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§1. An old look at regular variation

The theory of regular variation, or of regularly varying functions, is a chapter in the
classical theory of functions of a real variable, dating from the work of Karamata in
1930. It has found extensive use in probability theory, analysis (particularly Tauberian
theory and complex analysis), number theory and other areas; see [BGT] for a mono-
graph treatment and [Kor] IV for Tauberian theorems. It explores the consequences
of a relationship of the form

f(Ax)/f(x) — g(N) (x — o0) VA > 0. (RV)

The limit function g must satisfy the Cauchy functional equation

g(Ap) = g(N)g(p) VA, u>0. (CFE)
Subject to a mild regularity condition, (CF'E) forces g to be a power:

g(A\) =X VA>O0. (p)



Then f is said to be regularly varying with index p, written f € R,. The case p =0
is basic. A function f € Ry is called slowly varying; slowly varying functions are
often written ¢ (for lente, or langsam). Recall:

f is (Lebesgue) measurable iff inverse images f_l(U) of open sets U are Lebesgue
measurable,

f is Baire (has the Baire property) iff inverse images f~1(U) of open sets U have
the Baire property, i.e. are a symmetric difference GAQ with G open and () meagre
(of first category — ‘small’) —i.e., ‘nearly open’.

The basic theorem of the subject is the Uniform Convergence Theorem (UCT), which
states that if

L(A\x)/l(x) — 1 (x — o0) VA >0, (SV)

then the convergence is uniform on compact A-sets in (0, co).



The basic facts are:

(i) if £ is (Lebesgue) measurable, then the UCT holds;

(i) if £ is Baire, then the UCT holds;

(iii) in general, the UCT need not hold.

Similarly, if f is measurable or Baire, (C'F'E) implies (p), but not in general.

The basic foundational question in the subject, which we address here, concerns the
search for natural conditions for the above to hold, and in particular for a substantial
common generalization of measurability and the Baire property. We find two such
common generalizations, both necessary and sufficient.

While regular variation is usually used in the multiplicative formulation above, for
proofs in the subject it is usually more convenient to use an additive formulation.
Writing h(x) := log f(e”) (or log£(e®) as the case may be), k(u) := log g(e%),
the relations above become



h(z +u) — h(x) — k(u) (x — o0) Vu € R, (RV4)
h(z +u) — h(z) — 0 (z — o0) Vu € R, (SV4)

k(u +v) = k(u) + k(v) Vu,v € R. (CFEL)

Then the questions become:

(i) When does (SV4) hold uniformly on compact u-sets?,
(i) When is k(u) = pu in (CFE_L)?



§2. Why regular variation?

Tauberian theory: BGT, Ch. 4.

For p > 0, [Pe5%d(zP) = p [§° e 5%xP~dx = pl(p)/s” = (1 + p)/sP:
the Laplace-Stieltjes transform of a power z* is (1 + p)/sP. The Hardy-Littlewood-
Karamata theorem (H&L 1914, Karamata 1931) extends this from powers to regularly
varying functions, both ways.

Limit theorems in probability theory: BGT, Ch. 8. Recall two basic results:

The Weak Law of Large Numbers (WLLN): if X1, Xo,..., Xp, ... are independent
and identically distributed (iid) random variable, with partial sums Sy = > X

and mean L,

Sn/n — p (n — 00) in probability.



The Central Limit Theorem (CLT): if Xy, are iid with mean u and variance o2,

®(z) 1= (1/V27) %5, exp{~ by} dy
(Sp, — nu)/v/noc — & = N(0,1) (n — o0) in distribution

(® = N(0,1) is the standard normal distribution function).

How far can we generalize, beyond existence of the mean and variance? If F'is the
distribution function of the X, both answers involve regular variation:

WLLN: The NASC for Sy, /an to converge to a (non-zero) constant in probability is
that the truncated mean [*_ydF'(y) be slowly varying;

CLT: The NASC for (S, — an)/bn to converge in distribution to a (non-degenerate)
limit is that the truncated variance [*, y°dF(y) be slowly varying.

Complex Analysis: Levin-Pfluger theory, BGT Ch. 7.

Analytic Number Theory: BGT Ch. 6.



3. Proofs of UCT.

BGT Ch. 1 contains six:

First proof (Delange, 1955): Direct, uses quantitative measure theory.

Second proof (Charles Goldie, for BGT): Direct, uses qualitative measure theory
(whether measure is zero or positive is all that matters), translates to Baire (chang-
ing ‘null set’ to ‘meagre set’).

Third proof (Matuszewska 1965): Indirect (by contradiction), qualitative, measure/Baire.
Fourth proof (Csiszar & Erdss, 1964): Ditto.

Fifth proof (Elliott, 1979-80): Indirect, quantitative measure theory, Egorov's theo-
rem.

Sixth proof (Trautner, 1987: BGT 2nd ed., 1989): Indirect, qualitative, ‘covering
principle’.



Seventh proof (BOstl): Indirect, qualitative, measure/Baire. Uses an infinite com-
binatorial principle, No Trumps (NT — named by analogy with Jensen’s Diamond ¢
and Ostaszewski's Club &).

Eighth proof (BOstl): Indirect, qualitative, measure/Baire. Uses Bounded Equiva-
lence Principle: the following are equivalent:

1. UCT, i.e. h(x 4+ u) — h(x) — 0 (x — oo) uniformly on compact u-sets;

2. h(xn + un) — h(xn) — 0 (n — o0) for all sequences x,, — oo and bounded
sequences Un;

3. h slowly varying and satisfies NT (for which h measurable or h Baire suffices).



4. Density Topology

A point x is called a density point of a set A if |[AN(x — 6,z + §)|/26 — 1 as
0 — 0 (].| is Lebesgue measure). Recall the Lebesgue Density Theorem: almost all
points of a measurable set A are density points of A. Call a set U open if all its
points are density points. These open sets do define a topology, the density topology
or d-topology (Goffman, 1950). That it links measurability and the Baire property is
shown by the following result (Kechris, 1995): A is Lebesgue measurable iff it has
the Baire property under the density topology.



5. Kestelman-Borwein-Ditor Theorem (KBD Theorem)

THEOREM (KBD: Kestelman 1947, Borwein & Ditor 1978, Trautner 1987). If z, —
0, T is measurable and non-null/Baire and non-meagre, then for all ¢t € T off a
null /meagre set, there is an infinite set My such that

{t+zm:me M} CT.

This result is an infinite combinatorial principle, playing a role analogous to that of
NT.

Ninth proof of UCT (BOst11): Topological KBD Theorem and density topology/Euclidean
topology — indirect, qualitative, measure/Baire. Asserts primacy of the Baire ap-
proach over the measure approach.



6. BOst so far

BOst1:
BOst2:
BOst3:
BOst4:
BOstb:
BOst6:
BOst7:
BOst8:
BOstO:

Foundations of regular variation

Very slowly varying functions I

Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions
Beyond Lebesgue and Baire: generic regular variation

Generic subadditive functions

New automatic properties: subadditivity, convexity, uniformity

Analytic automaticity: the theorems of Jones and Kominek

The converse Ostrowski theorem

Genericity and the Kestelman-Borwein-Ditor theorem

BOst10: Homotopy and the Kestelman-Borwein-Ditor theorem

BOst11: Duality and the Kestelman-Borwein-Ditor theorem

BOst12: Topological regular variation and group actions.



7. Overview

BGT stands the test of time (20 years now) fairly well, except for:

(a) foundations — what are the right conditions (we know now, from BOst),

(b) higher dimensions — important in probability, e.g. for portfolio analysis in math-
ematical finance.

Re (a): the BOst papers need integrating, into a BOst book.

Re (b): We have made a start! Quite a lot of this extends to d-dimensions. But

there i1s much still to do!



8 (if time allows): Descriptive set theory

Call a subset A of a Polish space X analytic if it is of the form f(Y') for some
continuous f : Y — X with Y Polish. Call A co-analytic if its complement is ana-
lytic. The classes of analytic and co-analytic sets, and their intersection, are written
i nl A% (A% is the class B of Borel sets, by Suslin's theorem). Then Zl 41 is
the class of projections (onto the first coordinate) of a two-variable ¥1 ﬂl 1 their
complements, A717/+1 the intersection (i.e., the ambiguous class of level n), etc., thus
defining the projective hierarchy. In BOstl, we advocate A% — the ambiguous class
of second level — as the appropriate setting for regular variation.



Studying the foundations of regular variation forces one to do things that analysts
generally avoid, e.g.:

(i) examining one's axioms (ZFC — the usual Zermelo-Fraenkel set theory plus the
Axiom of Choice — is only one possibility);

(ii) delving into the structure of the real number system — e.g., by regarding it as an
infinite-dimensional vector space over the rationals, taking a Hamel basis (using the
Axiom of Choice! — or Zorn's Lemma), and looking at its structure via descriptive

set theory.
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