(i) =T
n2!G(ijn) and

K(I) =
[
i2I

\
n2!G(ijn);

Inspired by the Levi-van Mill Fat Sets Theorem:



Analytically heavy spaces

Fine Analytic Baire Theorem (Generalized Gandy-Harrington Theorem).

In a regular Hausdor¤ space, if T 0 is a re�nement topology of T , possessing a weak
base (pseudo-base) H � A(T )\ T 0 whose elements are T 0-circumscribed, then T 0
is Baire.

In particular, this applies to a Polish space, the Gandy-Harrington GH, the density
D and the Ellentuck El topologies.

Remark. Analytically heavy : any non-empty open G � A 6= ; with A analytic.



Application: Normed groups

Motivated by normed vector spaces where �divergence�may be de�ned via jjxjj :=
dX(x; eX)!1; we have:

De�nition. For X an algebraic group, say that jj � jj : X ! R+ is a group-norm if
the following properties hold:

(i) Subadditivity (Triangle inequality): jjxyjj � jjxjj+ jjyjj;

(ii) Positivity: jjxjj > 0 for x 6= e;

(iii) Inversion (Symmetry): jjx�1jj = jjxjj:



Induces two Norm Topologies: Norm yields a left and right invariant metric:

dXR (x; y) := jjxy
�1jj and dXL (x; y) := jjx

�1yjj = dXR (x
�1; y�1):

1. jjxjj := dXR (x; eX) = dXL (x; eX)

2. Under either norm topology, there is continuity of operations at e: At further
distances the topology may be force the group operations to be increasingly �less�
continuous. See later.

Note the converse: if dX is a one-sidedly invariant metric, then jjxjj := dX(x; eX)

is a norm.



3. Birkho¤-Kakutani Theorem: a metrizable topological group has a right-invariant
metric. In this case:

i) if X is a Baire space under the norm topology, then the wcc holds under the norm
topology,

ii) if, additionally, X is locally compact, X has a Haar measure and the wcc can be
veri�ed for the Haar-density topology.

In in�nite dimensional spaces: category beats measure (lack of compactness) making
the Baire case primary.



Normed groups: their history

1. Birkho¤-Kakutani Theorem reviewed. Really a normability theorem:

Birkho¤-Kakutani Normability Theorem. A �rst-countable right topological group
X is a normed group i¤ inversion and multiplication are continuous at the identity.

2. Early use by A. D. Michal and his collaborators was in providing a canonical setting
for di¤erential calculus; example:noteworthy generalization of the implicit function
theorem by Bartle.

3. In name the group-norm makes an explicit appearance in 1950 in Pettis in the
course of his classic closed-graph theorem (in connection with Banach�s closed-graph
theorem and the Banach-Kuratowski category dichotomy for groups).



4. Reappears in the group context in 1963 under the name �length function�, moti-
vated by word length, in the work of R. C. Lyndon on Nielsen�s Subgroup Theorem.

5. Gromov theory has a normed group context.



Canonical Example

For a metric space (X; dX) consider Auth(X) the algebraic group of
homeomorphisms h : X ! X (under composition). Identity is eX(x) = x: The

supremum metric, if �nite, is a candidate metric

d̂(h; h0) := supx d
X(h(x); h0(x)):

OK �so restrict attention to H(X) those h(x) such that
supx d

X(h(x); eX(x)) <1 (bounded elements).

Properties

1. d̂ is right invariant, so denote it by dHR

d̂(hg; h0g) = supx d
X(h(g(x)); h0(g(x))) = supy d

X(h(y); h0(y)) = d̂(h; h0):



2. So

jjhjj := d̂(h; eX) de�nes a norm on H(X);

dHR(g; h) = jjg
�1hjj and dHL (g; h) = jjgh

�1jj:

3. Complete? Topologically complete �yes, if X compact.

4. Complete under the symmetrized topology: dHS (g; h; ) = maxfdHR ; d
H
L g =

maxfd̂(g; h); d̂(g�1; h�1)g; if X; dX complete

5. Bitopology at work: dHR � dHS so a �ner topology, but latter need not be invariant.

6. Baire i¤ non-meagre.



7. The norm enables continuity of action:

H(X) acts onX via (h; x)! h(x): Action is continuous as a map from (H(X); d̂)�
(X; dX)! (X; dX); so can use to develop topological dynamics.

Lemma Under d̂ on H(X) and dX on X; the evaluation map (h; t) ! h(t) from
H�X to X is continuous.

Proof. Fix h0 and x0: The result follows from continuity of h0 at x0 via

dX(h0(x0); h(x)) � dX(h0(x0); h0(x)) + dX(h0(x); h(x))

� dX(h0(t0); h0(t)) + dH(h; h0): �



Normed vis-a-vis compact-open

Instead, one may consider the compact-open topology, but recall ...

Salient features of the compact-open.

� For composition to be continuous local compactness is essential (Dugundji Ch.
XII.2, van Mill Ch.1),

� For T compact this topology is admissible (= makesAuth(X) a topological group),

� Admissibility in the X non-compact situation not currently fully understood,



� In the locally compact case there exist counter-examples with non-continuous in-
version,

� Additional properties, e.g. local connectedness usually invoked � see Dijkstra for
the strongest results.

� Arens: if T is separable metric, and the compact-open topology on C (T;R) is
metrizable, then T is necessarily locally compact and �-compact, and conversely (see
e.g. Engelking, p.165 and 266).



Saving grace: a complete subgroup

De�nition. Say that h is bi-uniformly continuous if both h and i h�1 are uniformly
continuous wrt dX . Write

Hu(X) = fh 2 Hunif(X) : h�1 2 Hunifg � H(X):

Theorem. For X complete under dX Hu(X) is complete.

Hu(X) is a topological dual of X:



Almost completeness

Characterization Theorem for Almost completeness. In a separable normed
group X under dXR ; the following are equivalent:

(i) X is a non-meagre absolute G� modulo a meagre set (i.e. is almost complete);

(ii) X contains a non-meagre analytic subset;

(iii) X is non-meagre analytic modulo a meagre set.

Idea goes back to Frolík, studied in particular by Aarts & Lutzer, E. Michael.



Analytic Shift Theorem

Analytic Shift Theorem. In a normed group under the topology dXR , for zn ! eX
null, A a K-analytic and non-meagre subset: for a non-meagre set of t 2 A with
co-meagre Baire envelope, there is an in�nite set Mt and points an 2 A converging
to t such that

fta�1m zmam : m 2 Mtg � A:

In particular, if the normed group is topological, for quasi all t 2 A, there is an
in�nite set Mt such that

ftzm : m 2 Mtg � A:

Analytic Squared Pettis Theorem. For X a normed group, if A is analytic and
non-meagre under dXR , then eX is an interior point of (AA�1)2:



Normed versus topological: Equivalence Theorem

Theorem. A normed group is topological i¤ the dXR topology is equivalent to the
dXL topology. Furthermore, either of the following is equivalent to this condition:

(i) each conjugacy 
t(x) := txt�1 is continuous at e in norm,

(ii) inversion is continuous in either dXR or dXL .

Corollary: An abelian group equipped with a group norm is topological under the
norm topology.



Theorem. For X a normed group which is separable, topologically complete, if each

g(x) = gxg�1 is Baire, then X is topological.

Theorem (Borel/analytic inversion) For X a normed group which is separable,
topologically complete, if inversion x ! x�1 from (X; dR) to (X; dR) is Borel (or
has analytic graph) then X is topological.



Oscillation of a group and Cauchy dichotomy

De�nition. Recall 
t(x) := txt�1 denotes conjugacy. Write

!(t) := lim
�&0

!�(t); where !�(t) := sup
jjzjj��

jj
t(z)jj;

and call the function !(�) the oscillation of the norm. Conjugacy 
t is continuous
for those t for which !(t) = 0: Write


(") := ft : !(t) < "g:

As 
t is a homomorphism, a normed group inherits the Cauchy dichotomy: just like
homomorphisms they are pathological or given a bit of regularity topological



Theorem (Uniform continuity of oscillation). For X a normed group

!(t)� 2jjsjj � !(st) � !(t) + 2jjsjj; for all s; t 2 X:
Hence

0 � !(s) � 2jjsjj; for all s 2 X;

implying uniform continuity in the dXR topology and norm-boundedness of the oscil-
lation.

De�nition. A point z lies in the topological centre Z�(X) of the normed group X;
if 
z(x) is continuous (at e in norm).

Theorem. In a topologically complete, separable, connected normed group X, if the
topological centre is non-meagre, then X is a topological group.



Dense Oscillation Theorem. In a normed group X\
n2N

cl [
(1=n)] =
\
n2N


(1=n) = Z�:

Hence, if for each " > 0 the "-shifting points are dense, equivalently 
(") = ft :
!(t) < "g is dense for each " > 0; then the normed group is topological.

More generally, if for some open W and all " > 0 the set 
(") \W is dense in W;
then ! = 0 on W ; n particular,

(i) if eX 2 W and X is connected and Baire under its norm topology, then X is a
topological group,

(ii) if X is separable, connected and topologically complete in its norm topology, then
X is a topological group.



Semi-Polish Theorem

The Semi-Polish Theorem. For a normed group X under dXR ; if the space X is
non-meagre and semi-Polish (i.e. is Polish under dS), then it is a Polish topological
group.



Ingredients

Baire Homomorphism Theorem. Let X and Y be normed groups analytic in the
right norm-topology with X non-meagre. If f : X ! Y is a Baire homomorphism,
then f is continuous.

Lemma 1 (Levi�s Open Mapping Theorem). Let X be a regular classically analytic
space. Then X is Baire i¤ X = f(P ) for some f continuous and de�ned on some
Polish space P with the property that there exists a set X 0 which is a dense metrizable
G� in X such that the restriction map f jP 0 : P 0 ! X 0 where P 0 = f�1(X 0) is
open.



Lemma 2. For X a normed group, if (X; dS) is Polish and (X; dR) non-meagre,
then there is a subset Y of X which is a dense absolute-G� in (X; dR); and on
which the dS and dR topologies agree.

Proof. The embedding j : (X; dS) ! (X; dR) with j(x) = x makes (X; dR)
is analytic, and being non-meagre is Baire, by Theorem I. Apply Levi�s Theorem to
f = j to obtain a set Y that is a dense G� in (X; dR); s.t. every open set in
(Y; dS) is open in (Y; dR): Every open set in (Y; dR) is open in (Y; dS); since dS
is a re�nement of dR: Thus the two topologies agree on the G� subset Y: As Y is a
G� subset of (X; dR); it is also a G� subset in the complete space (X; dS); and so
(Y; dS) is topologically complete. So too is (Y; dR); being homeomorphic to (Y; dS):
Working in Y; we have yn !R y i¤ yn !F y i¤ yn !L y: �



Lemma 3. If in the setting of Lemma 2 the three topologies dR; dL; dS agree
on a dense absolutely-G� set Y of (X; dR); then for any � 2 Y the conjugacy

�(x) := �x��1 is continuous.

Proof. We work in (X; dR): Let � 2 Y: Fix " > 0; then T := Y \ B"(�) is
analytic and non-meagre, since X is Baire. By the Analytic Shift Theorem there is
t 2 T and tn in T with tn converging to t (in dR) and an in�nite Mt such that
ftt�1m zmtm : m 2 Mtg � T: Since the three topologies agree on Y and as the
subsequence tt�1m zmtm converges to t in Y under dR; it also converges to t under
dL:

Using the identity dL(tt
�1
m zmtm; t) = dL(t

�1
m zmtm; e) = dL(zmtm; tm); we note

that

jjt�1zmtjj = dL(t; zmt) � dL(t; tm) + dL(tm; zmtm) + dL(zmtm; zmt)

� dL(t; tm) + dL(tt
�1
m zmtm; t) + dL(tm; t)! 0;



as m ! 1 through Mt. So dL(t; zmt) < " for large enough m 2 Mt. In
particular, for any integer N; there is m = m(") > N with dR(t; tzm) < ": Then,
as dL(�; t) = dR(�; t);

jj��1zm� jj = dL(zm�; �) � dL(zm�; zmt) + dL(zmt; t) + dL(t; �)

� dL(�; t) + dL(tzm; t) + dL(t; �) � 3":

Inductively, taking successively for " = 1=n and k(n) := m(") > k(n � 1); one
has jj��1zk(n)� jj ! 0. By the weak continuity criterion (Lemma 3.5 of [Bost-N],
p. 37),


(x) := ��1x�

is continuous.

Since (X; dXR ) is analytic and metric, each open set U is analytic, so 
�1� (U) =


(U) is analytic, so has the Baire property by Nikodym�s Theorem. So 
�(x) =



�x��1 = 
�1(x) is a Baire homomorphism, and so is continouous � by the Baire
Homomorphism Theorem. �

Proof of Semi-Polish Theorem. Under dR; the set Z� := fx : 
x is continuousg
is a closed (subsemigroup) of X ([Bost-N], Prop. 3.43). So X =clRY � Z�; i.e.

x is continuous for all x; and so (X; d

X
R ) is a topological group. So xn !R x i¤

x�1n !R x
�1 i¤ xn !L x i¤ xn !S x: So (X; d

X
R ) is a Polish topological group.

�



General applications

1. The E¤ros Theorem

De�nition. A group G � H(X) acts weakly on a space X if (g; x) ! g(x) is
continuous separately in g and in x:

A group G � H(X) acts transitively on a space X if for each x; y in X there is g
in X such that g(x) = y:

The group acts micro-transitively on X if for U open in G and x 2 X the set
fh(x) : h 2 Ug is a neighbourhood of x:



In a metric space a set is analytic if it is a continuous image of a complete separable
metric space.

The E¤ros Open Mapping Principle. Let G be a Polish topological group acting
transitively on a separable metrizable space X. The following are equivalent.

(i) G acts micro-transitively on X,

(ii) X is Polish,

(iii) X is of second category



More generally, for G an analytic normed group acting transitively on a separable
metrizable space X:

(iii) =) (i),

i.e., if X is of second category, then G acts micro-transitively on X.

Remark. Jan van Mill gave the stronger result that for G an analytic topological
group, but actually his proof only assumes in e¤ect a normed group structure.



Crimping Theorem

Theorem (Crimping Theorem). Let T be a Polish space with a complete metric
d. Suppose that a closed subgroup G of Hu(T ) acts on T transitively, i.e. for any
s; t in T there is h in G such that h(t) = s. Then for each " > 0 and t 2 T; there
is � > 0 such that for any s with dT (s; t) < �; there exists h in G with jjhjjH < "

such that h(t) = s:



Consequently:

(i) if y; z are in B�(t); then there exists h in G with jjhjjH < 2" such that
h(y) = z;

(ii) Moreover, for each zn ! t there are hn in G converging to the identity such
that hn(t) = zn:

The Crimping Theorem implies the following classical result.

Ungar�s Theorem Let G be a subgroup of H(X): Let X be a compact metric
space on which G acts transitively. For each " > 0; there is � > 0 such that for x; y
with d(x; y) < � there is h 2 G such that h(x) = y and jjhjj < ":



PS. KBD background to the E¤ros Open Mapping
Principle

Let  : G � X ! X be a continuous action that is transitive on X. Banach�s
shift-theorem:

Theorem (Banach, cf. Ho¤mann-Jørgensen, in proof of Th. 2.2.12 p. 349). For zn
in X de�ne maps  n : G! X by setting

 n(g) = g(zn):

For X non-meagre and C Baire and co-meagre in X, for some h 2 G

f n(h) : n 2 !g � C:



This needs a result based on the Kuratowski-Ulam Theorem (Category version of
Fubini).

Lemma (Becker, cf. Ho¤mann-Jørgensen, Prop. 2.2.1 p. 340). For z 2 X �xed,
and  z(g) = g(z), if C Baire and co-meagre in X; then  �1z (C) is co-meagre.

Proof of Theorem. By Lemma 1, for n = 0; 1; 2;... each set  �1n (C) is co-meagre
in G: Let h 2 T

n2!  
�1
n (C): Then  n(h) 2 C for each n 2 !: �

Remark. If zn ! z0; then  n !  0 pointwise, because, since the action of G
on X is continuous, g(zn) ! g(z0): (More speci�clly: g is a homeomorphism.) In
particular, for X = G with G a topological group and z0 = eG; we have  n(g) =
gzn ! g and  n converges to the identity.



2. Analytic thinning: Jones, Kominek Theorems

Theorems of Jones and Kominek. Let f be additive and either have (Jones) a
continuous restriction, or (Kominek) a bounded restriction, f jT , where T is some
analytic set spanning R. Then f is continuous.

Theorem (Compact Spanning Approximation). For T analytic, if the linear span
of T is non-null or is non-meagre, then there exists a compact subset of T which
spans all the reals. If T is symmetric about the origin, then the compact spanning
subset may be taken symmetric.

Proof. If T is non-null or non-meagre, then T spans all the reals (by the Analytic
Dichotomy Lemma); then for some "i 2 f�1g, "1T+:::+"dT has positive measure/



is non-meagre. Hence for some K compact "1K + :::+ "dK has positive measure/
is non-meagre. Hence K spans some and hence all reals.

Let T be symmetric. If T spans the reals, then so does T+ = T \ R+: Choose a
compact K+ � T+ to span the reals. Then K := K+ [ (�K+) � T is compact,
symmetric and spans the reals. �

As a corollary, we deduce the relation between the theorems of Jones and Kominek.



Kominek =) Jones

Theorem. Kominek�s Theorem implies Jones�s Theorem.

Proof. If T is an analytic spanning set, then it contains a compact spanning set K.
If f is continuous on T; then f is bounded on the compact set K: By Kominek�s
Theorem, as f is additive and bounded on a compact spanning set, f is continuous.
�



3. Combinatorics: Consecutive Embedding

(Category Embedding Theorem - Consecutive form.) Let X be a Baire space.
Suppose the homeomorphisms hn : X ! X satisfy the weak category convergence
condition conjunctively. Then, for any Baire set T; for quasi all t 2 T there is an
in�nite set Mt such that

fhm(t); hm+1(t) : m 2 Mtg � T:



4a. van der Waerden-type Combinatorics

Ruziewicz�s Theorem (cf. Kemperman after Lemma 2.1 for the measure case).
Given p positive real numbers k1; :::; kp and any Baire non-meagre/measurable non-
null set T; there exist d and points x0 < x1 < ::: < xp in T such that

xi � xi�1 = kid; i = 1; :::; p:

Proof. Given k1; :::; kp; de�ne a null sequence by the condition zpm+i = (k1+ :::+
ki)2

�m (i = 1; :::; p). Then there is t 2 T and m such that

ft+ zmp+1; :::; t+ zmp+pg � T:

Taking d = 2�m; x0 = t and for i = 1; :::; p

xi = t+ zmp+i = t+ (k1 + :::+ ki)d;



we have x0 < x1 < ::: < xp and

xi+1 � xi = kid: �

Remarks. 1. If each ki = 1 above, then the sequence x0; :::; xp is an arithmetic
progression of arbitrarily small step d (which we can take as 2�m with m arbitrarily
large) and arbitrarily large length p: So if R is partitioned into a �nite number of
Baire/measurable cells, one cell T is necessarily non-meagre/measurable, and con-
tains arbitrarily long arithmetic progressions of arbitrarily short step. This is similar
to the van der Waerden theorem.



4b. After Ruziewicz: Ramsey Property

De�nition. Say that a set S has the strong (weak) Ramsey distance property if for
any convergent sequence fung there is an in�nite set (a set with two members) M
such that

fun � um : m;n 2 M with m 6= ng � S:

Thinking of the points of S as those having a particular colour, S has the strong
Ramsey distance property if any convergent sequence has a subsequence all of whose
pairwise distances have this colour.

Combinatorial Steinhaus Theorem. For an additive subgroup S of R; the following
are equivalent:



(i) S = R;

(ii) S is shift-compact,

(iii) S is null-shift-compact,

(iv) S has the strong Ramsey distance property,

(v) S has the weak Ramsey distance property,

(vi) S has the �nite covering property,

(vii) S has �nite index in R.



5. Simultaneous Embeddings

Kingman�s Theorem (for Category). If fSk : k = 1; 2; :::g are Baire and essen-
tially unbounded in the category sense, then for quasi all � and each k 2 N there
exists an unbounded subset Jk� of N with

fn� : n 2 Jk�g � Sk:

In particular this is so if the sets Sk are open and unbounded.

Kingman�s Theorem (for Measure). If fSk : k = 1; 2; :::g are measurable and
essentially unbounded in the measure sense, then for almost all � and each k 2 N
there exists an unbounded subset Jk� of Q+ with

fq� : q 2 Jk�g � Sk:



6. Regular variation: what are regularly varying functions?

The theory of regular variation, or of regularly varying functions, explores the conse-
quences of a relationship of the form

f(�x)=f(x)! g(�) (x!1) 8� > 0; (RV )

for functions de�ned on R+: The limit function g must satisfy the Cauchy functional
equation

g(��) = g(�)g(�) 8�; � > 0: (CFE)

Subject to a mild regularity condition, (CFE) forces g to be a power:

g(�) = �� 8� > 0: (�)

Then f is said to be regularly varying with index �, written f 2 R�.



Uniform Convergence Theorem: For f Baire/measurable the convergence above
is uniform on compact sets of �:



Background Information

An algebraic group with a topology under which (x; y)! xy is separately continuous
is called a semitopological group.

An algebraic group with a topology under which (x; y) ! xy is jointly continuous
is called a paratopological group.

A topological space is µCech-complete if it embeds as a G� subset in some/any com-
pacti�cation.

So in a compact group H; if a subgroup G is not a G�; then G isn�t complete.



Examples [cf. Charatonik et al.]: open mappings � an F��; ditto: montone open,
light open.

Saving grace: if H is Borel (more generally: analytic), then, we�re still �almost�in
a complete situation.



Bouziad�s Theorems (1996)

B1. A µCech-analytic (in particular a µCech-complete) Baire semitopological group is
a topological group.

B2. A pointwise countably complete (in particular, p-space), Baire, left topological
group with separately continuous action on a p-space has continuous action.

History:

1936 Montgomery: A completely metrizable semitopological group is paratopological.



1957 Ellis: A locally compact semitopological group is paratopological.

1957 Ellis: A locally compact paratopological group is topological.

1960 ·Zelazko: A completely metrizable paratopological group is topological.

1982 Brand: A µCech-complete paratopological group is topological.

1993 Bouziad: For a µCech-complete semitopological group, the group is topological
i¤ paracompact.

In fact it is paracompact, because every Baire p-space is paratopological.

1994 Reznichenko: (no proof; true also by B2) A µCech-complete Baire semitopological
group is a topological group.



Abelian Normability

A norm is abelian if jjxyj = jjyxjj: So a norm on an abelian group is an abelian
norm.

Lemma. If the norm is abelian, the normed group is topological.

Abelian normability of H(X). Suppose that

jjf jj1 := supfjjf jjg : g 2 Xg; where jjf jjg := jjgfg�1jjX ;

is �nite for f in H(X) � eg if the metric dXR is bounded, or in particular if X is
compact.



Then:

(i) jjf jj1 is abelian and H(X) under jjf jj1 is topological.

(ii) The norm jjf jj1 is equivalent to the supremum norm jjf jjH i¤ (n-adm) holds,
i.e. for jjfnjjH ! 0 and for arbitrary gn in H(X);

jjgnfng�1n jjH ! 0:

Equivalently, for jjznjjH ! 0 (i.e.. zn converging to e), arbitrary gn in H(X); and
arbitrary yn 2 X;

jjgn(zn(yn))gn(yn)�1jjX ! 0:

(iii) In particular, if X is compact, H(X) = Hu(X) is a topological group under
the supremum norm jjf jjH.



The Pettis Theorem

Context: a normed group induces two metrics dXR (x; y) := jjxy
�1jj (right invariant)

and dXL (x; y) := jjx�1yjj (left invariant). Here preference is given to the right-
invariant version in the theorems below. KBD Theorem holds but in a more involved
format, but does leads to the following elegant result:

Theorem (Squared Pettis Theorem). Let X be a topologically complete normed
group and A Baire non-meagre under the right norm. Then eX is an interior point
of (AA�1)2:

Squaring and higher powers of AA�1 were studied by Henstock (1963) and E. Følner
(Math. Scand. 2(1954),5-18; cf. Bogolioubo¤).



When X is normed locally compact there exists an invariant Haarmeasure4 on X and
KBD holds as well as a measure version of the Pettis Theorem (without squaring).

Baire Homomorphism Theorem. Let X and Y be normed groups with Y K-
analytic and X topologically complete. If f : X ! Y is a Baire homomorphism,
then f is continuous.



KBD �normed group Haar version

Say that the group-norm jj:jj onX has the Heine-Borel property if under either of the
norm topologies a set is compact i¤ it is closed and norm-bounded, or equivalently if
norm-bounded sets are precompact.

In such circumstances closed balls are compact and the norm topology is locally
compact. A norm can always be replaced with an equivalent one that has the Heine-
Borel property.

Kestelman-Borwein-Ditor Theorem �normed Haar version. In a normed group
X whose right norm topology has the Heine-Borel property, if fzng ! eX (a null
sequence converging to the identity) and T is (right) Haar-measurable, then for
almost all t 2 T there is an in�nite set Mt such that

fzmt : m 2 Mtg � T:



Open Problems

1. Countable productivity of shift-comapctness?

For a metrizable, separable, topological group G and subsets thereof Ai (i 2 !) that
have covering shift-compactness, i.e. open covers have shifted-subcovers that are
�nite, for arbitrarily small shifts. Is the product

Q
i2!Ai (with Tychono¤ topology)

covering shift-compact? (Yes if the Ai are subgroups.)

2.The covering property above is implied by sequential shift-compactness. Are the
two equivalent?

3. Non-speci�c question: examine the pathology of normed groups, i.e broaden our
understanding of when normed is topological?


