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Abstract

Shift-compactness has recently been found to be the foundation stone of
classical, as well as topological, regular variation; most recently it has come
again to prominence in new proofs of the Effros Open Mapping Principle of
group action, another ingredient of topological regular variation. Using the
real line under the Euclidean and density topologies as a paradigm, we de-
velop group-action versions of shift-compactness theorems for Baire groups
acting on Baire spaces under metrizable topologies and under certain refine-
ments of these. One aim is to pursue constructive approaches rather than
rely on plain Baire category methods (so keeping more to the Banach-Mazur
strategic approach). Along the way we uncover three new coarse topologies
for groups of homeomomorphisms. A second purpose is to establish limita-
tions of the shift-compactness methodology.
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1 Introduction and motivation

The Theorem below in real analysis, proved in the measure case by Borwein
and Ditor [BoDi] and earlier derived in slightly weaker form by Kestelman
[Kes], has been generalized to a topological setting in [BOst-LBII] which
permits the underlying property of ‘shift-compactness’ (defined in §2 after
Theorem S) to be viewed as the foundation stone of classical regular varia-
tion and also the ultimate explanation for the dual measure-category frame-
work of classical regular variation as established in [BGT]. Furthermore,
the more general theorem leads to a natural development of a topological
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theory of regular variation embracing earlier partial attempts at generaliza-
tions of the classical theory, see e.g. [BOst-Ind], [BOst-RVWL]. The shift-
compactness property is implied by ‘amenability at 1’ introduced recently by
Solecki [Sol], a matter we consider elsewhere, and in turn implies Steinhaus’
Interior Point Theorem and its relatives. It and they are critical in automatic
continuity (cf. [RoSo]); for illustration, see e.g. the treatment of Jones’s
Theorem in [BOst-Thin] (and for background refer to [HJ]). Most recently
shift-compactness has been found to imply an important result in general
topology, the Effros Open Mapping Theorem ([Ost-E]), a result concerning
group actions on a metric space, itself a further ingredient of topological
regular variation (under the guise of the ‘crimping property’, for which see
[BOst-TRI] and again [Ost-E]). Of course group action underpins the very
definition of regular variation, but its implicit presence became visible only
in the recent topological formulation just cited; hitherto explicit reference to
group action was via the one-parameter group of affine transformations – see
[BGT] §8.5 or [BalEmb] §18.

The present paper resumes the study of the Kestelman-Borwein-Ditor
theorem below, initiated in this journal in [BOst-Ind], from the newly ac-
quired perspective of group action.

Theorem KBD (Kesteman-Borwein-Ditor Theorem). Let {zn} →
0 be a null sequence in R. If T is a measurable/Baire subset of R, then for
generically all (= almost all/quasi all) t ∈ T there is an infinite set Mt such
that

{t + zm : m ∈Mt} ⊆ T. (sub)

Denoting by τ t(x) := t+x, translation by t, put Tr(S) := {τ s : s ∈ S} for
S ⊆ R, so that Tr(R) is the group of translations on R. The result above has
two dual interpretations, depending on whether one views the points t + zm

above as being the image sequence {τ(zm) : m ∈Mt} for some τ ∈ Tr(T ), or
the evaluation at some t ∈ T of the corresponding subsequence of translations
τm with τn(x) := x + zn (with pointwise limit the identity: id(x) ≡ x).

In the first case, the subsequence {zm} and its limit are embedded in the
target set T by an application of the map x 7−→ x + t (so that T appears
as both a target set and a contributor of an action, namely translation). In
the second, the sequence τm together with its pointwise limit id are embed-
ded in T by an evaluation map h → h(t) evaluated at some t ∈ T (and
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again T appears as both a target set and a contributor of an action, namely
evaluation).

The natural framework exhibiting the inherent duality of Th. KBD is thus
the action A : Tr(R)×R→ R by the group Tr(R), wherein A maps (τ , x) for
τ ∈ Tr(R) and x ∈ R, to τ(x) = t + x for τ = τ t. More generally, denoting
by Auth(X) the group of self-homeomorphisms of a topological space X and
equipping a subgroup G of Auth(X) with some topology, we seek to establish
analogues of Th. KBD by demanding various forms of separate continuity
of the action G×X → X given by (g, x) → g(x). These allow X to include
not only metric group topologies, such as the Euclidean topologies, but also
such refinements as the (measure) density topologies (see section 2), which
embrace the measure case of Th. KBD.

In going beyond translations in a group to homeomorphic actions in a
space, we speak of ‘shift-compactness theorems’ (borrowing a term from
Parthasarathy [PRV], who used a related notion in the context of a semi-
group of probability measures under convolution; see also [Par], and [He1],
[He2]).

Given the increasing significance of shift-compactness theorems, the first
aim in this paper is to identify ‘constructive’ arguments (see Section 2 for an
explanation) yielding the asserted existence of either the embedding or the
evaluation point of the theorem (Sections 2-4). The second aim is the other
side of the same coin: understanding the limitations of these theorems (Sec-
tion 5). In this we are helped by some earlier papers, which with hindsight
now seem to have anticipated special forms of the current ‘action approach’:
[MilH-1] (applying, albeit in the context of R, actions more general than
standard group actions – compare Section 5 below), [BOst-H] (interpreting
the preceding paper as identifying a ‘homotopy to the identity’ – in which
the function id played a leading role, just as in the opening remarks above),
also [BOst-LBII], and van Mill’s recent paper [vM2]. The latter has been a
very valuable help and source of inspiration.

In the interests of transparency, and because the authors of this paper
come to this subject from two different but complementary points of view, we
have whenever possible formulated arguments first in the Euclidean context,
and then indicated the natural generalizations. One viewpoint emphasizes
general ”positive” results (motivated by earlier work with N. H. Bingham,
much of it summarized in [BOst-N], cf. [BOst-TRI] on topological regular
variation, and also [Ost-S]), the other what might be called counter-examples
or ”negative” results testing the limitations of the Th. KBD (on this cf. also
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Komjáth [Komj-1], [Komj-2]). Each of the authors travels in his ordained
direction, but the distinct approaches yield just another example, in anal-
ysis, of the interplay between concrete classical real analysis and modern
geometric-topological analysis.

The structure of the paper is as follows. In §2 we derive generaliza-
tions of Th. KBD in Th. 2 and Th. 2′ (in the context of Polish spaces)
for groups of homeomorphisms that act transitively and strongly separate
points from nowhere dense sets; here we conduct the argument first on the
line (where the group of translations has these properties), under the Eu-
clidean topology. The argument may be adjusted so as to apply also to the
density topology. That adjustment in turn permits in §3 the establishment
of a new general result for cometrizable refinement topologies in Th. 3. Its
format prompts a reformulation in action terms of the Category Embedding
Theorem of [BOst-LBII], as Th. 4. The hypotheses in the two theorems
set the agenda of §4 – their interpretation along the lines of joint continuity
uncovers three new topological structures for groups of homeomorphisms,
which the two theorems require to be coarser than norm topologies (Prop. 3
and 4); Theorem 5 closes the loop, by verifying this condition for the group
of translations on the line. In the setting of submetrizable topologies one ver-
ifies only subsequence embedding in a target set T , so in §5 we demonstrate
circumstances involving measurability (or its absence) under which certain
translated subsequences t + zm must omit the target set T.

2 Category & measure shift-compactness

A group-action framework allows the formulation of uniformity properties;
a simple instance is that a non-meagre metric space supporting a transitive
group action is a Baire space (see [Ost-E], Remark to Th. B). The more
important example for us is the classical Effros Open Mapping Principle
of [Eff] (which also implies the Banach-Schauder Open Mapping Theorem
and the Banach-Steinhaus theorem on uniform boundedness). That example
has a number of more recent extensions (e.g. [vM1], [MilH-1], [Ost-ACE]).
Another is the Lavrentieff Theorem on the extension of a homeomorphism
between sets to a homeomorphism between Gδ sets covering the given ones
(cf. Th. 2.2.7 in [Bec-Kech], a text devoted to a fruitful, kindred, programme
investigating group actions from the viewpoint of descriptive set theory). Re-
cently, one of us has shown ([Ost-E]) that the classical Effros Theorem is a
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simple consequence of the following result, proved by an appeal to Baire cate-
gory (see below for definitions). As intimated earlier, we seek proofs that are
more constructive than this, by identifying convergent sequences (cf. espe-
cially [Ost-ACE]). The ultimate justification for this quest is that Choquet’s
(weak) α-favourability property (see [Oxt] Ch. 6, or [Kech] Th. 8.17(i), for
Oxtoby’s result that weak α-favourability in the realm of separable metriz-
able spaces is characterized as almost completeness; compare [Ost-AH]) is
preferable over the plain Baire-category method, the former being a stronger
form (e.g. through its preservation under products – [Kech] §8). As group
action is the primary focus of our investigation, we rely on completeness (e.g.
in Th. 2), leaving aside any generalization to an almost-complete context (cf.
Remark 2 after Th. 3).

Theorem S (Shift-compactness Theorem). For T a Baire non-
meagre subset of a metric space X and G a separable normed group, Baire
in its right norm topology (e.g. almost complete and non-meagre in the norm
topology), acting separately continuously and transitively on X :

for every convergent sequence xn with limit x0 and any Baire non-meagre
A ⊆ G with eG ∈ A such that Ax0 ⊆ T, there are α ∈ A and an integer N
such that αx0 ∈ T and

{α(xn) : n > N} ⊆ T.

In this general formulation we regard the application of the homeomor-
phism α as a topological shift, since for a group X this α can indeed be a
translation. In more general circumstances (e.g. Theorem 1M), the conclu-
sion of the theorem will assert only that {α(xn) : n ∈ M} ⊆ T for some
infinite subset of integers. That is, a shifted subsequence converges to a limit
in T , and we refer to this property as shift-compactness.

Note that for X a metrizable topological group and G its group of left
translations x → gx, the general case of the theorem for xn → x0 and
Ax0 ⊆ T reduces, via A ⊆ Tx−1

0 , to the case of null sequences zn → eX ; for
these one has azm ∈ A infinitely often, for some a ∈ A, exactly as in Th.
KBD. (Indeed, if zn = xmx−1

0 , then azm = axmx−1
0 ∈ A ⊆ Tx−1

0 , so that
axm ∈ T and likewise the limit ax0 is in T, since we have ax0 ∈ Ax0 ⊆ T.)

Motivated by the recent paper of van Mill [vM2], we consider here group-
action versions of the Shift-compactness Theorem. Our interest springs from
the existence of both category and measure versions of Theorem S for the
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real line R; in the form given by Theorems 1E and 1M below these already
improve the original KBD Theorem.

Given our aim to include measure-case variants, we necessarily take a
topologically broad view of group actions. We will say a group G acts on
a set X if, as usual, there is a map ϕ : G × X → X such that ϕ(gh, x) =
ϕ(g, ϕ(h, x)) and ϕ(e, x) = x. We refer to the action of an element g, i.e. the
map x → ϕ(g, x) as g(x). The set X may have more than one topology; to
identify the topology we will either refer to it directly by name, e.g. TX , or
indirectly to X if context permits, or else we will write write X := (X, TX)
for the topological space. Under these circumstances, if each action map
ϕg : x → ϕ(g, x) is continuous, then g(·) is a homeomorphism, and so G may
be regarded as a group of (auto-) homeomorphisms of X under composition.
We denote by Auth(X) the group of autohomeomorphisms of a topological
space X under composition – but do not equip it with any topology. When
also the group G ⊆ Auth(X) is equipped with a topology TG (not necessarily
metric) one may place topological conditions on the evaluation map ϕx :
g → ϕ(g, x) for each x. The simplest situation is to require the group action
to be separately continuous (so that all the pointwise evaluation functions
are continuous). By a theorem of Bouziad ([Bou]), if the topology TG is
metrizable and Baire, as is the case in Theorem S (though not in Theorem 3
below), a separately continuous action is necessarily jointly continuous.

In order to work with both measure and category, we must step beyond a
metrizable topology TX to one which is submetrizable, i.e. either is or refines
a metrizable topology Td on X, generated by a metric, d = dX say. For
example, X may be the real line either with the Euclidean topology E or the
density topology D (recalled in the definitions below). Given the metric dX ,
an element h of Auth(X, Td) will be termed bounded if

||h|| := supx dX(h(x), x) < ∞. (sup)

The set of bounded elements of Auth(X, Td) will be denoted by H(X) and
equipped with the group-norm || · ||. For background, see [BOst-N], but we
recall that for X an algebraic group || · || : X → R+ is a group-norm if the
following properties hold:

(i) Subadditivity (Triangle inequality): ||xy|| ≤ ||x||+ ||y||;
(ii) Positivity: ||x|| > 0 for x 6= e;
(iii) Inversion (Symmetry): ||x−1|| = ||x||.

The right and left induced norm topologies are given by the right and left in-
variant metrics: dX

R (x, y) := ||xy−1|| and dX
L (x, y) := ||x−1y|| = dX

R (x−1, y−1).
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The van Mill separation property SP ([vM2]) holds in X if for any count-
able set D and co-meagre set T there is h ∈ Auth(X) such that h(D) ⊆ T.
(For our purposes this is stated as an embedding into T rather than, as
originally, an omission of the meagre complement; compare the embedding
property of countable dense homogeneity in e.g. [ACvM] Th. 5.2.) Likewise
say that X is shift-compact if for any convergent sequence xn → x0, any open
subset U in X and any Baire set T co-meagre in U, there is h ∈ H(X) such
that h(xn) ∈ T ∩U along a subsequence. Working in metric spaces, van Mill
observes that SP implies the space is Baire, by specializing D above to a sin-
gle point; the same applies to a constant sequence. Thus shift-compactness
is a localized version of SP (localized to ‘co-meagre on an open set’); that is:

Proposition B. ([vM2] Prop. 3.1; cf. [Ost-E]) If X is shift-compact,
then X is Baire.

We also find a use for strong separation as defined below.

Definitions. 1. Say that a subgroup G ⊆ H(X) separates (individual)
points and closed nowhere dense sets in (X, TX) if for each p ∈ X and F closed
and nowhere dense in TX there is in each neighbourhood of the identity eG

an element g ∈ G such that g(p) /∈ F. Here we assume that G is given either
a norm topology, or some refinement of it.

2. Say that the separation of p from F, as in Definition 1 above, is strong
if in each neighbourhood of the identity there is an non-empty open set H
such that h(p) /∈ F for every h ∈ H.

Equivalently (when the group is right-topological), in each open neigh-
bourhood U of eG there is g ∈ U and an open neighbourhood V of eG such
that V g ⊆ U and V g(p) is disjoint from F.

3. Denote by Tr(Rd) the group of c-translations x → x + c in Rd. Under
the sup-norm defined above in equation (sup) this group is isometric with
Rd. Thus any refinement of the Euclidean topology can be used as a topology
also on Tr(Rd), as in the proposition below. Particularly useful refinements
are provided by density topologies, as they permit measure properties to be
handled topologically (see [BOst-LBII]). These were introduced in [GoWa]
and further studied [GNN] (see also [Mar], and [T]), though they can de
traced back to Denjoy [Den]. Recall that density open sets are measurable
sets W all of whose members are density points, that is 1 = limε→0 |W ∩
Bε(w)|/|Bε(w)| for every w ∈ W. Here | · | denotes Lebesgue measure and
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Bε(w) is the open ball of radius ε. For other density topologies in Rd (e.g.
using density bases other than these balls) in particular, and refinement
topologies in general see [LMZ]; for the locally compact case see [BOst-N]
for topological groups, and [Ost-LBIII] for normed groups. We recall that in
the density topology a set is nowhere dense iff it is null (has measure zero).

Proposition 1 (Strong Separation). For Rd and Tr(Rd) both equipped
with the same topology, either the Euclidean or the density topology, Tr(Rd)
strongly separates points and closed nowhere dense sets.

Proof. In the Euclidean case, for F closed and nowhere dense, p a
given point and arbitrary ε > 0, there is an open interval I = (a, b) with
I ⊆ Bε(p) disjoint from F (by definition). For m ∈ I, put c = m − p;
then |c| < ε as p − ε < m < p + ε and for the c-shift h(x) = c + x, one
has ||h|| = supx ||h(x) − x|| = ||c|| < ε and h(p) = m /∈ F . Furthermore,
this holds for all the choices of c ∈ I − p = (a − p, b − p), corresponding to
a < m < b.

In the density case, consider M measurable and null and w.l.o.g p ∈ M.
For any c ∈ Bε(0)\(M−p) one has ||c|| < ε and p+c /∈ M. Since M−p is null,
the set Bε(0)\(M − p) has non-empty interior under the density topology.¤

Remarks. 1. With Rd under the density topology and Tr(Rd) under
the norm topology the separation need not be strong. On the line, for M the
rationals and p ∈ M every rational translation p + c fails to avoid M (and
contrarily for every irrational translation).

2. Note the following less informative argument in the density case. Sup-
pose otherwise that for some ε > 0 and all c, with ||c|| < ε, the c-shift p + c
is in M. Then Bε(p) ⊆ M and so |M | > 0, a contradiction.

We apply Proposition 1 to show that individual separation of points from
a closed nowhere dense set may be improved to a local finitary separation by
the group of shifts, i.e. a finite collection of points in some open set may be
separated by a shift from a closed nowhere dense set. (The alternative view is
that any finite number of points may be shifted locally into the complement
of a closed nowhere dense set; in the semigroup setting a set into which any
finite set may be shifted was termed by Mitchell [Mitch] left thick ; for more
on this see [Day-76] and [Day-82].)

Proposition 2 (Finitary Euclidean Strong Separation). Let U be
Euclidean open and ui ∈ U for i ≤ n. Suppose that F is (Euclidean) closed
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and nowhere dense. Then, for each ε > 0, in Bε(0) there is a neighbourhood
of c-shifts x → x + c such that ui + c ∈ U and ui + c /∈ F for each i ≤ n.

Proof. Let ε > 0. By assumption η := min{ε, mini{d(ui, X\U)}/(n +
1) > 0. Let I0 := (−η, η). By induction on i ≤ n, we select c1, ..., cn and open
neighbourhoods I1, ..., In of 0 such that

(i) ci ∈ Ii−1, ci + Ii ⊆ Ii−1,
(ii) uj + c1 + .. + ci + c ∈ U\F for c ∈ Ii for j < i, and
(iii) uj + c1 + .. + ci + c ∈ U for c ∈ Ii for j ≤ n.

It will follow that ui + c1 + ... + cn + c ∈ U\F for all i ≤ n and each c ∈ In.
Choose c1 ∈ I0 = (−η, η) and I1 an open neighbourhood of 0 such that

I1 + c1 ⊆ (−η, η) so that (u1 + c1) + c ∈ U\F for each c ∈ I1. For each such
c and each i one has ui + c1 + c ∈ U, since |c1 + c| < 2η ≤ ε.

Now choose c2 in I1 and I2 a neighbourhood of 0 such that I2 + c2 ⊆ I1 so
that (u2 + c1)+ (c2 + c) ∈ U\F for each c ∈ I2. For any such c and each i one
has ui + c1 + c2 + c ∈ U as |c1 + c2 + c| < 3η ≤ ε and (u1 + c1)+ c2 + c ∈ U\F
as c1 + c2 + c ∈ c1 + (c2 + I2) ⊆ c1 + I1.

Proceed similarly for any i < n, by selecting ci in Ii−1 and Ii a neighbour-
hood of 0 such that Ii + ci ⊆ Ii−1 so that (ui + c1 + ... + ci−1) + ci + c ∈ U\F
for each c ∈ Ii.

For any such c and each j < i one has uj + c1 + c2 + ... + ci + c ∈ U as
|c1+c2+ ...+ci+c| < (i+1)η ≤ nη < ε and (ui+c1+ ...+ci−1)+ci+c ∈ U\F
as ci + c ∈ Ii−1. Likewise for each j one has (uj + c0 + ... + ci−1) + ci + c ∈ U
as ci + c ∈ Ii−1.

For c′n ∈ In the shift c := c1 + .. + cn + c′n has |c| < mini{ε, d(ui, X\U)},
so ui + c ∈ U and ui + c /∈ F, as asserted. ¤

For the following result, which is inspired by van Mill [vM2], we use
Proposition 2 inductively, using summable shifts cn (i.e. with convergent
sum

∑
n cn), to prove the following particularly transparent Euclidean case.

The proof uses the Euclidean topology in two matching roles: it defines both
the closed nowhere dense sets and the relation of convergence for the sequence
{xn}.

Theorem 1E. For the real line under the Euclidean topology, for any
convergent sequence xn with limit x0, and any Baire set T which is co-meagre
on an open set U, there are a c-shift h(x) = x+ c and an infinite set M such
that h(x0) ∈ T and

h(xm) = xm + c ∈ T for m ∈M.
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Moreover, for S Baire and non-meagre on a non-empty open V with (S ∩
V ) + x0 ⊆ T ∩ U the c-shift may be chosen with c ∈ S.

Furthermore, M may always be taken co-finite.

Proof. For the first part, write T := U\⋃
n Fn, where the sets Fn are

closed and nowhere dense. We put Hn :=
⋃

m≤n Fm. Choosing u0 ∈ U ∩ T
arbitrarily, put h0(x) := x + c0 with c0 = u0 − x0. Then h(x0) = u0 ∈ T . As
u0 ∈ U we have un := h0(xn) ∈ U for all large enough n, so that, dropping a
finite number of indices only at this point in the proof, we assume for all n
that un ∈ U and u0 /∈ F0 = H0.

In what follows we construct homeomorphisms ηn which shift an increas-
ing number of the points in the sequence {un} away from an increasing
number of sets in the sequence {Fn}. By selecting each shift to be a small
shift perturbation of the preceding one (e.g. by less than 2−n), we ensure the
shifts are summable, and the limiting shifted image of un (for each n ≥ 0)
remains outside X\U, i.e. is in U.

Put η0(x) = h0(x) = x + c0; then η0(x0) ∈ U\H0 and η0(xn) ∈ U for all
n.

We make the inductive hypothesis that there is ηn(x) = x + c0 + ...cn−1

with |ci| < 2−i for i < n such that:
ηn(xi) ∈ U\Hn for i ≤ n and ηn(xm) ∈ U for all m.
Put vm := ηn(xm). Since vm → v0 ∈ U and vm ∈ U for all m, one has

minm d(vm, X\U) > 0.
Since vi ∈ U\Hn for i ≤ n, by Proposition 2 applied with U replaced

by U\Hn and F by Fn+1 and ε = min{2−n, minm d(vm, X\U)}, there is cn

such that v′i = vi + cn satisfies v′i ∈ U\Hn+1 for i ≤ n + 1. Moreover for
m > n + 1 we have v′m = vm + cn ∈ U, since cn < minm d(vm, X\U). Put
ηn+1(x) = ηn(x)+ cn. Then ηn+1(x) = x+ c0 + ...+ cn has |ci| < 2−i for i ≤ n
and is such that:

ηn+1(xi) = vi + cn ∈ U\Hn for i ≤ n + 1 and ηn+1(xm) = vm + cn ∈ U for
all m.

This completes the induction.

Put c =
∑

j cj and consider the c-shift h(x) = x + c. Fix i and j. For
n > max{i, j}, one has

h(xi) = limm[ηn(xi) + cn+1 + .... + cm].

But, for each n, one has |∑j>n cj| < cn

∑
j>i 2

−j = cn/2 < 2−n−1. So h(xi) /∈
Fj as d(ηn(xi), Fj) ≥ 2−n. This proves the first assertion.
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As for the second assertion, we sketch the proof. It is here that we use
the strong separation of Prop. 1.

Let xn → x0. We may suppose, by regularity of the Euclidean topology,
that C = V \⋃

n Gn, where V is a closed interval and the sets Gn are closed
and nowhere dense, has the property that C + x0 ∩ T 6= ∅. So for some
c0 ∈ V ∩C and u0 ∈ U ∩ T one has c0 + x0 = u0. Apply a shift through −c0

to arrive at 0 ∈ S = V \⋃
n Gn as well as u0 ∈ U ∩ T and xn → x0 = u0.

So taking h0(x) = x yields h0(x0) = u0. W.l.o.g. un := h0(xn) ∈ U for all n.
By strong separation, there exists an interval J1 ⊆ V of diameter less than
1/2d(V ) of values c1 which is disjoint from the set G1 above (in the expression
for C) such that u0 + c1 ∈ U\F1 where the set F1 comes from the expression
for T (as c1 is small enough), and u1 + c1 ∈ U\F2 by choice of c2 Apply the
shift −c1 to arrive at a similar situation as before. Note that c0 + c1 ∈ V.
Continuing by induction, we obtain a limiting translation h(x) = x+c, where
c =

∑
j cj is in C and h(xn) ∈ T, for all n. Indeed V is closed, and one may

arrange as before not only that h(xi) /∈ Fj as d(ηn(xi), Fj) ≥ 2−n, but also
that h(xi) /∈ Gj as d(ηn(xi), Gj) ≥ 2−n. ¤

The entire proof above is based on completeness considerations and tri-
angle inequalities. Using a change of vocabulary, the result above generalizes
as follows, by an appeal to the Inductive Convergence Criterion for Polish
spaces (which goes back to [For] and [And] Lemma 2.1; see [ACvM] Lemma
5.1, cf. [vM0], Th. 6.1.2, and [vM2]).

Theorem 2 (Shift-compactness Theorem – category case). For
X Polish, suppose G ⊆ H(X) separates points from nowhere dense sets and
is complete. Then, for any convergent sequence xn with limit x0 and any
Baire set T which is co-meagre on an open subset U ⊆ X, there are h ∈ G
and an infinite set M such that h(x0) ∈ T and

h(xm) ∈ T for m ∈M.

Furthermore, if separation by G is strong, then for any convergent sequence
xn with limit x0, any Baire set T which is co-meagre on an open subset
U ⊆ X, and any Baire set H non-meagre on an open subset V ⊆ G with
Hx0 ∩ T 6= ∅, there exists h as above in H.

We quote now a lemma from [Ost-E], which was inspired by a close read-
ing of [vM2].
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Separation Lemma. If G is a separable normed group, acting tran-
sitively on a non-meagre space X, then for any given point x and closed
nowhere-dense set F the set Wx,F := {α : α(x) /∈ F} is dense and open. In
particular, G strongly separates points from closed nowhere-dense sets.

As an immediate consequence we obtain a new proof of a result given in
[Ost-E].

Theorem 2′ (Shift-compactness Theorem – category case). For
X Polish, and G ⊆ H(X) separable and complete acting transitively on X,
for any convergent sequence xn with limit x0 and any Baire set T which is
co-meagre on an open subset U ⊆ X, there are h ∈ G and an infinite set M
such that h(x0) ∈ T and

h(xm) ∈ T for m ∈M.

Furthermore, for any convergent sequence xn with limit x0, any Baire set
T which is co-meagre on an open subset U ⊆ X, and any Baire set H non-
meagre on an open subset V ⊆ G with Hx0 ∩ T 6= ∅, there exists h as above
in H.

In the case of the density topology, we need to make the connection with
its Euclidean counterpart. To gain an intuition we follow Miller [MilH-1]
in applying one of Littlewood’s Three Principles ([Roy]). Note that if T is
bounded, measurable, and of positive measure, then by outer regularity of
Lebesgue measure, for each ε > 0, we may choose U open and E1 and E2

measurable, with the sum of their measures at most ε > 0, to write

T := (U\E1) ∪ E2.

The sets Ei here play the role of the closed nowhere dense sets that are to
be avoided. Observe that, if p ∈ E = E1 ∪E2 and |E| < ε, then there exists
c with |c| < ε/2 such that p + c /∈ E. Otherwise Bε/2(p) ⊆ E, which implies
that |E| ≥ ε, a contradiction. If p = lim pn and c is selected so that p+c /∈ E
(possible, provided |Ei| < ε/2, so that |E1∪E2| < ε), then provided p+c ∈ T,
one has p + c ∈ U, and so as U is open, pn + c ∈ U for large enough n.

We shall use this quantitative (as opposed to qualitative) measure-theoretic
observation inductively. We employ, as before, a sequence of shifts of decreas-
ing size. By working in a compact set T, we ensure that the limiting image
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points are in T. However, the situation is altered now, in that the open set U
is not the same at each stage of the induction, but rather depends on ε. So
here we cannot secure pn + c ∈ U for all n, even if we arrange that pn ∈ T for
all n, as at the start of Theorem 1. This explains why, in the measure case of
the shift-compactness theorem, one must pass to a subsequence, rather than
dropomit only an initial finite number of terms.

This approach is successful provided we make use of density points. In-
deed, without the language of density topology it is difficult to state the
theorem in its sharpest form (contained in the final sentence of Theorem
1M).

In the theorems of Section 3 (Theorems 3 and 4) we adapt a proof from
[BOst-KCC] to offer two topological approaches to the Baire-category-based
theorems above which complete a desirable measure-category analogy with
Theorems 1E and 2 (see also Theorem 1M below), and thereby unify the
category and measure cases; both cases of the shift-compactness theorem
then have “direct” (“constructive”) proof.

The next result may be viewed as an Effros open-mapping theorem for
the density topology. The proof relies on the completeness of the Euclidean
topology of the line and the property that all small enough shifts T + s of a
density open set T meet T in a density open set. Recall that 0 is a density
point of T if for each ε > 0 there is δ > 0 so that for all symmetric intervals I
about 0 of length at most δ one has |I∩T | > (1−ε)|I|. Notice that, provided
ε < 1/4, for any such interval I and s with |s| < ε|I|, putting S = (T +s)∩ I
one has |S ∩ T ∩ I| > ε|I|. Otherwise, since |S| ≥ |T | − |I|ε and so

|I| ≥ |T ∪ S| = |T |+ |S| − |S ∩ T | ≥ |T |+ |T | − ε|I| − kε|I|
≥ 2(1− ε)|I| − 2ε|I| = |I|(2− 4ε),

and so 1 ≥ 2− 4ε, i.e. ε ≥ 1/4, a contradiction.

Theorem 1M. In R, for any convergent sequence xn with limit x0 (in
the Euclidean sense) and any non-null measurable set T, there are a c-shift
h(x) = x + c and an infinite set M such that h(x0) ∈ T and

h(xm) = xm + c ∈ T for m ∈M.

Moreover, for S and T density-open with S+x0 ⊆ T the shift may be chosen
with c ∈ S.

13



Proof. For the first part, let T be measurable non-null. By inner regu-
larity, we may assume that T is compact and non-null.

Suppose inductively that ηn(x) = x + c1 + ... + cn has been selected with
|ci| ≤ 2−i for i ≤ n, and an increasing sequence m(j) for j < n such that
ηn(xm(j)) is a density point of T .

For each ε = 2−n we may choose U a finite union of open intervals
and E, E ′ disjoint and measurable with |E| < ε such that E ⊆ U and
T = E ′ ∪ (U\E). Choose open intervals Ij with uj ∈ Ij ⊆ U. Let η :=
minj{d(uj, X\Ij), ε}. Since each uj is a density point, choose a symmet-
ric interval V round 0 such that for Vj := uj + V ⊆ Ij has uj ∈ Vj and
|Vj ∩ T | ≥ (1 − η)|V | for all j < n and |V | < ε. Choose xm with m > m(n)
such that |x0 − xm| < η. Then um(n+1) := η(xm) ∈ V0, as η(x0) = u0 ∈ V0

and η is an isometry. Choose an open interval Vn+1 ⊆ I0.
For j < n one has |Vj ∩ E| < η|V | as Vj\E ⊆ U\E ⊆ T and so |Vj\E| >

(1−η)|Vj|. Let F be a measure-zero set such that (Vj\E)\F is a density-open
subset of T (all its points are density points) for each j < n.

For any c note that c+um(n+1) is a density point of T ∩V0 iff c is a density
point of T ′ := T ∩ V0 − um(n+1), but by Lebesgue’s Density Theorem off a
null subset N of T ′ all its members are density points. In what follows we
ensure that c /∈ N.

Now choose cn+1 ∈ V \(N ∪ [(E ∪ F )− uj)]) with cn+1 + uj ∈ Vj\E0 ⊆ T
and c + uj a density point of T for all j ≤ n + 1 and |cn+1| < ε.

Setting ηn+1(x) = ηn(x) + cn+1 we obtain ηn+1(xj) ∈ T for j ≤ n + 1.
By compactness of T each of the limit points limn ηn(xj) is in T for each

j. Moreover, sn := c1 + ... + cn converges, to s say. Then with η(x) = x + s
we have η(xj) = limn ηn(xm(j)) ∈ T and limj η(xj) = η(x0) ∈ T.

The second assertion follows now quite easily (cf. the comments after
Theorem S). Specializing the sequence arising in the proof above to a null
sequence zn → z0 = 0 and replacing T by S we obtain η(z0) = 0 + s ∈ S and
s + zm ∈ S for an infinite set of m, in Ms say.

Returning to a general sequence xn with limit x0, put zn := xn−x0. Then,
as before, for some s ∈ S and some infinite set Ms one has s + zm ∈ S for
m ∈ Ms. But then and s + x0 + zm = s + xn ∈ S + x0 ⊆ T for m ∈ Ms, as
asserted. ¤

Remark. By outer regularity, there is a non-null Gδ set H and a null set
E such that T = H\E. Let dH be a complete on H. It seems plausible that
one might first arrange for ηn(xj) to be d-Cauchy and so converge to a point
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vn in H. Then a further shift would be needed to ensure that vn + c ∈ H\E.

3 Shift-compactness in cometrizably Polish

spaces

In this section we develop a general group-action result, inspired by the
measure-category results in Theorems 1E and 1M, which at once embraces
both the Euclidean and the Density topology cases on the real line.

We recall a definition which refers to the connection between two topolo-
gies E and D, so the notation below is subscripted according to topological
context. We refer below to what we call the canonical example, which is the
real line with E the Euclidean and D the density topology, hence the choice
of letters in the abstract setting below.

Definition (see [LMZ] p. 133, and [T] F. D. Tall). For (X, E) a metriz-
able topology, a refinement topology D ⊇ E is called cometrizable if for each
x ∈ U ∈ D there is V with x ∈ V ∈ D with

V ⊆ clEV ⊆ U.

Equivalently: for each non-empty D-open set U , there is an E-closed set K
with non-empty D-interior:

∅ 6= intD(K) ⊆ K ⊆ W.

Remarks. 1. This property is implied by the Luzin-Menchoff (LM)
property (cf. [LMZ] Prop 4.1 p. 133).

2. For the canonical example, cometrizability follows from the inner-
regularity of Lebesgue measure taken together with the Lebesgue Density
Theorem. Other examples include the Kunen line, van Douwen’s examples
of S and L subspaces in ℘(ω). For more on this, see Gruenhage [Grue-89],
which studies the relationship between cometrizability and “cosmicity” under
the Proper Forcing Axiom (PFA).

Interest in co-metrizability dates back to the study of co-topologies by de
Groot (1963) [Gr] and Aarts, de Groot and McDowell [ADM], culminating
in the characterization of a metrizable space as topologically complete iff it
has a compact co-topology (“is co-compact”).
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3. According to [LMZ] Th. 4.2 if, as below, E is completely metrizable,
and D is cometrizable (e.g. if D has the LM property), then any Dδ subspace
of X is Baire under D; in particular, D itself is Baire. One may refer to this
as the “Luzin-Menchoff variant of the Baire Theorem”.

4. A topology T has the H-insertion property ([LMZ], p. 39) if for each
A ⊆ X there is H ∈ H with

intT A ⊆ H ⊆ clT A.

For the proof below of Th. 3 it is enough for D to have the Gδ(E)-
insertion property. We note from [LMZ] p. 66 that T has the Gδ-insertion
property if there exists an ‘essential radius assignment’ for T , i.e. a function
r assigning to each x ∈ U ∈ T a number r(x, U) > 0 in such a way that if
d(x, y) ≤ min{r(x, U), r(y, V )), then U meets V. (Compare also [Mart], Cor.
4.1.)

The assumptions in the following theorem are satisfied in the case when
G is the additive group of reals for the action H(g, k) = g + k, and E and
D are the Euclidean and density topologies respectively. Below the group is
not required to be Baire, and the conditions placed on the associated action
demand a novel ‘unbalanced’ mixture of separate continuity. Condition (i)
is stronger than that x → g(x) be continuous in the submetrizable topology.
On the other hand, condition (ii) is weaker than that g → g(x) be continuous.
We show below in the next section that (ii) in fact demands that g → g(x)
be continuous relative to a coarser topology on G, namely one modelled after
the lower Vietoris topology (cf. [Eng] 2.7.20).

In the canonical example of the density topology, the map g → g(x) is
not continuous at g = id: if x ∈ U and U is density open, there can be
arbitrarily small translations taking x out of U . Notwithstanding this, if U
is Euclidean open, condition (ii) follows from open-ness of translations in the
Euclidean sense.

Condition (ii) can be weakened further, as we shall see in the next section.
The conditions (i)-(ii) may be viewed as topological variants of the defi-

nition of a Miller homotopy due, though not under that name, to H. I. Miller
(for which see [BOst-H]). The Miller conditions, which involve differentia-
bility in nature, ensure in the real-line case that the maps x → H(x, y) and
y → H(x, y) are Euclidean homeomorphisms that are bi-Lipschitz, so are also
density-homeomorphisms. One of his conditions now reads H(eG, x) = x,
which we recall is among the defining conditions for an action.
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Theorem 3 (Shift-compactness Theorem – Action version). Let
D be a cometrizable refinement of a Polish topology E on a space X, and
suppose that for some normed group G there exists an action H : G×D → D
such that:

(i) each map Hg : x → H(g, x), also written g(x), is in Auth(D) ∩
Auth(E),

(ii) if W is non-empty D-open, then, for ||g|| small enough, the set W ∩
g(W ) is non-empty (and D-open, by (i)).

Then for hn → eG in G and W non-empty D-open there is a subsequence
hm(n) with 0 = m(0) < m(1) < ... and a E-convergent sequence xn in W with
limit x0 in W such that the sequence of E-homeomorphsism ηn(g) := g(xn)
satisfies

(a) ηn(hm(i)) = hm(i)(xn) ∈ W for i ≤ n, and
(b) the limit E-homeomorphism η(g) := H(g, x0) = g(x0) = limn ηn(g)

satisfies η(hm(n)) = hm(n)(x0) ∈ W for all n.

Proof. Let dX be a complete metric compatible with (X, E). We write
BX(x, r) for the ball {y ∈ X : d(x, y) < r} and ||g|| for the norm in G. Let
hn → eG in the right norm-topology.

For W a non-empty D-open set, let K be E-closed with ∅ 6= U = intDK ⊆
K ⊆ W .

Let k0 ∈ U. Put g0 = h0 = eG. Select η0(g) = H(g, k0) = g(k0); then
η0(h0) = e(k0) = k0.

We proceed inductively. Suppose that the points gi := hm(i) have been
selected for i ≤ n in such a way that Km :=

⋂
i≤m g−1

i (K) includes as a non-

empty intersection the D-open set
⋂

i≤m g−1
i (U), and that points ki ∈ Ki have

been selected so that they are D-interior points of Ki with dX(ki, ki−1) < 2−i.
Note that gi(kn) ∈ K for each i ≤ n, since kn ∈ Kn ⊆ g−1

i (K).
To carry through the inductive step, we note that, as Kn has kn as a

D-interior point, by (ii) there is εn < 2−n such that, for ||g|| < εn in G, the
set Kn∩ g−1(Kn) has non-empty D-interior. We refine this observation. The
same is true for the subset K ′

n := Kn ∩BX(kn, 2
−n−1), since D refines E . So

we assume εn chosen so that K ′
n ∩ g−1(K ′

n) has non-empty D-interior for all
g ∈ G with ||g|| < εn. Choose gn+1 = hm(n+1) with ||gn+1|| < εn, and also
choose kn+1 to be a D-interior point of K ′

n ∩ g−1
n+1(K

′
n).

Putting

Kn+1 = Kn ∩ g−1
n+1(Kn) =

⋂
i≤n+1

g−1
i (K),
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we have kn+1 ∈ Kn+1, since K ′
n ∩ g−1

n+1(K
′
n) ⊆ Kn ∩ g−1

n+1(Kn) = Kn+1. Also
dX(kn+1, kn) < 2−n−1, as kn+1 ∈ K ′

n. Now consider

ηn+1(g) := g(kn+1) ∈ X.

Then, by choice of kn+1, one has

ηn+1(gi) = gi(kn+1) ∈ K, as kn+1 ∈ Kn+1 ⊆ g−1
i (K).

That is, ηn+1 embeds g0, g1, ..., gn+1 into K.
With the induction established, and since kn is a dX-Cauchy sequence,

we may put k∗ := limn kn. Taking limits pointwise we have

η(g) := limn ηn(g) = limn H(g, kn) = H(g, k∗) = g(k∗),

since x → H(g, x) is continuous relative to the E topology, by (i). Evidently
the closed sets Kn are nested, so k∗ ∈ K∗ :=

⋂
n Kn. Furthermore, for n >

m > i, one has
gi(kn) ∈ Kn ⊆ Km.

So again, since for fixed gi the map x → H(gi, x) is E-to-E continuous, one
has

η(gi) = limn H(gi, kn) ∈ Km for each m.

So
η(gi) = H(gi, k

∗) ∈
⋂

m
Km = K∗ ⊆ K.

Thus the homeomorphism η establishes our claim. Note that η(g0) = e(k∗) =
k∗ ∈ K. ¤

Remark. The following restatement of Th. 3 above holds generically in
W , by the Generic Dichotomy Theorem of [BOst-KCC]: W contains a point
x∗ such that the E-homeomorphism η(g, x∗) = g(x∗) embeds the sequence
gm(n) as gm(n)(x

∗) into W with E-limit point x∗.

Theorem 3 prompts a reformulation in action terms of a result in [BOst-N]
or [BOst-LBII]. We recall a definition.

Definition (weak category convergence). A sequence of homeomor-
phisms hn of a topological space X = (X, TX) satisfies the weak category
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convergence condition (wcc) if for any non-meagre open set U there is an
non-meagre open set V ⊆ U such that, for each k ∈ ω,

⋂
n≥k

V \h−1
n (V ) is meagre. (wcc)

Equivalently, for each k ∈ ω, there is a meagre set M such that, for t /∈ M,

t ∈ V =⇒ (∃n ≥ k) hn(t) ∈ V.

The second formulation permits one to prove ([BOst-LBII],Th. 2, or
[Ost-S]) that if the topology TX is Baire and submetrizable, i.e. arises as the
refinement of a metric topology Td (as with the density topology), then for
quasi all t (under TX) one has (under Td) that hm(n)(t) → t, down a subse-
quence mn = mn(t). (For background on submetrizability see [Grue-84]). In
§4.2 we interpret (wcc) as a topological convergence condition.

Theorem 4 (Bitopological Shift-compactness Theorem, aka Cat-
egory Embedding Theorem). Let TX be a submetrizable topology on X,
i.e. a refinement topology of some metric topology (X, Td).

For a subgroup G ⊆ H(X, Td)∩Auth(TX) under the right norm topology,
put H(g, x) = g(x) for g ∈ G and x ∈ X.

Then the mapping Hg : x → g(x) is continuous.
Suppose further that for any hn → eG in norm, hn satisfies the (wcc).
Let T ⊆ X be non-meagre and Baire in TX .
Then there exists t ∈ T such that hn(t) ∈ T infinitely often.

If T is the density topology, the set T above may w.l.o.g. be a density-
open set W. We shall show in §4.2 that under certain circumstances, which
include the case of the real line under the density topology, the (wcc) condi-
tion in Th. 4 is a continuity condition.

4 Topologies weaker than the norm topology

To bring the format of the group-action theorems into better alignment with
the standard assumptions of separate continuity, we consider two weak topolo-
gies on a subgroup G of Auth(X, d) in the two following subsections. The
theorems above may then be viewed as demanding that, for G ⊆ H(X, d)
equipped with the supremum norm, its right norm-topology refines the rel-
evant weak topology and that the evaluation maps g → g(x) are weakly
continuous.
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4.1 Upper and lower topologies on G

The two topologies here on function spaces are inspired by the Vietoris up-
per and lower topology sub-bases (dating back to 1922) in the hyperspace of
closed subsets of a space (for which see [Eng] 2.7.20). Our approach follows
the similar but later (1945) application to function spaces by Fox [Fox], when
he defined the compact-open topology (for which see [Eng] §3.4). A general-
ization is given by Dieudonné [Dieu] to unify the treatment of the uniform,
the compact-open and the pointwise topologies.

The more recent term hit-and-miss topology embraces generalizations of
the two Vietoris topologies, e.g. the Fell topology: see for example [Be-Ta-2],
or [Nai-1], [Nai-2], and usually (though not here) a passage between hyper-
space and function-space topologies is effected by identifying a function with
its graph (or epigraph, or hypograph). A version of what we call the lower
topology on the homeomorphisms of X is studied in the context of Banach
spaces X under the name Mosco topology – see particularly [Be-Ta-1] or [Att],
where the miss-sets are weakly compact sets and the hit-sets are strongly
open. Other function space and hyperspace topologies have been studied –
see e.g. [Rock-Wet]. From our perspective it seems more natural to adopt a
‘capture-or-hit’ terminology.

We denote by NY (y) the neighbourhood base at y in whatever regular
space Y we consider.

We work below in G ⊆ Auth(X, T ), with T a regular topology.
The upper (capture) Fox-Mosco topology FM+ on G is naturally asso-

ciated with the notion of upper semicontinuity. We define first N+
G (e), the

upper neighbourhood base at e = eG. If clV ⊆ U for U, V T -open, then
e(V ) ⊆ U. So we regard g as close to e if g(V ) ⊆ U. This yields sub-basic
neighbourhoods of e in the form

[V, U ]+ := {g ∈ G : g(V ) ⊆ U}, for U, V ∈ T with clV ⊆ U.

Regard h as close to g if h(x) is close to g(x) for all x, in some sense. Taking
y = g(x), we want h(g−1(y)) to be close to y. This motivates our definition
of N+

G (g) as generated by sub-basic sets of the form

G+(g, V, U) := {h ∈ G : hg−1(V ) ⊆ U}, for U, V ∈ T with clV ⊆ U.

For later use, note that regarding h close to g when hg−1 is close to e is
modeled after the right norm-topology.
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Remark. As for upper-semicontinuity, recall that g is upper semiconti-
nous if for every U and each x with g(x) ∈ U, there is V with V ∈ NT (x)
with g(V ) ⊆ U , i.e. for each U there is V ⊆ g−1(U) with V ∈ N(x) or, in
the notation above, there is V ∈ N(x) with g ∈ [V, U ]+.

Important Examples. 1. For the translations gn(x) = x + zn with
zn → 0 one has gn → e in the upper topology. Indeed, if Bδ(V ) ⊂ U, pick N
so that |zn| < δ for n > N ; then gn(V ) ⊂ U for n > N.

2. If clV ⊆ U , then for some ε > 0 with Bε(V ) ⊆ U ; so if ||hn|| < ε for
n > N, then hn(V ) ⊆ U for n > N.

3. For (X, d) locally compact, if gn → e in the compact-open topology and
V open is precompact with clV ⊂ U, then for some N one has gn(clV ) ⊂ U
and so gn(V ) ⊂ U for n > N.

The lower (hit) Fox-Mosco topology FM− is naturally associated with the
notion of lower semicontinuity. We define N−

G (e) as the lower neighbourhood
base at e = eG. If V ⊆ U are T -open, then one has e(V ) ∩ U 6= ∅. So we
regard g as close to e if g(V ) ∩ U 6= ∅. This yields sub-basic neighbourhoods
of e in the form

[V, U ]− := {g ∈ G : g(V ) ∩ U 6= ∅}, for U, V ∈ T .

Our earlier considerations motivate our definition of N−
G (g) as comprising

sets of the form:

G+(g, V, U) := {h ∈ G : hg−1(V ) ∩ U 6= ∅}, for U, V ∈ T .

Remarks. 1. Recall that g is lower semi-continous if for every U and
each x with g(x) ∈ U, there is V with V ∈ NT (x) ⊆ T with g(V ) ∩ U 6= ∅.
So for each U there is V with g ∈ [V, U ]−.

2. Verification of condition (ii) is typically linked with the continuity
of the mapping f(x) = µ(Bx) for B a Borel subset of a group carrying
a translation-invariant measure µ. On this matter see [Kem], [Hal-M] (Ch.
XII, p. 266), [WKh], or [BOst-N] (Th. 5.5M).

We summarize our interpretation of condition (ii) as

Proposition 3. Condition (ii) of Theorem 3 is equivalent every hit-open
set being open in the sense of the right norm-topology, in symbols FM−

G ⊆
TG, so that FM−

G is coarser than the norm topology.
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Proof. Suppose that U is non-empty and open and V is non-empty open
with closure in U. Then, since g(V ) meeting V implies that g(V ) also meets
U, condition (ii) applied to V yields ε = ε(V ) such that

BG(eG, ε) ⊆ [V, U ]−,

as asserted. ¤

4.2 Ideal topologies

We identify a third kind of topology which applied to certain groups of home-
omorphisms yields the weak category convergence condition (wcc) of Theo-
rem CET as convergence in this topology. For this we need first to introduce
an appropriate convergence structure, for which see the recent [Frem-2], or
[Du] p. 26. We show below that this applies to the particular cases of the
group of translations on the real line and the group of homeomorphisms
under the compact-open topology.

Definition. Let (X,D) be a topological space and I a σ-ideal of subsets
of X. (We have in mind X the line with D either the Euclidean or density
topology, and correspondingly I = M the meagre sets or I = N the null
sets.) Say that hn I-converges to the identity and write {hn} ⇒I eG if for
any open U on X there is a non-empty open W ⊆ U such that for every
increasing sequence {m(n)} of natural numbers

⋂
n
V \h−1

m(n)(V ) ∈ I.

Remarks 1. Taking in particular for m(n) = n + k one retrieves the old
wcc condition for k = 1, 2, ... as part of the new more demanding condition.
For the group of translates this condition holds equally well, since zm(n) is a
null sequence whenever zn is a null sequence.

2a. We recall a result from [BOst-LBII, Th. 2] that if there is a countable
family of open D-set B that generates a regular coarser topology E (so that
D is submetrizable), then for D-quasi all t there is an infinite N(t) such that
hn(t) → t through N(t) under E .

2b. Note that
⋂

n V \h−1
m(n)(V ) ∈ I iff for some M ∈ I (dependent on

{m(n)}) one has

V ⊆
⋃

n
h−1

m(n)(V ) ∪M. (∗)
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3. Note that:
3a. {hm(n)} ⇒I e holds, by definition,
3b. {eG} ⇒I eG holds, i.e for hn := eG all n {hn} ⇒I eG holds.

Definition. Say that gn I-converges to g, and write {gn} ⇒I g, iff
gng

−1 ⇒I eG.

Remark. Here again the extension is modeled after convergence in the
right-norm topology, where gn →R g iff gng

−1 → eG.

Example: gn(x) = an + x, and g(x) = a + x (so that g−1(y) = y − a),
with an → a. Then gng

−1(x) = an +(x−a) = zn +x, where zn = an−a → 0.
Then gng−1 ⇒ eG

We now have (cf. Dudley [Du] p. 26, on L-convergence), that
1. {g} ⇒I g (i.e. when gn = g for all n).
2. If {gn} ⇒I g, then {gm(n)} ⇒I g.
In the definition below we will need to assume a further property, which

we verify in the circumstances given in Prop. 2 below.
3. if gng−1 ⇒I eG and gnh−1 ⇒I eG with gn, g, h ∈ G, then g = h.

Definition. (cf. Dudley [Du] p. 27) On the assumption that 3 holds
in G, the following defines a Hausdorff topology TI , to be called the ideal
topology of I:

U ∈ TI iff g ∈ U whenever {gn} ⇒I g implies that gn ∈ U for all large n.
Thus

TI := {U ⊆ G : g ∈ U ⇔ (∀{gn}){gn} ⇒I g =⇒ ∃N(∀n > N)gn ∈ U)

Equivalently, F ⊆ G is TI-closed iff for each {gn} in F if {gn} ⇒I g, then
g ∈ F.

Proposition 4. Let X be the line under the Euclidean or density topology
and suppose G is a group of homeomorphisms of X with a topology finer than
the upper Fox-Mosco, i.e. one for which gn → g implies convergence in the
upper Fox-Mosco topology.

Then, for I = N or I = M, gng
−1 ⇒I eG and gnh−1 ⇒I eG with

gn, g, h ∈ G, imply g = h, and so TI is a well-defined Hausdorff topology.
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Proof. Suppose otherwise. Then, for some x0 one has w.l.o.g. g−1(x0) <
h−1(x0). Let η := |g−1(x0) − h−1(x0)|/2. Since g, h are E-homeomorphisms,
there is an E-open set W of length δ < η/3 containing x0 such that the
intervals g−1(W ) and h−1(W ) are at least η apart. Take k so large that
gn(W ) < BX

δ (W ) for n > k. By the definition applied twice to U := g(W ),
there are (in X) open sets Vg ⊆ W and Vh ⊆ W satisfying the condition (*)
above. Note that g−1(Vg) ⊆ g−1(W ) and g−1(Vh) ⊆ g−1(W ), so g−1(Vh) is
distant from h−1(Vh) by at least η, as the latter lies in h−1(W ). Thus, taking
m(n) = n + k one has

g−1(Vg) ⊆
⋃

n
g−1

m(n)(Vg) ∪ g−1(Mg,k) ⊆
⋃

n>k
g−1

n (W ) ∪ g−1(Mg,k).

Put Ng,k := g−1(Mg,k); then Ng,k ∈ I, since g is both a Euclidean and a
density homeomorphism. Thus

g−1(Vg)\Ng,k ⊆
⋃

n>k
g−1

n (W ).

Likewise

h−1(Vh) ⊆
⋃

n
g−1

m(n)(Vh) ∪ h−1(Mh,k) ⊆
⋃

n>k
g−1

n (W ) ∪ h−1(Mh,k),

and
h−1(Vh)\Nh,k ⊆

⋃
n>k

g−1
n (W ).

Since g−1
n (W ) ⊆ Bδ(W ), we have, modulo I, both h−1(Vh) ⊆ Bδ(W ) and

g−1(Vg) ⊆ Bδ(W ), i.e. modulo I they both lie in an interval of length 3δ < η,
so cannot be distant η apart, a contradiction. ¤

Theorem 5. For the group of translations of the real line under the supre-
mum norm defined in (sup) and with I = N or I = M, the corresponding
topology TI on G is coarser than the right-norm topology.

Proof. By the First and Second Verification Theorem [BOst-N] the (wcc)
holds for the group of translations on the line with the right-norm topology.
That is, if gn → g in norm then also gn ⇒I g. By Proposition 4 the latter
convergence is equivalent to convergence under the topology TI . ¤

Remark. The inclusion (*) may be interpreted as an almost inclusion,
for which sets in I are neglected; see [Ost-AH] for an investigation of ideal-
neglecting topologies (also compare this with the ‘I-essential topology’ stud-
ied in [BOst-KCC], and the ideal topologies of [LMZ]). While we do not
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pursue this here, we note that other modes of convergence could be studied
in a similar fashion (cf. Wilczyński [Wil]). However, not all convergence
structures are topological; for example, almost sure convergence on [0, 1]
with Lebesgue measure is not topological – see [Du] §9.2 Pb.2. (Compare
the observations on this point in [Att].)

5 Subsequence omissions

D. Borwein and S. Z. Ditor [BoDi] have proved the following theorem.

Theorem B and D. 1) If A is a measurable set of the real numbers
with m(A) > 0 and (dn) is a sequence converging to zero, then for almost all
x ∈ A, x + dn ∈ A for infinitely many n.

2) There is a measurable set A, with m(A) > 0 and a monotonic sequence
(dn) of positive reals converging to zero that, for each x, x + dn /∈ A for
infinitely many n.

In the previous paragraphs we have proved a series of results related to
1). In this paragraph we prove several results related to 2). In [BoDi], by a
clever construction, the authors have obtained a pair A and (dn) satisfying
2). The set A, in their paper, is in fact a closed nowhere dense subset of [0, 1].
Our first and main result in this paragraph shows that for any A, A ⊆ [0, 1],
A closed and nowhere dense, there exists a decreasing null sequence (dn) such
that A and (dn) satisfy 2). Namely we have the following

Theorem 6. Given A ⊆ [1, 0] closed and nowhere dense, then there
exists a monotonic sequence (dn), converging to zero such that for every x ∈
R, x + dn /∈ A for infinitely many n.

Proof. For each n, divide [0, 1] into 2n abutting subintervals, each of
length 1/2n. There is an εn, 0 < εn < 1

2n such that each interval [ 1
2n , 2

2n ],
[ 2
2n , 3

2n ], . . . [2
n−1
2n , 1] contains, respectively, an open subinterval Jk, k = 1, 2,

. . . 2n − 1 of length greater than εn such that Jk ∩ A = ∅. Now, consider the
set {εn, 2εn, . . . m(n)εn} := Fn where m(n) is the smallest integer such that
m(n)εn > 2

2n . Notice that this implies that for each x ∈ [0, 2n−1
2n ], there is an

element y(x) ∈ Fn such that x+ y(x) /∈ A. Write
⋃∞

n=1 Fn as a nonincreasing
sequence (dn). Notice that m(n)εn < 3

2n and hence limn→∞ dn = 0. Clearly,
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if x ∈ [0, 1), x + d /∈ A infinitely often. Also

1 + dn /∈ A for all n and

y + dn /∈ A infinitely often if y /∈ [0, 1].

Hence, for each x ∈ R, x + dn /∈ A infinitely often. ¤

Remark. If A ⊆ [0, 1] is closed and not nowhere dense, then it is clear
that there is no null sequence (dn) such that A and (dn) satisfy 2).

For non-measurable sets we have the following.

Theorem 7. There exists a non-measurable set A such that

x +
1

n
/∈ A, for each x ∈ A and for each n ∈ N.

Proof. First observe that if T is measurable, then either T or R \ T
contains a closed set of positive measure. Write the collection of all closed sets
of positive measure as {Fα}α<ω, where ω is the first uncountable ordinal (if
we assume the CH). We construct, using transfinite induction, two transfinite
sequences of reals

{xα}α<ω, {yα}α<ω satisfying :

(a) xα, yα ∈ Fα for each α < ω.

(b) The two sequences contain no common element.

(c) xα + 1
n
6= xβ for every α, β < ω and for every n ∈ N.

If we can do this then take A = {xα : α < ω} and we are done.
To construct {xα}α<ω and {yα}α<ω, first let x1, y1 ∈ F1, x1 6= y1 be

arbitrary. Suppose β < ω and we have {xα : α < β} and {yα : α < β}
disjoint from each other and such that xα, yα ∈ Fα, for every α < β, and
xα + 1

n
6= xα′ , for every α, α′ < β and for every n ∈ N.

Next we pick xβ, yβ ∈ Fβ such that {xα : α ≤ β} and {yβ : α ≤ β} are
disjoint and xα + 1

n
6= xα′ for every α, α′ ≤ β and for every n ∈ N. This is

certainly possible since Fβ has cardinality of the continuum and the cardinal
of β is at most countable. Therefore by transfinite induction we have two
“full” transfinite sequences satisfying (a), (b) and (c). ¤
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Remark. The above argument goes through without CH, using ω as the
smallest ordinal having the same cardinal as the continuum.

In [MilH-1] a generalization of the Borwein-Ditor result is presented us-
ing a general, “nice” , 2-place function f : R × R → R instead of the bi-
nary operation (+, used in the Borwein-Ditor paper). Also see [MilH-2] for
n-dimensional analogues. Our first two results, in this paragraph, again con-
sidered the binary operation f(x, y) = x+y. We now present a type 2), i.e. a
negative result, for a “wild” 2-place function f. The function f is built using
a 1-place function T : (0, 1] → (0, 1] defined by

T (x) =

{
2x, 0 < x ≤ 1

2

2x− 1, 1
2

< x ≤ 1
.

Theorem 8. Let T n denote the nth iterate of T. Suppose that (dn) is a
strictly monotonic converging to zero. Suppose further that

f(x, y) =

{
T n(x), if y = dn, n = 1, 2, ...

g(x, y), if y 6= dn, n = 1, 2, ...

where g : (0, 1] × R→R is an arbitrary function. Then for almost all
x ∈ (0, 1]

f(x, dn) /∈ A for infinitely many n ∈ N and

f(x, dn) ∈ A for infinitely many n ∈ N
if A is any measurable subset of (0, 1] satisfying 0 < m(A) < 1.

Proof. T preserves Lebesgue measure on (0, 1] and is ergodic. Then
the ergodic theorem [Bill] implies limn→∞ 1

n

∑n
k=1 IA(T k−1(x)) = m(A) for

almost all x ∈ (0, 1], where IA is the indicator function of A. But, since
0 < m(A) < 1, f(x, dn) /∈ A infinitely often and f(x, dn) ∈ A infinitely often
and this is true for almost all x ∈ (0, 1]. ¤

If A is measurable and m(A) > 0, then by a well-known result of Steinhaus
([BGT] Th.1.1.1, or [BCS]): A−A = {a−a′ | a, a′ ∈ A} contains an interval.
Also, if F is any finite set of reals then A contains a set F̃ that is similar F
(i.e. there is a linear transformation (ax + b) that maps F̃ onto F ). These
two properties say that A, besides being big in measure (greater than 0), are
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also big in two other senses. We now return to the binary operation plus and
construct (by transfinite induction) a set A that is “very small” in the sense
of measure, yet large in the two senses mentioned above and A together with
the sequence ( 1

n
) more or less satisfies 2) in the Borwein-Ditor theorem.

In our construction we use a method presented in [Rog-HM], pgs. 73-76.
We need a few preliminaries before we proceed. Let

B := {A | A− A = R},
C := {A | for each finite set F, there exists F̃ ⊆ A such that F̃

is similar to F},
R := {R | R is open and R contains the rationals}.

R has cardinality of the continuum and hence R can be written as R =
{Rα}α<ω where ω is the least ordinal having the cardinal of R.

In the next theorem we assume the following holds.

Assumption.
The union

⋃
α<β Fα is of the first Baire category (and measure zero) if

β < ω and Fα is of the first category (and measure zero) for each α < β.

Note: CH implies Martin’s Axiom which in turn implies our assumption
([Sh], [Frem-2]).

Theorem 9. Under our assumption, there exists a set A satisfying:

a) A ∈ B,

b) A ∈ C,
c) for each x ∈ A, x + 1

n
/∈ A for all n with at most one exception,

d) A \R is countable for each R ∈ R if CH holds.

Proof. First select (yn), (xn) such that all of the terms of these two
sequences are larger than 2 and such that

yn − xn =
1

n

xn1 − xn2 6= ± 1

n
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yn1 − yn2 6= ± 1

n

yn1 − xn2 6= ± 1

n

for all n in N if n1 6= n2.
Set A0 = {xn : n ∈ N} ∪ {yn : n ∈ N}. Write the reals less the set

{+ 1
n

: n ∈ N} ∪ {− 1
n

: n ∈ N} ∪ {0} as {rα}α<ω.
We now proceed, by transfinite induction, to construct a set A, satisfying

a), b), c) and d). We denote all finite subsets by {F̄α}α<ω.

Step 1. Consider r1 and F1 = {f11, f12 . . . f1n(1)}. We can assume 0 <
f11 < f12 < · · · < f1n(1). An easy argument shows that there is a δ1 > 0
such that the set {a | a > 0 such that af1i ∈ R1 for all i = 1, 2, . . . , n(1)}
contains (0, δ1) less a meager (first category) set call it Tδ1 , and a0 + 1

n
/∈

{af11, af12 . . . , af1n(1)} for each a ∈ (0, δ1) and for each a0 ∈ A0 and af1i +
1
n

/∈ {af11, af12 . . . af1n(1)} for every n ∈ N and for every a ∈ Tδ1 .
Let {f̄11, f̄12 . . . , f̄1n(1)} = F̄1 denote the set {af11, af12 . . . , af1n(1)} for a

fixed “a” in Tδ1 . We now select u1, v1 ∈ R1 such that v1 − u1 = r1 and such
that

A1 = A0 ∪ {u1, v1} ∪ F̄1

satisfies w + 1
n

/∈ A1 for all w ∈ A1 and all n ∈ N, except for when w = xn in
which case xn + 1

n
∈ A1 and xn + 1

m
/∈ A1 if m 6= n.

It is possible to find a pair (u1, v1) with the required conditions since
{σ | σ, σ + r1 ∈ R1} is all of the reals, less a meager set.

Step 2. The inductive step. For each σ, σ < ω, let Cσ =
⋂

γ≤σ Rγ.
Notice by our assumption that Cσ is R less a meager set. Suppose now that
β < ω and that for every α < β we have uα, vα ∈ Cα and f̄α1, . . . f̄αn(α) ∈ Cα

and such that vα − uα = rα and {f̄α1, . . . f̄αn(α)} = F̄α is similar to Fα and
that the following holds.

w +
1

n
/∈ Aα for all w ∈ Aα and all n ∈ N,

except for when w = xn in which case

xn +
1

n
∈ Aα and
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xn +
1

m
/∈ Aα if m 6= n

where
Aα = A0 ∪

⋃
γ≤α

{uγ, vγ}
⋃
γ≤α

{f̄γ1, . . . f̄γn(γ)}.

Consider Fβ = {fβ1, . . . fβn(β, }. We may assume the numbers in Fβ are
positive and increasing. Now, there is a δβ > 0 such that {a | a > 0 such
that afβi ∈ Cβ for all i = 1, 2, . . . , n(β)} contains (0, δβ) less a meager set,
call it Tδβ

, and such that

w +
1

n
/∈ Bβ(a) for all w ∈ Bβ(a) and all n ∈ N

except for when w = xn in which case

xn +
1

n
∈ Bβ(a) and

xn +
1

m
/∈ Bβ(a) if m 6= n,

for all a ∈ Tδβ
where

Bβ(a) = A0 ∪
⋃

α<β

(
(uαvα)

) ∪
⋃

α<β

F̄α ∪
(
afβ1, afβ2, . . . , afβn(β)

)
.

This is true since, by our assumption A0 ∪
⋃

α<β(uα, vα))∪⋃
α<β F̄α is of the

first category and our inductive hypothesis. Let {fβ1, fβ2, . . . , fβn(β)} = F̄β

denote the set {afβ1, afβ2, . . . , afβn(β)} for a fixed “a” ∈ Tδβ
. We now select

uβ, vβ ∈
⋂

α≤β Rα such that vβ − uβ = rβ and such that

Aβ = A0 ∪
⋃

α≤β

(uαvα) ∪
⋃

α≤β

F̄α

satisfies w + 1
n

/∈ Aβ for all w ∈ Aβ and all n ∈ N, except for when w = xn

in which case xn + 1
n
∈ Aβ and xn + 1

m
/∈ Aβ if m 6= n.

Again, we can find such a pair uβ, vβ with the properties above, since
{δ | δ, δ + rβ ∈ Cβ} is R less a meager set and by our assumption, A0 ∪⋃

α<β(uα, vα) ∪⋃
α<β F̄α is of the first category.

Finally, the set

A = A0 ∪
⋃

β<ω

(uβ, vβ) ∪
⋃

β<ω

F̄β
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satisfies a), b), c) and

(A \ A0) \Rβ ⊆
⋃

α<β

(uα, vα) ∪
⋃

α<β

F̄α.

A0 is countable, so if we assume CH we have that A \Rβ is countable for
each β < ω, and d) holds. ¤

Remark. Sets A satisfying d) are said to be concentrated on the ratio-
nals. This implies, (see Theorem 39, pg. 77 of [Rog-HM]), that the “measure”
of A is zero for many different measures and in some sense we might call such
set a “universal null (in measure) set”.

References

[ADM] J. M. Aarts, J. de Groot, R. H. McDowell, Cotopology for
metrizable spaces, Duke Math. J. 37 (1970), 291–295.

[And] R. D. Anderson, On topological infinite deficiency, Michigan
Math. J. 14 (1967), 365-383.

[ACvM] R. D. Anderson, D. W. Curtis and J. van Mill, A fake topolog-
ical Hilbert space, Trans. Amer. Math. Soc. 272 (1982), no. 1,
311–321.

[Att] H. Attouch, Variational convergence for functions and opera-
tors, Pitman 1984.

[BalEmb] G. Balkema, P. Embrechts, High Risk Scenarios and Extremes:
A Geometric Approach, EMS - European Mathematical Society
Publishing House, 2007.

[BCS] A. Beck, H.H, Corson, A. B. Simon, The interior points of the
product of two subsets of a locally compact group, Proc. Amer.
Math. Soc. 9 (1958), 648–652.

[Bec-Kech] H. Becker and A. S. Kechris, The descriptive set theory of Polish
groups actions, LMS Lecture Note Series 232, CUP 1996.

31



[Be-Ta-1] G. Beer, R. K. Tamaki, Function spaces and the Mosco topol-
ogy, Bull. Austral. Math. Soc. 42 (1990), no. 1, 7–19.

[Be-Ta-2] G. Beer, R. K. Tamaki, On hit-and-miss hyperspace topologies,
Comment. Math. Univ. Carolin. 34 (1993), no. 4, 717–728.

[Bill] P. Billingsley, Measure and Probability, Wiley and Sons,1994.

[BGT] N. H. Bingham, C. M. Goldie, J. L. Teugels, Regular varia-
tion, 2nd edition, Encycl. Math. Appl. 27, Cambridge Univer-
sity Press, Cambridge, 1989 (1st edition 1987).

[BOst-Ind] N. H. Bingham and A. J. Ostaszewski, The index theorem of
topological regular variation and its applications, Journal of
Math. Anal. Appl. 358 (2009), 238-248.

[BOst-Thin] N. H. Bingham and A. J. Ostaszewski, Automatic continuity via
analytic thinning, Proc. Amer. Math. Soc. 138 (2010), 907-919.

[BOst-RVWL] N. H. Bingham and A. J. Ostaszewski, Regular variation
without limits, Journal of Math. Anal. Appl., 370 (2010), 322-
338.

[BOst-TRI] N. H. Bingham and A. J. Ostaszewski, Topological regular vari-
ation: I. Slow variation, Topology Appl. 157 (2010), 1999-2013.

[BOst-KCC] N. H. Bingham and A. J. Ostaszewski, Kingman, category and
combinatorics, Probability and mathematical genetics (J.F.C.
Kingman Festschrift, ed. N.H. Bingham and C.M. Goldie), LMS
Lecture Note Series 378, CUP 2010, 135-168.

[BOst-N] N. H. Bingham and A. J. Ostaszewski, Normed versus topolog-
ical groups: dichotomy and duality, Dissertationes Math. 472
(2010) 138 pp.

[BOst-LBII] N.H. Bingham, A. J. Ostaszewski, Beyond Lebesgue and Baire
II: Bitopology and measure-category duality, Colloquium Math.
121 (2010), 225-238.

[BOst-H] N.H. Bingham, A. J. Ostaszewski, Homotopy and the
Kestelman-Borwein-Ditor Theorem, Canadian Math. Bull., 54
(2011), 12-20.

32



[BoDi] D. Borwein and S. Z. Ditor, Translates of sequences in sets of
positive measure, Canadian Mathematical Bulletin 21 (1978),
497-498.

[Bou] A. Bouziad, Continuity of separately continuous group actions
in p-spaces, Topology & its App. 71 (1966), 119-124.

[Day-76] M. L. Day, Lumpy subsets in left-amenable locally compact
semigroups, Pacific J. Math. 62.1 (1976), 87–92.

[Day-82] M. L. Day, Left thick to left lumpy—a guided tour, Pacific J.
Math. 101 (1982), no. 1, 71–92.

[Den] A. Denjoy, Sur les fonctions dérivées sommable, Bull. Soc.
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