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§1. An old look at regular variation
The theory of regular variation, or of regularly varying functions, is a chapter in the
classical theory of functions of a real variable, dating from the work of Karamata in
1930. It has found extensive use in probability theory, analysis (particularly Tauberian
theory and complex analysis), number theory and other areas; see [BGT] for a mono-
graph treatment and [Kor] IV for Tauberian theorems. It explores the consequences
of a relationship of the form

f(�x)=f(x)! g(�) (x!1) 8� > 0: (RV )

The limit function g must satisfy the Cauchy functional equation

g(��) = g(�)g(�) 8�; � > 0: (CFE)

Subject to a mild regularity condition, (CFE) forces g to be a power:

g(�) = �� 8� > 0: (�)



Then f is said to be regularly varying with index �, written f 2 R�. The case � = 0
is basic. A function f 2 R0 is called slowly varying ; slowly varying functions are
often written ` (for lente, or langsam). Recall:
f is (Lebesgue) measurable i¤ inverse images f�1(U) of open sets U are Lebesgue
measurable,
f is Baire (has the Baire property) i¤ inverse images f�1(U) of open sets U have
the Baire property, i.e. are a symmetric di¤erence G�Q with G open and Q meagre
(of �rst category ��small�) � i.e., �nearly open�.
The basic theorem of the subject is the Uniform Convergence Theorem (UCT), which
states that if

`(�x)=`(x)! 1 (x!1) 8� > 0; (SV )

then the convergence is uniform on compact �-sets in (0;1).



The basic facts are:
(i) if ` is (Lebesgue) measurable, then the UCT holds;
(ii) if ` is Baire, then the UCT holds;
(iii) in general, the UCT need not hold.
Similarly, if f is measurable or Baire, (CFE) implies (�), but not in general.
The basic foundational question in the subject, which we address here, concerns the
search for natural conditions for the above to hold, and in particular for a substantial
common generalization of measurability and the Baire property. We �nd two such
common generalizations, both necessary and su¢ cient.
While regular variation is usually used in the multiplicative formulation above, for
proofs in the subject it is usually more convenient to use an additive formulation.
Writing h(x) := log f(ex) (or log `(ex) as the case may be), k(u) := log g(eu),
the relations above become



h(x+ u)� h(x)! k(u) (x!1) 8u 2 <; (RV+)

h(x+ u)� h(x)! 0 (x!1) 8u 2 <; (SV+)

k(u+ v) = k(u) + k(v) 8u; v 2 <: (CFE+)

Then the questions become:
(i) When does (SV+) hold uniformly on compact u-sets?,
(ii) When is k(u) = �u in (CFE+)?



§2. Why regular variation?

Tauberian theory : BGT, Ch. 4.
For � > 0,

R1
0 e�sxd(x�) = �

R1
0 e�sxx��1dx = ��(�)=s� = �(1 + �)=s�:

the Laplace-Stieltjes transform of a power x� is �(1+�)=s�. The Hardy-Littlewood-
Karamata theorem (H&L 1914, Karamata 1931) extends this from powers to regularly
varying functions, both ways.
Limit theorems in probability theory : BGT, Ch. 8. Recall two basic results:
The Weak Law of Large Numbers (WLLN): if X1; X2; : : : ; Xn; : : : are independent
and identically distributed (iid) random variable, with partial sums Sn :=

Pn
1 Xk

and mean �,

Sn=n! � (n!1) in probability:



The Central Limit Theorem (CLT): if Xn are iid with mean � and variance �2,
�(x) := (1=

p
2�)

R x
�1 expf�12y

2gdy,

(Sn � n�)=
p
n� ! � = N(0; 1) (n!1) in distribution

(� = N(0; 1) is the standard normal distribution function).
How far can we generalize, beyond existence of the mean and variance? If F is the
distribution function of the Xn, both answers involve regular variation:
WLLN: The NASC for Sn=an to converge to a (non-zero) constant in probability is
that the truncated mean

R x
�x ydF (y) be slowly varying;

CLT: The NASC for (Sn� an)=bn to converge in distribution to a (non-degenerate)
limit is that the truncated variance

R x
�x y

2dF (y) be slowly varying.
Complex Analysis: Levin-P�uger theory, BGT Ch. 7.
Analytic Number Theory : BGT Ch. 6.



3. Proofs of UCT.
BGT Ch. 1 contains six :
First proof (Delange, 1955): Direct, uses quantitative measure theory.
Second proof (Charles Goldie, for BGT): Direct, uses qualitative measure theory
(whether measure is zero or positive is all that matters), translates to Baire (chang-
ing �null set�to �meagre set�).
Third proof (Matuszewska 1965): Indirect (by contradiction), qualitative, measure/Baire.
Fourth proof (Csiszár & Erdös, 1964): Ditto.
Fifth proof (Elliott, 1979-80): Indirect, quantitative measure theory, Egorov�s theo-
rem.
Sixth proof (Trautner, 1987: BGT 2nd ed., 1989): Indirect, qualitative, �covering
principle�.



Seventh proof (BOst1): Indirect, qualitative, measure/Baire. Uses an in�nite com-
binatorial principle, No Trumps (NT � named by analogy with Jensen�s Diamond �
and Ostaszewski�s Club |).
Eighth proof (BOst1): Indirect, qualitative, measure/Baire. Uses Bounded Equiva-
lence Principle: the following are equivalent:
1. UCT, i.e. h(x+ u)� h(x)! 0 (x!1) uniformly on compact u-sets;
2. h(xn + un) � h(xn) ! 0 (n ! 1) for all sequences xn ! 1 and bounded
sequences un;
3. h slowly varying and satis�es NT (for which h measurable or h Baire su¢ ces).



4. Density Topology

A point x is called a density point of a set A if jA \ (x � �; x + �)j=2� ! 1 as
� ! 0 (j:j is Lebesgue measure). Recall the Lebesgue Density Theorem: almost all
points of a measurable set A are density points of A. Call a set U open if all its
points are density points. These open sets do de�ne a topology, the density topology
or d-topology (Go¤man, 1950). That it links measurability and the Baire property is
shown by the following result (Kechris, 1995): A is Lebesgue measurable i¤ it has
the Baire property under the density topology.



5. Kestelman-Borwein-Ditor Theorem (KBD Theorem)
THEOREM (KBD: Kestelman 1947, Borwein & Ditor 1978, Trautner 1987). If zn !
0, T is measurable and non-null/Baire and non-meagre, then for all t 2 T o¤ a
null/meagre set, there is an in�nite set Mt such that

ft+ zm : m 2Mtg � T:

This result is an in�nite combinatorial principle, playing a role analogous to that of
NT.
Ninth proof of UCT (BOst11): Topological KBD Theorem and density topology/Euclidean
topology � indirect, qualitative, measure/Baire. Asserts primacy of the Baire ap-
proach over the measure approach.



6. BOst so far
BOst1: Foundations of regular variation
BOst2: Very slowly varying functions II
BOst3: Beyond the theorems of Steinhaus and Ostrowski: combinatorial versions
BOst4: Beyond Lebesgue and Baire: generic regular variation
BOst5: Generic subadditive functions
BOst6: New automatic properties: subadditivity, convexity, uniformity
BOst7: Analytic automaticity: the theorems of Jones and Kominek
BOst8: The converse Ostrowski theorem
BOst9: Genericity and the Kestelman-Borwein-Ditor theorem
BOst10: Homotopy and the Kestelman-Borwein-Ditor theorem
BOst11: Duality and the Kestelman-Borwein-Ditor theorem
BOst12: Topological regular variation and group actions.



7. Overview

BGT stands the test of time (20 years now) fairly well, except for:
(a) foundations �what are the right conditions (we know now, from BOst),
(b) higher dimensions � important in probability, e.g. for portfolio analysis in math-
ematical �nance.
Re (a): the BOst papers need integrating, into a BOst book.
Re (b): We have made a start! Quite a lot of this extends to d-dimensions. But
there is much still to do!



8 (if time allows): Descriptive set theory

Call a subset A of a Polish space X analytic if it is of the form f(Y ) for some
continuous f : Y ! X with Y Polish. Call A co-analytic if its complement is ana-
lytic. The classes of analytic and co-analytic sets, and their intersection, are written
�11, �

1
1, �

1
1 (�

1
1 is the class B of Borel sets, by Suslin�s theorem). Then �1n+1 is

the class of projections (onto the �rst coordinate) of a two-variable �1n, �
1
n+1 their

complements, �1n+1 the intersection (i.e., the ambiguous class of level n), etc., thus
de�ning the projective hierarchy. In BOst1, we advocate �12 � the ambiguous class
of second level �as the appropriate setting for regular variation.



Studying the foundations of regular variation forces one to do things that analysts
generally avoid, e.g.:
(i) examining one�s axioms (ZFC � the usual Zermelo-Fraenkel set theory plus the
Axiom of Choice � is only one possibility);
(ii) delving into the structure of the real number system �e.g., by regarding it as an
in�nite-dimensional vector space over the rationals, taking a Hamel basis (using the
Axiom of Choice! � or Zorn�s Lemma), and looking at its structure via descriptive
set theory.
NHB, 1.11.07


