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Abstract

We extend to a multi-dimensional accounting variable xt Ohlson�s re-
sult that the equity valuation

P0(R; d) =

1X
t=1

R�tdt:

de�ned by the recurrence system

xt+1 = !11xt + !12dt + !13vt;
dt+1 = !21xt + !22dt + !23vt;
vt+1 = + !33vt;

9=;
and the given initial data vector (x0; d0; v0); is independent of ! = (!21; !22; !23)
i¤ R = !11:

Subject to some mild regularity assumptions, an Identi�cation Theo-
rem describes for which recurrence systems Dividend Policy Irrelevance
holds at R i¤R = !11. Up to similarity there are necessarily two extension
to a two-dimensional accounting variable case. One is the system

xt+1 = !11xt + !12yt + !13dt + !14vt;
yt+1 = !22yt;
dt+1 = !31xt + !32yt + !33dt + !34vt;
vt+1 = !44vt:

with a regularity assumption which includes !13 � !31 6= 0 analogously to
Ohlson�s condition in the one variable case. But it is really the case of a
three-dimensional accounting variable that exhibits the full story.

Subject to the regularity assumptions, it is shown that if dividend pol-
icy irrelevance holds at R then R is necessarily an eigenvalue. Subject to
the regularity assumptions, a characterization of dividend policy irrele-
vance at R is deduced in the class of all systems having R as eigenvalue
of the reduced system matrix (reduced by the exclusion of the hopefully
irrelevant entries). Key to this is a factorization condition placed on the
characteristic polynomial of the reduced matrix. A corollary to Theorem
4 in Section 1.3 o¤ers the characterization in the n = 2 case.
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1 Introduction

1.1 Ohlson�s Fundamental Uniqueness Principle

A fundamental insight in Accounting Theory since Preinreich (1936) is that
valuation of a �rm based on the discounted future stream of dividends dt (for
t = 1; :::) can be equivalently stated (after adjustment by the �rm�s current
accounting book value B0) in terms of the discounted future stream of an ap-
propriately de�ned, earnings performance measure, known as �residual income�.
That is, there is an accounting identity connecting the value of the two income
streams. At its simplest, the notion of residual income may be de�ned as earn-
ings et in the year t less the notional opportunity cost, represented by the return
which that �rm�s investments, recorded as end of previous year accounting book
value Bt�1; would have earned had they been invested across the whole of its in-
dustrial sector; that is, residual income for the year t is et�rBt�1where r is the
average rate of return in the sector. In a stochastic environment the residual
income is deemed to have expected value zero under a risk-neutral probabil-
ity measure; in a deterministic analogue one might demand only that residual
income tends to zero in the long run.
In fact this particular measure of earnings performance is by no means the

only one to o¤er equivalence (= identity, after adjustment) with the dividend
stream. An over-arching principle was recently uncovered by Ohlson character-
izing a whole class of measures admitting such equivalence, as being those which
are modelled in a particular, unique way, by means of the linear recurrence de-
tailed below. To be speci�c the following theorem, announced in Ohlson (2003),
was shown by Ohlson to lie at the heart of a great variety of accounting-theoretic
valuation equations. See also Gietzmann (2004).
De�ne the equity valuation function generally by

P0(R; d) =

1X
t=1

R�tdt; (1)

where the in�nite vector of coe¢ cients d = (d1; :::; dt; :::) is generated by the
linear system

xt+1 = !11xt + !12dt + !13vt;
dt+1 = !21xt + !22dt + !23vt;
vt+1 = + !33vt;

9=; (2)

and by a given initial data vector (x0; d0; v0):
It is interesting to ask whether the equity valuation, as modelled here, may

depend solely on the �current observations�(x0; d0; v0) and on the knowledge of
how the measures of performance xt and vt are de�ned, but without reference
to the �dividend policy�, here interpreted as a particular choice of values for the
coe¢ cients (!21; !22; !23):
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Ohlson�s Theorem asserts that if a �non-spuriousness�condition holds, namely

!12 � !21 6= 0 (3)

(requiring a mutual dependence of both variables xt and dt), then the �equity�
function P0(:; d); when evaluated at R; is independent of ! = (!21; !22; !23)
i¤ R = !11: That is, there is a unique value of R for which dividend policy is
irrelevant to the value of equity.
Remarks. Note that in the third of the equations (2) it is usual to assume

0 � !33 < 1;

so that, in the long run, the variable vt tends to zero, i.e.

lim
t!1

vt = 0; (4)

which entirely places the focus on the relationship between xt and dt:
The signi�cance of the equity valuation equation comes from interpreting

!11 as R = 1 + r; with r a constant rate of return, and dt as future payments.
The series of discounted future payments in (1) is then in turn interpreted as the
current market value of a �rm that makes these payments to its shareholders.
The variable xt of the �rst equation on the other hand may be given very
wide-ranging interpretations in terms of accounting numbers, depending on the
value attributed to !12 and on the meaning attached to the variable vt; always
provided the long run condition (4) is satis�ed. Once such an interpretation is
selected for the �rst equation, the second and third equations describe a model
for the evolution of future payments.
The motivation for a linear �rst-order dynamic comes from a desire to esti-

mate year on year earnings relations from accounting data (and so to forecast
them) by means of linear regression.
We note that if R = !11; it follows that the equity valuation P0(R; d) is a

linear combination of the initial data x0; d0; v0 with coe¢ cients independent of
! (see (34) in Section 6).
Actually, some further restrictions on the matrix 
2 = (!ij)ij�2 are required;

in particular one needs to restrict the growth rate of dt (the dividend variable)
so that the equity series is convergent. We refer to these as the implicit as-
sumptions (see below in section 2.2); apart from expressing these in detail for
the n = 1 case for clari�cation, we do not develop any explicit re-formulation of
them here.

Examples. For an insight into the workings of Ohlson�Principle we consider
three basic examples with R = 1 + r = !11. We use the notation RIVt for the
residual income variable et � rBt�1:
Consider �rst the very simplest of cases. Take !12 = �1 (resp. !12 =

1) and v0 = 0 which obviously satis�es (4). The variable xt may then be
labelled the end of year �savings account balance�with dt denoting end of year
withdrawals (resp. deposits) and P0 the present value of the total withdrawals

4



(resp. savings) process. The second equation then describes a view of the
planned intentions of the account-owner, but the theorem tells us that under
the implicit assumptions the equity value is independent of the precise details
of the plan (of the choice of values for !21; !22; !23). Indeed we can see this
here directly from the �rst equation which yields

!12P = !12 lim
T!1

TX
t=0

R�tdt = R lim
T!1

� xT+1
RT+1

�
� x0
R
= �x0

R
;

providedR exceeds in modulus the two eigenvalues �1 and �2 of 
2 = (!ij)ij�2:Indeed
the assumed dynamics imply that for some constants L1 and L2

xt = L1�
t
1 + L2�

t
2:

Of course varying the details of the plan varies the eigenvalues. But provided the
implicit assumption: R > maxfjk1j; j�2jg is observed P0 remains independent
of the choice of values for !21; !22; !23.
As a second example, take !12 = �R and !13 = !33 with vt = RIVt; a

choice justi�ed on the grounds that RIVt tends to zero in the long run. The
variable xt representing pre-dividend book value, i.e. Bt + dt, evidently
an earnings performance measure, satis�es the �rst equation of (2) identically.
The third equation is then a standard deterministic model for the evolution of
residual income. Here again the theorem asserts that P0 is independent of the
details of the dividend policy �of the values chosen for !21; !22; !23.
For a �nal example take !12 = �r and !13 = !33 with vt = RIVt�RIVt�1,

the increment in Residual Income. The choice for vt is again justi�ed on the
grounds that RIVt tends to zero in the long run. Here xt = et and it is the
earnings themselves that satisfy the �rst equation of (2) identically and again
Dividend Policy Irrelevance holds.
Stochastic versions are readily devised by including noisy terms in (2).

The above examples hardly do justice to the wide compass of Ohlson�s Prin-
ciple and the interested reader is referred to Ohlson (2003). The variable xt
should hereafter be regarded as a general accounting variable, which records
some aspect of the current earning performance of the �rm. Since the variable
dt is interpreted as a dividend payment, the second equation is seen as setting
dividend policy. While xt+1 is capable of forecast (given the recorded xt and
given dt), the forthcoming dividend dt+1 is being regarded as a hidden (latent)
variable. On the other hand the quantity vt is interpreted as describing a con-
tribution to the future value xt+1 arising from some economic value unrecorded
by the accounting variable xt (perhaps thought of as arising from known as-
sets of unproven or partially proven value, which are not currently enabled to
generate income but will do so in the future). The third equation is therefore
adjoined in order to model the up-dated guessed additional future value vt+1 as
a patent variable. It is thus plausible for the variable vt to be taken as decreas-
ing, since the unproven asset may be regarded as gradually generating income
that is recorded in xt. The Principle thus asserts that provided the accounting
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(observable) variable xt is appropriately de�ned, the equity (i) is independent
of dividend policy, and (ii) depends only on the available initial data. Thus
stated, the Uniqueness Principle is a theorem on the observability of dynamical
systems and the reconstruction of the state vector, such as (xt; dt), from an
�observation vector�(here the scalar xt) obtained by projecting out of the state
(xt; dt)! xt. See for instance Russell [3].
In response to a question regarding a two-dimensional accounting variable

setting, replacing xt by (xt; yt) 2 R2 , raised privately by Ohlson, this note
extends the Ohlson theorem to a multi-dimensional accounting variable zt =
(z1t ; :::; z

n
t ) 2 Rn:Actually the theorem due to Ohlson is capable of two interpre-

tations according as (a) the rate R; or (b) dividend policy irrelevance, is placed
centre stage. The two are of course inter-connected, but each needs a di¤erent
theorem for the formulation of its generalization.
See Tippett and Warnock (1997) for some related literature.

1.2 A generalized Ohlson dynamic

To state our generalizations of Ohlson�s Theorem we begin by de�ning a more
general linear model than (2). For a; b; wT 2 Rn and �; �;  2 R consider the
system 24 zt+1

dt+1
vt+1

35 = 

24 zt
dt
vt

35 ;
where 
 is an (n+ 2)� (n+ 2) real matrix and


n+2 = (!ij)i;j�n+2 =

24 A b a
w � �
0 0 

35 ;
so that

zt+1 = Azt + bdt + avt;
dt+1 = wzt + �dt + �vt;
vt+1 = + vt:

9=; (
)

Here zt 2 Rn and will henceforth be called the accounting state vector, while
dt and vt are reals de�ned for t = 0; 1; 2; ::: : We will write zt = (z1t ; :::; z

n
t ); or

when context permits more simply: zt = (xt; :::; yt): A is a real matrix of size
n� n; to be called the reduced matrix of the system (
). As before

P0(R; d) =

1X
t=1

R�tdt

is the equity series and we study the dependence of P0(R; d) on

!div := (w; �; �):

We assume the initial conditions as giving z0 and d0 so that z1 is known.
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De�nition.
We will say that dividend policy irrelevance holds at R if the value of P0(R; d)

does not depend on !div (i.e. P0(R; d) is unaltered by a change in !div).

It is useful to put

�A =

�
A b
w �

�
; �zt = (zt; dt)

T ;

�w = (w; �)T ; �a = (a; �)T ; �b = (b; �)
T
;

and to call �A the augmented matrix of size n+1 and �zt the augmented state
vector. In this notation the original Ohlson dynamic has A = 
1 = (!11);
b = (!12); zt = xt and

�A = 
2 =

�
!11 !12
!21 !22

�
; �zt = (xt; dt)

T :

With this notation we may state our main results as follows.

1.3 Main Results: Uniqueness, Identi�cation and Veri�-
cation

Our �rst result is subject to some mild regularity assumptions. It assumes
that !11 is an eigenvalue of the reduced system and gives su¢ cient conditions
that identify the circumstances under which the generalized system (
) obeys
dividend policy irrelevance at R i¤ R = !11 (uniquely). Theorem 2 below
justi�es the eigenvalue assumption and provides a converse result, namely that
the su¢ cient conditions are also necessary. Our �rst result is this.

Theorem 1 (Generalized Uniqueness Principle: Su¢ ciency)
Assume the �implicit assumptions�below and assume also that:

a11 is a positive eigenvalue of A: (5)

Suppose that � = (�2; :::; �n) is any solution to the in-homogeneous system of
n� 1 equations generated from the following identity in �:

gA(�; �) :=

��������
0 a12 ::: a1n

a21 � ��2 a022 � � ::: a2n
::: :::

an1 � ��n an2 ::: a0nn � �

�������� � 0; (6)

where a0ii = aii � a11 and the constant term of the generating function gA(�; �)
is zero. Suppose further that for any b1 6= 0 we have

bi = b1�i; for i = 2; ::: .

Then dividend policy irrelevance holds at R; i.e. P0(R; d) depends only on A
and the initial data but not on !div = (w; �; �); i¤ R = a11:
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The above theorem is not intended to resolve which systems obey dividend
policy irrelevance at some value of R. However, a minor modi�cation to its
proof provides necessary and su¢ cient conditions for identifying all systems 

for which dividend policy irrelevance holds at someR providedR is an eigenvalue
of the reduced matrix A. The starting point is the following result.
Theorem 2 (Identi�cation Theorem: Necessity)
Assume the �implicit assumptions�and that R satis�es the convergence con-

straint
R > maxfj�ij : i = 1; :::; n+ 1g; (7)

where �i are the eigenvalues of �A; the augmented matrix of size n+ 1:
Suppose that dividend policy irrelevance holds at R; i.e. P0(R; d) depends only

on A and the initial data but not on !div = (w; �; �): Then R is an eigenvalue
of A: If, moreover, R = a11 > 0; then

b1 6= 0;

and for some solution � = (�2; :::; �n) to the in-homogeneous system of n � 1
equations generated from the identity (6) it is the case that

bi = b1�i; for i = 2; ::: :

When interpreting R as a rate of return it would be usual to have this exceed
any possible dividend rate, so the condition (7) assumed on R is acceptable.
Remark 1: An extension of Theorems 1 and 2. The �implicit assump-

tions�may be weakened as follows to permit A and �A to share eigenvalues other
than a11.
Theorem 3. Suppose that the convergence constraint (7) holds for R = a11.

Suppose further that for any common eigenvalue � of A and �A it is the case
that

� 6= a11;

N ((�I �A)) � f0g �Rn�1; (8)

and
� is a simple root of j(�I �A)bj: (9)

Then:
(i) Dividend policy irrelevance holds at R i¤ R = a11 if b satis�es the

hypothesis of Theorem 1.
(ii) If dividend policy irrelevance holds at R = a11 then b satis�es the con-

clusion of Theorem 2.
Here Mb denotes the matrix M with its �rst column replaced by b: See

Section 3.1.
We may deduce from Theorems 1, 2 and 3 that for the n = 2 case with

zt = (xt; yt), subject to the implicit assumptions, there are only two systems
(up to a non-singular transformation of the accounting variables) for which
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dividend policy independence holds i¤ R = !11: The �rst is the accounting-
canonical system:

xt+1 = !11xt +!13dt +!14vt;
yt+1 = !21xt +!22yt +!23dt +!24vt;
dt+1 = !31xt +!32yt +!33dt +!34vt;
vt+1 = !44vt:

Note that the regularity conditions include

0 6= � �A(!11) = !13f!21!32 � !31(!22 � !11)g;

which in particular calls for !13 6= 0:
The second is the following, but note that the implicit assumptions fail in

regard to this system (since of course !22 is an eigenvalue of both A and �A).
Nevertheless it is also obtainable from solving the in-homogeneous system of
Theorem 1 but requires Theorem 3 for justi�cation.

xt+1 = !11xt +!12yt +!13dt +!14vt;
yt+1 = !22yt;
dt+1 = !31xt +!32yt +!33dt +!34vt;
vt+1 = !44vt:

Note that !22 < !11 is required by the regularity assumptions; the eigenvectors
of A � !22I are generated by (0; 1)T if and only if !12 = 0; and so the system
has dividend policy irrelevance at R = !11 by Theorem 3 (since j(�I � A)bj is
linear and so condition (9) holds automatically). The condition that !11 is not
an eigenvalue of �A asserts that

0 6= � �A(!11) = �!13!31(!22 � !11);

so that analogously to Ohlson�s condition (3) for the case n = 1; here we have
!13!31 6= 0: However, this system makes yt as simple as vt, so it o¤ers scope
for a di¤erent role, say for modelling in an uncoupled way some exceptional
accounting items (as in the so-called �dirty accounting�systems) �but note that
!22 < !11 = R. In the Appendix we re-derive the case n = 2 by a more direct
approach exhibiting both systems.
Remark 2. Dividend policy irrelevance is invariant under similarity trans-

formations of A: Theorem 2 restricts our attention to the class of matrices A
which have R as an eigenvalue and o¤ers a necessary and su¢ cient test for divi-
dend policy irrelevance. Any matrix with R as eigenvalue is similar to one with
its �rst row having the entries (R; 0; :::; 0): This means that an appropriate ag-
gregation wt of the accounting variables may be found which obeys an equation
of the form

wt+1 = Rwt + bdt + avt:

Let us call a system (
) accounting-canonical if its �rst row takes just such a
form. (If we regard the similarity transformation as replacing the �rst account-
ing variable with the new variable wt keeping the remaining variables, then the
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canonical system is �spurious�in that the �rst equation makes use of only one
of the accounting variables.) To check dividend policy irrelevance for a given
matrix A with eigenvalue R it is thus enough to pass to an accounting-canonical
similar matrix and apply the test there. By interpreting the test in terms of
the original matrix A we may thus obtain not only (i) a characterization of all
�dividend-policy irrelevance�systems for which R is the only possible choice for
a11, (from the identi�cation theorem, subject to regularity assumptions embod-
ied in the implicit assumptions), but also (ii) a characterization of all systems
equivalent under similarity to a canonical system.
The following theorem makes the direct connection to the similarity equiv-

alent dynamics.
Theorem 4 (Veri�cation Theorem)
Assume the �implicit assumptions�below and suppose

R is an eigenvalue of A: (10)

Let u be an eigenvector of A to value R: Then dividend policy irrelevance holds
at R; i.e. P0(R; d) depends only on A and the initial data, but not on !div =
(w; �; �) i¤ one of the following cases i =1, ... , n arises.
Case 1: It is the case that u1 6= 0; and

b1 6= 0 and bj = b1(2u�11 uj + �j); for j 6= 1;

for some � = (�2; :::; �n) which is a solution to the in-homogeneous system of
n� 1 equations generated from the following identity in � :

�g1A(�; �) :=

��������
�a11 a12 ::: a1n

a21 � ��2 �a22 � � ::: a2n
::: :::

an1 � ��n an2 ::: �ann � �

�������� � 0: (11)

Here �aii = aii �R and the constant term of the generating function �g1A(�; �) is
zero.
Case i :(i>1) It is the case that u1 = u2 = ::: = ui�1 = 0 and ui 6= 0; and

bi 6= 0 and bj = biu�1i (uj + �j); for j 6= i;

for some � = (�1; :::; �i�1; �i+1; �n) which is a solution to the in-homogeneous
system of n� 1 equations generated from the following identity in � :

�giA(�; �) :=

����������
�a11 � � a12 ::: a1i � ��1 a1n
::: ::: ::: ::: :::
ai1 a12 ::: �aii :::

an1 an2 ani � ��n �ann � �

����������
� 0: (12)

Here again �aii = aii � R and the constant term of the generating function
�giA(�; �) is zero.
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Corollary For n = 2 the reduced matricesA identi�ed by the in-homogeneous
system take the form in case 1 of

A =

�
R 0
f g

�
; or A =

�
a 0
f R

�
; with b =

�
c
h

�
; where c 6= 0;

or A =

�
R+ b� b
�(g �R) g

�
; with b = c

�
1

�a�R
b

�
; where b 6= 0 and c 6= 0:

subject to the �implicit assumptions�, and in case 2 of

A =

�
a b
0 R

�
or
�
R b
0 g

�
with b =

�
c
h

�
;where h 6= 0;

or A =

 
a (a�R)(g�R)

f

f g

!
;b =

�
c
h

�
;where f 6= 0 and h 6= 0;

again subject to the �implicit assumptions�. See Section 11.3 in the Appendix
for a calculation.
Remark 3. In the case n = 2 it is especially easy to check that the property

�R is an eigenvalue of A�is equivalent to �A is similar to a matrix with �rst row
(R; 0)�. See the appendix (section 11.1). However, being similar to a matrix
with R in the 11 entry does not necessarily imply that R is an eigenvalue.
Remark 4. The leading term of the generating function �g1A(�; �) yields the

following equation
a12�2 + :::+ a1n�n = 0;

an orthogonality relation in n� 1 dimensional space. This implies for the case
n = 2 a particularly simple structure, as the only equation to solve is a12�2 = 0:
However, the case n = 3; where b2a12 + b3a13 = 0; exhibits the hall-marks
of a general case, albeit there is only one direction for (b2; b3) to point, given
(a12; a13). In the generic case (b2; b3) is uniquely determined. Otherwise, de-
generacy occurs and there is a one-dimensional solution space for (b2; b3): Here,
however, since evidently consistency issues also play a part, some further re-
strictions on the A matrix come into e¤ect (see section 9 for details).
Remark 5. Given a matrix A; if we want a11 = R; where R is some required

rate of return, for example R = 1 + r with r the riskless interest rate, then (5)
may be regarded as prescribing a value for any other one entry of A for which
the corresponding co-factor is non-zero (in terms of all the other entries.)

1.4 Structure of the paper

We discuss in Section 2 the implicit assumptions. We then construct the proof
of the Uniqueness and Identi�cation Theorems initially under the blanket as-
sumption (lasting till Section 6) that v0 = 0: This is in the interests of clarity.
We begin in Section 3 by �nding a one-to-one transformation between the vec-
tor d = (d1; d2; :::) and the vector x = (x1; x2; :::):We use the transformation in
Section 4 to characterize systems obeying dividend policy irrelevance in terms of
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a factorization formula for the characteristic polynomial of the (reduced) matrix
A involving b and a11; assuming that a11 is an eigenvalue of A:We also discover
that systems obeying dividend policy irrelevance at R have R as an eigenvalue of
A: In Section 5 we derive an equivalent formulation of the factorization condition
in terms of the in-homogeneous system de�ned in the Identi�cation Theorem
and this enables us to deduce, for those b satisfying the in-homogeneous system,
that R = a11 i¤ dividend policy irrelevance holds at R: This completes the proof
of the two theorems under the blanket assumption. Section 6 indicates what
minor modi�cations are needed when we drop the assumption v0 = 0. In Sec-
tion 7 we deduce the form of dividend policy irrelevance systems for n = 2 when
a11 is an eigenvalue of A: The Veri�cation Theorem is proved in Section 8. We
close the paper with a cursory discussion of the case n = 3 which has a much
richer structure than the case n = 2: The Appendix contains a direct proof of
the Identi�cation Theorem for the case n = 2 and the explicit conclusions of
the Veri�cation Theorem.

2 Implicit Assumptions

The main theorems make reference to the following assumptions. They are to
be interpreted as restrictions on the reduced information carried by A and b:
(i)The eigenvalues of the two matrices A and �A are all distinct from one

another; in particular, if a11 is an eigenvalue of A; then

� �A(!11) 6= 0:
(ii) For each eigenvalue �i of �A we have: �i is non-zero and

a11 > j�ij; (13)

a11 > ; (14)

j(�iI �A)bj 6= 0; (15)

Evidently the condition (20) of the theorem requires that a11 is an eigenvalue
of A; so the inequality (13) repeats an aspect of distinctness required in (i). In
regard to (13) see Marden [1].
The assumption of distinct eigenvalues yields a more transparent proof. In

any case minor perturbations will achieve distinctness.
Remark It transpires that we do not need to place any further restriction on

the data: A; b; z0; d0; such as requiring invertibility between the initial segment
of the dividend sequence d = (d1; :::; dn) and !div :This invertibility is analyzed
in the Appendix.

2.1 Implicit Assumptions for the case n = 1

For the case n = 1 (the original theorem of Ohlson) the implicit assumptions
require that 
1 = A = (!11) and


2 =

�
!11 !12
!21 !22

�
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have distinct non-zero eigenvalues. Hence, referring to the characteristic poly-
nomial of �A = 
2; it is assumed that 0 6= � �A(!11) =: det(!11I�
) = �!12!21:
Now if !12!21 > 0; then 
2 has two real eigenvalues (one positive, one nega-
tive) separated by !11 thus failing inequality condition (13). Evidently the larger
eigenvalue in this case renders P0(!11; d) in�nite, an unrealistic scenario, unless
a special choice of initial conditions renders the function P0(R; d) dependent
only on the smaller eigenvalue. Thus the inequality (13) requires !12!21 < 0:
If the eigenvalues are to be real (13) further requires that !12!21 � 2!211 <

2!11!22:
Otherwise the eigenvalues of 
2 need to be complex conjugates. In this case

referring again to the characteristic polynomial � �A this requires

(!11 + !22)
2 < 4(!11!22 � !12!21);

so for given !22 the value of !12!21 needs to be su¢ ciently negative, i.e.

�(!11 � !22)2 > 4!12!21:

As for condition (15), since A = (!11); this merely requires that !12 6= 0; a
condition already captured earlier. Of course (15) says b1 6= 0:

3 The reconstruction kernel - (i) when v0 = 0

The aim of this section is to construct in the setting of equation (
) when v0 = 0
a one-to-one transformation from the sequences xt to the sequences dt de�nable
by reference to the pair A; b (subject to the implicit assumptions holding) and
the eigenvalues of �A. Speci�cally (
) implies that

dt =
n+1X
i=1

li�
t
i;

xt =
n+1X
i=1

Li�
t
i;

where �i (for i = 1; :::; n + 1) are the distinct eigenvalues of �A: We imagine
temporarily that we will receive as information the sequence fxtg and ask how
we might learn the values of dt from the values xt: This will be critical to our
later context of more restrictive information.
We answer this question by showing that there is a function �b(�) (depending

also on A) such that for each i

li = Li�b(�i):

We will later �nd that if dividend policy irrelevance holds at R; and R is an
eigenvalue of A which is not an eigenvalue of �A; then �b(�) takes the simple
form

�b(�) =
��R
b1

:
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From the standpoint of the reduced system A the variables dt and vt are on
an equal footing (though they are latent and patent variables from an accounting
perspective). For the sake of clarity we consider the notationally less cluttered
situation arising when the informational variable vt is absent (i.e. with v0 = 0).
Re-inclusion of the informational variable, and hence the general case, will follow
automatically by a superposition argument (see Section 6).
The solution to the dynamic

�zt+1 = �A�zt

implies the form of dt to be

dt =
n+1X
i=1

li�
t
i;

where �i are the distinct eigenvalues of the matrix �A (and these do depend on
!div). Writing zt = (xt; :::) we regard xt as implicitly de�ned from the remaining
n variables of �zt by the equations of the reduced system

zt+1 = Azt + bdt:

It will be enough to solve instead (for xt) the in-homogenous equation

zt+1 = Azt + b�
t; (16)

where � is a typical eigenvalue of �A (since the superposition of each of the
corresponding solutions for xt gives the general solution).
Provided � is not an eigenvalue of A the general solution of (16) takes the

form for some constant matrix C

zt = C�
t + z�t;

where
� = diag[�1; :::]

is the diagonal matrix of distinct eigenvalues of A; and z solves

�z = Az + b; (17)

and in particular
b 2 R((�I �A)): (18)

In the case considered we already know that the functions xt and dt are inde-
pendent of the functions �ti; so we have

xt = x�
t;

where z = (x; :::)T solves (17).
Remark. If � is an eigenvalue of A; then although the general solution of

(16) is of the form
zt = C�

t + ct�t;
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we have c = 0; since zt is independent of t�t: So it is still the case here that for
some z

zt = z�
t;

hence z = (x; :::)T still solves (17).

We may now �nd x by using Cramer�s Rule. With this aim de�ne the
reconstruction kernel by

�b(�) =:
j(�I �A)j
j(�I �A)bj

; (19)

where Mb denotes the matrix M with its �rst column replaced by b. We thus
�nd that x may be represented in the form

x =
j(�I �A)bj
j�I �Aj = �b(�)

�1;

provided � is not an eigenvalue of A: Evidently the form of (19) requires us to
assume in addition that

j(�I �A)bj 6= 0;

which is a condition on b:
We may now superpose the representations x as � ranges over �i with b held

�xed. We note for future reference that the highest power of � in j(�I �A)bj is
n� 1 and the coe¢ cient at the leading power is b1:
It follows from our calculations that the sequence xt reconstructs the se-

quence dt in the following sense. Suppose that

dt =
n+1X
i=1

li�
t
i

where the li could be obtained from observing a segment of the sequence dt
though this is not permitted. By (19) we obtain from superposition of the
solutions of (16) a representation of xt in the form

xt =
n+1X
i=1

�b(�i)
�1li�

t
i;

provided �b(�i) is non-zero. But the representation of xt

xt =
n+1X
i=1

Li�
t
i;

which may be obtained from the observed sequence xt; yields, by comparing
with the alternative representation, that

li = Li�b(�i): (20)
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3.1 An extension

Observe now that if for a given � a solution z exists for the equation

(�I �A)z = b; (21)

then partitioning (�I �A) = [m1j:::] we have, as in Cramer�s Rule, that

j(�I �A)bj = j(�I �A)(x�m1+:::)j = x � j�I �Aj: (22)

By (18) a solution z exists when � = �i is an eigenvalue of A; and consequently,
the left-hand side vanishes, i.e. j(�iI�A)bj = 0: Thus the polynomial j(�I�A)bj
has a factor (�� �i) just as j�I �Aj has.
Now we may always take limits in equation (21) through a sequence of val-

ues � approaching �i (but omitting eigenvalues of A), and we claim that the
corresponding unique solution z(�) of the equation converges to a solution for
�z = (�x; :::) of (21) with � = �i: Furthermore, given this claim we have by (22)
that

�x = lim
�!�i

j(�I �A)bj
j�I �Aj :

Evidently this limit operation is equivalent to evaluation of the ratio

j(�I �A)bj
j�I �Aj

at �i after removal (cancellation) of the common factor (���i) in the numerator
and denominator since � = �i is a simple root of j�I �Aj.
In fact we require �x 6= 0; and this is equivalent to requiring that j(�I �

A)bj has a simple root at � = �i, as required by (9). Subject to this condition,
it is possible also to interpret �b(�i) as

��b(�i) = lim
�!�i

�b(�);

i.e. as being the same as �b(�) evaluated at �i after reduction to �lowest terms�
(i.e. cancellation of the common factor (�� �i) in the numerator and denomi-
nator).
To verify the claim, let fv1; :::; vng be the independent eigenvectors of A

with Avj = �jvj : Since (I � A)vj = (� � �j)vj we observe that if � = �1
the linear span Linfv1g equals N ((�1I �A)); the null space of (�1I �A); and
Linfv2; :::vng equals R((�1I�A)); the range of (�1I�A): But by (18) we have
b 2 R((�1I �A)); so that b = �2v2 + �3v3 + ::: . Now for any � put

z(�) = �2(�� �2)�1v2 + :::;

then z = z(�) is a solution to (�I �A)z = b; since

(�I �A)f�2(�� �2)�1v2 + ::::g = �2v2 + :::: = b:
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Of course z(�) is the unique solution of (�I � A)z = b whenever � is not an
eigenvalue of A: Now letting � ! �1 we obtain the limiting result that, as
claimed,

�z = lim
�!�1

z(�) = �2(�1 � �2)�1v2 + ::::

Now note that ��b(�i)�1 will be the only solution for x i¤ N (�iI � A) �
f0g �Rn�1: Indeed, the solution set of (21) for � = �i has the form

�z +N ((�iI �A)):

It is instructive to observe that in the case n = 1 we have b = b1; so that

�b(�) =
�� a11
b1

:

Evidently when A is of size 2 � 2 the polynomial j(�I � A)bj is linear and so
automatically j(�I �A)bj has a simple root at � = �i if, as discussed above, an
eigenvalue �i of �A is an eigenvalue of A: Under these circumstances

j(�I �A)bj = b1(�� �i)

and
j�I �Aj = (�� a11)(�� �i);

so that again

�b(�) =
�� a11
b1

:

We will later �nd that for vectors b de�ned as in Theorem 1, this formula
remains valid for general n: (See formula (33) in Section 5.) Thus ��b(�) =
�b(�) 6= 0 for � 6= a11:

4 Equity and the reconstruction kernel: when
v0 = 0

In this section we use the transformation from d = (dt) to x = (xt) to identify
the circumstances when equity depends only on A and on the initial data.
Recalling that

P0(R; d) =
1X
t=1

R�tdt;

and assuming that R satis�es the convergence constraint (7) we have

P0(R; d) =
1X
t=1

R�tdt =
1X
t=1

n+1X
i=1

li�
t
iR

�t:

Changing the order of summation we obtain

P0(R; d) =

n+1X
i=1

li
�i

R� �i
: (23)
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See Ashton (1995) for a discussion of this formula. The earliest form of this
equation is due to Ohlson (1989).
We assume that for each eigenvalue �i of �A we have

a11 > j�ij:

Thus referring to (14) we have from (23) via (20) that

P0(R; d) = �
n+1X
i=1

j�iI �Aj
(�i �R)j(�i �A)bj

Li�i: (24)

In order to understand this equation, suppose �rst that for some constant �
we have for i = 1; :::; n+ 1

j�iI �Aj
(�i �R)j(�i �A)bj

= �: (25)

Then
P0(R; d) = ��

X
Li�i = ��x1: (26)

So provided � depends on A and b the equity P0(R; d) will depend only on A
and the initial data, since

x1 = z11 = a11z
1
0 + a12z

2
0 + :::+ a1nz

n
0 + b1d0 + a1v0; (27)

= a11x0 + :::+ a1ny0 + b1d0 + a1v0:

Note that in the case n = 1 we have of course

P0(a11; d) = �
�1 � a11

(�1 � a11)b1
L1�1 = �

L1�1
b1

= �x1
b1
:

We will see in a moment that, quite generally, under the assumption of dividend
policy irrelevance, � = b�11 :
Returning to our argument. Equation (24) implies that equity is expressible

by a functional of the form

P (u1; u2; :::) = c1u1 + :::+ cn+1un+1

for some coe¢ cients c1; :::; cn+1 independent of L1; ::; Ln+1; when for u = (u1; :::; un+1)
the substitution (L1�1; :::; Ln+1�n+1) is made. It is the case however that

u1 + :::+ un+1 =
X

Li�i = k; (28)

where k = a11x0 + :::+ a1ny0 + b1d0 + a1v0 and this value remains constant as
!div changes. Intuition suggest that we have

c1 = c2 = ::: = cn = cn+1:

We prove this assertion now by taking w = 0 and � = �;an arbitrary value
restricted only by j�j < R and avoiding the eigenvalues of A: For this choice of w
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and � the eigenvalues of �A are seen to be � together with those of A: Moreover
by (2)

dt+1 = �dt

so in this case we have
dt = d0�

t

i.e. l1 = :: = ln = 0 and ln+1 = d0: It follows from (20) that L1 = :: = Ln = 0
and Ln+1� = x1: Hence we have

P0(R; d) = �
n+1X
i=1

j�iI �Aj
(�i �R)j(�iI �A)bj

Li�i = �x1
j�I �Aj

(��R)j(�I �A)bj
:

By (27) the term x1 is independent of � and so if equity is to be independent
of � we necessarily have for some constant � that

j�I �Aj
(��R)j(��A)bj

= �;

for all � with j�j < R omitting the eigenvalues of A: We may now regard
numerator and denominator as polynomials in � and the equality

j�I �Aj = �(�I �R)j(�I �A)bj; (29)

holds for a continuum of values. Note that the coe¢ cient at the leading power
of � in j�I �Aj is unity and that in j(�I �A)bj is b1: The two polynomials are
identical by the Interpolation Theorem, so we may equate coe¢ cients at �n to
obtain

�b1 = 1;

and therefore in particular

b1 6= 0 and � = b�11 :

In conclusion we have

j�I �Aj = b�11 (��R)j(��A)bj:
Conversely, if the above factorization holds then and if �i are the eigenvalues

of �A arising when w and � take arbitrary values, we have

j�iI �Aj
(�i �R)j(�iI �A)bj

= b�11 ;

i.e. (25) holds. Hence by (26) we have

P0(R; d) = �b�11
X

Li�i = �b�11 x1;

so that the equity is independent of w and �.
We now note that as a consequence of dividend policy irrelevance holding

for R = a11 we have

j�I �Aj = b�11 (�� a11)j(�I �A)bj: (30)

Thus we obtain dividend policy irrelevance at R = a11 i¤ the characteristic
polynomial may be factored by (�� a11) in this particular way.
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5 Equivalence of factoring and the in-homogeneous
system

In the last section we showed that dividend policy irrelevance holds at R = a11
i¤ the following factorization occurs

j�I �Aj = b�11 (�� a11)j(�I �A)bj: (31)

In this section we shall derive an equivalent assertion characterizing b as a
solution of a system of equations derived from A as stated in the Identi�cation
Theorem.
This has two consequences. First, we have shown dividend policy irrelevance

for R = a11 for any such b: Second, if for such a b we have dividend policy
irrelevance at some R; then by (29) we have for some non-zero constant � the
factorization

j�I �Aj = �(��R)j(�I �A)bj;

as well as the factorization (31). Hence

R = a11;

and so we have established the uniqueness assertion in Part (i) of the Identi�-
cation Theorem.
We now observe that the factorization (31) is equivalent to the identity

(�� a11)c11(�I �A) +
nX
i=2

(�1)1+iaici1(�I �A)

= b�11 (�� a11)
nX
i=1

(�1)1+ibici1(�I �A)

= (�� a11)c11(�I �A) +
nX
i=2

(�1)1+ib�11 bi(�� a11)ci1(�I �A);

or
nX
i=2

(�1)1+i[ai � b�11 bi(�� a11)]ci1(�I �A) = 0:

Write
� = �� a11; �i = b

�1
1 bi; A0 = A� a11I

to obtain
nX
i=2

(�1)1+i[ai � �i� ]ci1(�I �A0) = 0:

Thus � = (�2; :::; �n) solves the identity in � given by

gA(� ; �) � 0; (32)
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where

gA(� ; �) =

��������
0 a12 ::: a1n

a21 � �2� a22 � a11 � �
:::

an1 � �n� an2 ::: ann � a11 � �

�������� :
Observe that gA(0) = 0 since a11 is an eigenvalue of A: Now gA(�) is a

polynomial of degree n � 1 with a zero constant term. The identity (32) may
thus be read as generating n� 1 equations to be satis�ed by the n� 1 variables
�2; :::; �n where the equations arise from setting the coe¢ cients of gA(�) to zero.
Remark. If b is selected so that bi = b1�i where � solves the identity

gA(� ; �) � 0; then evidently by (31) we have, just as in the case n = 1; that

�(�) =
�� a11
b1

; (33)

which is meaningful even if � assumes the value of any eigenvalue common to
A and �A:

6 Reconstruction kernel - (ii) when v0 6= 0
In this section we show how to amend the proof of the Identi�cation Theorem
when v0 6= 0:
The solution to the dynamic

�zt+1 = �A�zt + �av0
t

has the form
�zt =

X
li�

t
i + fv0

t;

where �i are the distinct eigenvalues of the matrix �A and f de�nes a particular
solution, i.e. solves

(I �A)f = �a:

This implies dt to be of the form

dt =
nX
i=1

li�
t
i + l0

t =
nX
i=0

li�
t
i;

where �0 =  and l0 depends linearly on v0, i.e. l0 = v0l
0
0 (and l

0
0 does not

depend on v0).
Given this form of dt we again wish to solve for xt when xt is implicitly

de�ned by the equations

zt+1 = Azt + bdt + av0
t:
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By linearity it will be enough to solve separately two equations, namely

zt+1 = Azt + b
nX
i=0

li�
t
i;

and
zt+1 = Azt + av0

t:

Thus the �rst equation gives an x solution
Pn

i=0 Li�
t
i where

li = Li�b(�i);

and the second gives an x solution Lt with

v0 = L�a();

where

�a(�) =:
j(�I �A)j
j(�I �A)aj

;

so that L does not depend on ! = (w; �; �):
Now one may read o¤ xt from the two equations by super-position as taking

the form

xt =
nX
i=0

Li�
t
i + L

t:

In particular

x1 � L =
nX
i=0

Li�i:

Now as before assuming that

R > j�ij

for i = 0; 1; :::; n+ 1 (note the new condition for i = 0) we have

P0(R; d) =
1X
t=1

R�tdt

=
1X
t=1

R�t
nX
i=0

li�
t
i

=
nX
i=0

li
�i

R� �i
:

Hence

P0(a11; d) = �
nX
i=0

Li�i
�b(�i)

�i � a11
= ��

nX
i=0

Li�i = ��(x1 � L); (34)

where, as earlier,
x1 = a11x0 + :::+ a1ny0 + b1v0;

and so P0(a11; d) does not depend on �w:
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7 Example: the n = 2 case

In this section we use the Identi�cation Theorem to �nd dividend irrelevant
systems for n = 2 with a11 an eigenvalue of A: For clarity put

A =

�
a b
f g

�
; b =

�
c
h

�
:

In this section we ask when is Dividend Irrelevance at R equivalent to the
statement a = R: Here we have���� 0 b

f � ��2 g � a� �

���� = 0;
yielding the identity b(f � ��2) � 0: The constant term is zero since bf = 0
asserts that a is an eigenvalue of A: So we obtain the one equation

b�2 = 0:

Now either b 6= 0 yielding the solution f = 0 and h = 0 (as 0 = �2 = b�11 b2 =
c�1h), or b = 0 yielding the solution f and �2 arbitrary (i.e. b

�1
1 b2 = c�1h

arbitrary). The two systems are thus

xt+1 = axt +byt +cdt;
yt+1 = gyt:

and
xt+1 = axt +cdt;
yt+1 = fxt +gyt +hdt:

8 Proof of the Veri�cation Theorem

In this section we deduce the Veri�cation Theorem from the Identi�cation The-
orem when the matrix A has R as an eigenvalue. This is done in a series of four
steps.
Let u = (u1; :::; un)T be an eigenvector of A to eigenvalue R. The �rst step

is to choose a non-singular matrix P = [u; :::] so that B = P�1AP has b11 = R
so that the Identi�cation Theorem may be applied to B: We delay the details
of P until the last step which is where they are needed. The details depend on
the �rst index i such that ui 6= 0 and follow a familiar algorithm (reduction to
lower triangular form).
The second step is to use the matrix P to make a change of basis (i.e. a

change of accounting variable) to obtain the equivalent system in which B is the
reduced matrix, so the aim here is to identify the resulting coe¢ cient columns ~b
and ~a for the variables dt and vt: Speci�cally this second step calls for a change
variables from zt to Zt by putting zt = PZt: We rewrite the reduced system in
the form

PZt+1 = APZt + bdt + avt;
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which yields the equivalent reduced system as

Zt+1 = BZt +~b dt + ~avt;

with
~b = P�1b and ~a = P�1a:

The third step identi�es the relation between ~b and B which is necessary
and su¢ cient for the system to satisfy dividend policy irrelevance. The fourth
and �nal step is to characterize the equivalent relation between b and A. This
involves setting up some helpful notation and then some tedious calculations
will follow involving the explicit form of P�1 and P:
The third step in fact applies the Characterization Theorem to the pair B;~b:

We deduce that ~b1 6= 0 and that there is some �; solving the identity gB(�; �) � 0;
for which we have

~b = ~b1�:

The �nal step is to characterize � in terms of A: For this we need to compute
gB(�; �) in terms of A: To do so, it is helpful �rst to write gB(�; v) in the form

gB(�; v) = jB �RI � �(I� + V �)j:

Here I� denotes the n� 1 identity matrix bordered by zeros thus:

I� =

�
0 0
0 In�1

�
=

2664
0 0 ::: 0
0 1 ::: 0
::: :::
0 0 ::: 1

3775 ;
and V � = [vj0] where v1 = 0; so that in fact

V � =

2664
0 0 ::: 0
v2 0 ::: 0
::: :::
vn 0 ::: 0

3775 :
Thus the identity gB(�; v) � 0 may be written in terms of A

gB(�; v) = jP�1AP �RI � �(I� + V �)j
= jA�RI � �P (I� + V �)P�1j:

Now, �nally, we must compute P (I� + V �)P�1 which can only be done
when P has been selected. So we now argue by cases, selecting P and computing
P (I� + V �)P�1, according to the �rst index i with ui 6= 0:
Case 1. Write u = (�; �uT ) and suppose � 6= 0: We take P in the partitioned

form

P =

�
� 0
�u In�1

�
;
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i.e., P = [u; e2; e3; ::]: We see that

P�1 =

�
��1 0
���1�u In�1

�
since indeed �

��1 0
���1�u In�1

� �
� 0
�u In�1

�
=

1 0
0 In�1

= I:

We compute that

PI�P�1 =

�
� 0
�u In�1

� �
0 0
0 In�1

� �
��1 0
���1�u In�1

�
=

�
� 0
�u In�1

� �
0 0

���1�u In�1

�
=

�
0 0

���1�u In�1

�
Moreover

PV �P�1 =

�
� 0
�u In�1

� �
0 0
v 0

� �
��1 0
���1�u In�1

�
=

�
� 0
�u In�1

� �
0 0

��1v 0

�
=

�
0 0

��1v 0

�
:

Thus with �i = ��1(�i � ui) for i = 2; 3; :::; we have obtained the identity

gB(�; �) = jA�RI � �P (I� + V �)P�1j

= �g1A(�; �) :=

��������
�a11 a12 ::: a1n

a21 � ��2 �a22 � � ::: a2n
::: :::

an1 � ��n an2 ::: �ann � �

�������� � 0;
where �aii = aii � R: As before �g1A(0) = 0; since R is an eigenvalue of A and so
of B (indeed we have gB(0) = jA�RIj = 0).
Recall that ~b1 6= 0 so that with �1 = 1; we have

~b = ~b1�;

where � solves gB(�; �) � 0: But

~b = P�1b =

�
��1 0
���1�u In�1

� �
b1
�b

�
=

�
��1b1

���1b1�u+�b

�
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so b1 6= 0 and we have

b = ~b1P� = �
�1b1

�
� 0
�u In�1

� �
1
�

�
= ��1b1

�
�

�u+ �

�
= b1

�
1

��1�u+ ��1�

�
But � = ��1(� � �u) hence

b = b1

�
1

2��1�u+ �

�
;

where (�; �u) is an eigenvalue of A to value R and � solves the system �g1A(�; �) �
0:
Case i. Here without loss of generality we suppose that the eigenvector u

has u1 = 0 and u2 = � 6= 0:This time write �u = (u3; :::; un)T and take

P =

24 0 1 0
� 0 0
�u 0 In�2

35 :
Arguing from elementary row operations we see that

P�1 =

24 0 ��1 0
1 0 0
0 ���1�u I

35 :
Alternatively observe that24 0 ��1 0T

1 0 0T

0 ���1�u I

3524 0 1 0T

� 0 0T

�u 0 In�2

35 =
24 1 0 0
0 1 0
0 0 I

35 :
Hence we compute PI�P�1 to be

PI�P�1 =

24 0 1 0
� 0 0
�u 0 I

3524 0 0 0
0 1 0
0 0 I

3524 0 ��1 0
1 0 0
0 ���1�u I

35
=

24 0 1 0
� 0 0
�u 0 I

3524 0 0 0
1 0 0
0 ���1�u I

35
=

24 1 0 0
0 0 0
0 ���1�u I

35
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and we compute that

PV �P�1 =

24 0 1 0
� 0 0
�u 0 I

3524 0 0 0
v2 0 0
�v 0 0

3524 0 ��1 0
1 0 0
0 ���1�u I

35
=

24 0 1 0
� 0 0
�u 0 I

3524 0 0 0
0 ��1v2 0
0 ��1�v 0

35
=

24 0 ��1v2 0
0 0 0
0 ��1�v 0

35 :
Hence

P (V � + I�)P�1 =

24 1 ��1v2 0T

0 0 0T

0 ��1(�v � �u) I

35
Putting �1 = ��1v2 and �j = ��1(vj � uj) for j = 3; ::: we obtain in this case
that

gB(�; v) = �g
2
A(�;�) =

��������
�a22 � � a12 � ��1 ::: a1n
a21 �a22 ::: a2n
::: :::
an1 an2 � ��n ::: �ann � �

�������� :
Now we observe that

~b = P�1b =

24 0 ��1 0
1 0 0
0 ���1�u I

3524 b1
b2
�b

35 =
24 ��1b2

b1
���1b2�u+�b

35
so that ~b1 = ��1b2: Thus b2 6= 0 and we have putting �1 = 1 as before that

b = P~b = ~b1P� = �
�1b2

24 0 1 0
� 0 0
�u 0 I

3524 1
��1v2

��1(�v � �u)

35 = ��1b2
24 ��1v2

�
�u+ ��1(�v � �u)

35
so that

b = b2

24 ��1�1
1

��1�u+ ��1��

35 ;
where (0; �; �u) is an eigenvalue of A to value R; and � = (�1; ��) solves �g2A(�;�) �
0:

9 The more general case n = 3

In this section we analyse the solutions to the identity

gA(�; �) =

������
0 a12 a13

a21 � ��2 a022 � � a23
a31 � ��3 a32 a033 � �

������ � 0;
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where we put a022 = a22 � a11 etc. and A0 = A� a11I:
Using co-factor notation we have

gA(�) = ��2[�2a12+ �3a13] + �[�2c21(A0)� �3c31(A0)� c22(A0)� c33(A0)] + jA0j
and we are to solve

�2a12 + �3a13 = 0;

��2c21(A0) + �3c31(A0) = c22(A
0) + c33(A

0);

where
c22(A

0) = �a13a31; c33(A0) = �a12a21:
This system of equations has determinant

D = a12c31(A
0) + a13c21(A

0):

9.1 The case D 6= 0
Here we obtain uniquely

�2 = �a13[c22(A0)� c33(A0)]D�1;
�3 = a12[c22(A

0)� c33(A0)]D�1:

�
9.2 The degenerate case D = 0

We require for consistency that

c22(A
0) + c33(A

0) = 0;

whereupon the one-dimensional solution space for (�2; �3) is in the span of
(a13;�a12). Thus for this to be the solution space we need

a12a21 + a13a31 = 0;

a12c31(A
0) + a13c21(A

0) = 0:

Regarded as a system of equations for (a12; a13) this has determinant equal to

a21c21(A
0)� a31c31(A0) = jA0j;

which is zero. Thus degeneracy occurs and (a12; a13) lies in the span of (a31;�a21):
This means

(�2; �3) = �(a13;�a12); (a12; a13) = �(a31;�a21)
so

(�2; �3) = ���(a21; a31)
and that the dynamic system in the degenerate case has coe¢ cient matrix (with
� = ���)


 =

266664
a11 �a31 ��a21 b1 a1
a21 a22 a23 �b1a21 a2
a31 a32 a33 �b1a31 a3
w1 w2 w3 � �



377775 :

28



10 References

Ashton, D., �The cost of Equity Capital and a generalization of the Dividend
Growth Model�, Accounting and Business Research, 1995 (Winter), 34-18.
Gietzmann, M.B., Guest Editorial, Accounting and Business Research, 34 (2004),
275-276.
Russell, D., �Mathematics of Finite Dimensional Control Systems�, Dekker
1979.
Marden, M., �The geometry of the zeros of a polynomial in a complex variable�,
AMS Mathematical surveys,1949
Preinreich, Gabriel, 1936, �The fair value and yield of common stock�, The
Accounting Review, 130-140.
Tippett, M., and Warnock, T., �The Garman-Ohlson Structural System�, Jour-
nal of Business Finance and Accounting, 24, 7&8 (September 1997), 1075-1099.
Ohlson, J.A., �Accounting Earnings, Book Value, and Dividends; The Theory
of the Clean Surplus Equation (Part 1)�, working paper Columbia University,
New York Data and Equity valuation: The Core Results�, 1989
Ohlson, J., �Accounting Earnings, Book Value, and Dividends: The Theory
of the Clean Surplus Equation (Part I)� in �Clean Surplus: A Link Between
Accounting and Finance�, edited by R.P. Brief and K.V. Peasnell, Garland
Publishing, 1996.
Ohlson, J., �Accounting Data and Equity Valuation: The Core Results�, preprint,
2003.

29



11 Appendix 1: A direct approach for n = 2

This appendix is devoted to studying the case n = 2 explicitly, which in principle
entails re-working the sequence of sections 3,4,5. However, we will take for
granted the arguments of Section 4 leading to (30), which are centred on the
Interpolation Theorem, as there is nothing to be gained from rewriting these
with n = 2: We thus begin by showing how the reconstruction kernel of section
3, more precisely the equations (19) and (20), may be obtained directly for
the case n = 2. In the next subsection we analyse explicitly the factorization
identity (30) of section 5. In the last subsection we o¤er a direct proof that the
property that R is an eigenvalue of A is equivalent to A being similar to a matrix
with R in its top-left corner (11-entry) and zero in the top right corner (the 12
entry). The proof is of curiosity value as it relies on �nding the appropriate
change of variable without direct reference to the eigenvector to value R:

11.1 Reconstruction kernel when n = 2

Put

A =

�
a b
f g

�
; b =

�
c
h

�
:

We may suppose that b or g 6= 0 so for de�niteness say that b 6= 0: One can now
use the �rst row/equation to de�ne yt thus

byt = xt+1 � axt � cdt;

in order to substitute into the second equation in the form

byt+1 = bfxt + bgyt + bhdt

to obtain

xt+2 � axt+1 � cdt+1 = g(xt+1 � axt � cdt) + bfxt + bhdt

or
xt+2 � (a+ g)xt+1 + (ag � bf)xt = cdt+1 � (gc� bh)dt:

The substitution of xt =
P
Li�

t
i and dt =

P
li�

t
i followed by comparison of the

coe¢ cients of Li for each i gives; as in (20), that

Li[�
2
i � (a+ g)�i + (ag � bf)] = li[c�i � (gc� bh)]:

If b = 0 and g 6= 0 the same argument applies but now substitute from the
second equation into the �rst.
Note that in the case when b = 0 we have of course

cdt = xt+1 � axt;

so if also c 6= 0 we obtain on substituting xt =
P
Li�

t
i and dt =

P
li�

t
i the same

reconstruction as when n = 1 namely

cli = Li(�i � a):
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11.2 Analysis of the factorization condition for n = 2

In the notation of section 11.1, we will now show that the factorization condition
(30) of section 5, requires that � = c�1 and

bf = 0; bh = 0:

The �rst condition merely guarantees that a is an eigenvalue of A: Note that
P0(a; d) = �x1=c: There are two solutions one with A having (a; 0) as a row, the
other with (a; 0) as a column, conditions equivalent to a being an eigenvalue.
Solution (i) b = 0: We call this the accounting canonical case, as

A =

�
a 0
f g

�
; b =

�
c
h

�
;

i.e.
xt+1 = axt +cdt;
yt+1 = fxt +gyt +hdt:

Solution (ii) b 6= 0: Here

A =

�
a b
0 g

�
; b =

�
c
0

�
i.e.

xt+1 = axt +byt +cdt;
yt+1 = gyt:

Proof. We compute that in this case

j��Aj =

���� �� a b
f �� g

����
= (�� a)(�� g)� bf
= �2 � (a+ g)�+ (ag � bf);

j(�I �A)bj = det

���� c �b
h �� g

���� = c�� (cg � bh):
We require a to be an eigenvalue of A:This implies that

bf = 0:

The factorization requires that

(�� a)(�� g) = c�(�� a)
�
�� cg � bh

c

�
so that c� = 1 and

g =
cg � bh
c

or
cg = cg � bh

i.e.
bh = 0:
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11.3 Analysis of the Veri�cation Theorem for n = 2

In this section we consider the in-homogeneous system of Theorem 4 and so
analyse systems for which Dividend Policy Irrelevance holds at R: As in section
11.1 take

A =

�
a b
f g

�
; b =

�
c
h

�
;

and now assume that R is an eigenvalue of A: Thus

(a�R)(g �R)� bf = 0: (35)

We must solve in case 1

�g1A(�; �) =

���� a�R b
f � �� g �R� �

����
= (a�R)(g �R� �)� b(f � ��)
= [(a�R)(g �R)� bf ]� �[a�R� b�]
= ��[a�R� b�]:

Hence for some �
a = R+ b�: (36)

Recall that R is an eigenvalue of A: This implies that (35) is equivalent to

b�(g �R)� bf = 0;

so either b = 0 (i.e. a = R or g = R) or else

f = �(g �R):

Thus

A =

�
R 0
f g

�
; or A =

�
a 0
f R

�
; or A =

�
R+ b� b
�(g �R) g

�
:

Now under Case 1 we have

c 6= 0 and h = c(2u�11 u2 + �):

So if b = 0 then h is arbitrary. But otherwise � = (a�R)
b from (36) and we

compute u�11 u2 to be �(a�R)=b from

(a�R)u1 + bu2 = 0;

so that

h = �ca�R
b

:

32



We thus arrive at

A =

�
R 0
f g

�
; or A =

�
a 0
f R

�
; with b =

�
c
h

�
; where c 6= 0 and h = 0 if a = R:

or A =

�
R+ b� b
�(g �R) g

�
; with b = c

�
1

�a�R
b

�
; where b 6= 0 and c 6= 0:

Next we consider Case 2. Here

�g2A(�; �) :=

���� a�R� � b� ��
f g �R

���� � 0;
or

�g2A(�; �) = (a�R)(g �R)� �(g �R)� bf + �f� � 0;
= [(a�R)(g �R)� bf ] + �[f� � (g �R)] � 0;
= �[f� � (g �R)] � 0;

using (35). Hence for some � we have

f� = (g �R); (37)

so either f = 0 (and hence by (35) again a = R or g = R) or

� =
g �R
f

:

Also under (37)we have that (35) is equivalent to

(a�R)f� � bf = 0

so either f = 0 or

b = �(a�R) = (a�R)(g �R)
f

:

Now by Theorem 2
h 6= 0 and c = hu�12 �

i.e. c is arbitrary. We thus arrive at

A =

�
a b
0 R

�
or
�
R b
0 g

�
with b =

�
c
h

�
;where h 6= 0:

Alternatively

A =

 
a (a�R)(g�R)

f

f g

!
; b =

�
c
h

�
;where f 6= 0 and h 6= 0:

Note that here jA�RIj = 0 identically.
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11.4 Connection with the principal entry

We note in passing that from the point of view of having the condition a11 =
R hold, the 2 � 2 matrices are especially easy. We o¤er an easy argument
that identi�es explicitly the aggregation of variables leading to the accounting-
canonical form equivalent to A (that is with R in its top-left corner (11-entry)
and zero in the top right corner (the 12 entry) and con�rms that this is possible
i¤ R is an eigenvalue of A. Starting from

xt+1 = !11xt + !12yt;

xt+1 = !21xt + !22yt;

we let wt = xt + �yt for some �; then we have

wt+1 = (!11 + �!21)(xt + �yt)

i¤ the following quadratic equation in � holds:

�(!11 + �!21) = !12 + �!22: (38)

Since we wish to have R = !11 + �!21; the choice of � is therefore

� = (R� !11)=!21: (39)

The necessary and su¢ cient condition that R be realizable as the principal entry
followed by a zero entry in its row may be obtained from (39) by substituting
for � into (38). This yields

(R� !11)R = !21(!12 + �!22) = !21!12 + !22(R� !11);

or
(R� !11)(R� !22)� !21!12 = 0:

Thus the necessary and su¢ cient condition for transforming the �rst row to
(R; 0) is con�rmed to be that R is an eigenvalue of the matrix of coe¢ cients.

12 Appendix 2: Invertibility as between !div and
(d1; :::; dn)

It transpires from our analysis that we do not need to place any further restric-
tion on the data: A; b; z0; d0; to require that the initial segment of the dividend
sequence d = (d1; :::; dn) be permitted to take any vector value in Rn (or for that
matter any generic value, i.e. one not lying on some �nite set of hyperplanes
determined by the data). We consider in this section the issue of invertibility
as between !div and d; and we ask how the explicit form

dt =
n+1X
i=1

li�
t
i
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permits the coe¢ cient vector (l1; :::ln+1) to vary arbitrarily subject to the in-
formation concerning the initial dividend d0;namely that

n+1X
i=1

li = d0:

Observe that the equation
zt+1 = Azt + dtb

implies
zt = A

tz0 + d0A
t�1b+ ::+ dt�1b

Put d� = (d0; d1; dn�1); then since

dt+1 = wzt + �dt;

we have
d� �d� = w(Atz0 + d0At�1b+ ::+ dt�1b);

or
d� �d� = wM; (40)

where

M = M(d1; :::; dn�2)

=
�
z0 Az0 + d0b A2z0 + d0Ab+ d1b ::: ::: An�1z0 + d0A

n�2b+ ::+ dn�2b
�
:

Given � to solve uniquely for w the equation (??) for given arbitrary d it is
necessary and su¢ cient that the rank of M be n for all (d1; :::; dn�2): This
amounts to saying that d must not lie on a hyperplane determined by the data.
Note that the condition fails if say z0 and b are both multiples of an eigenvector
of A:
Assuming the condition is ful�lled we have

w = w(�) = (d� �d�)M�1

for some �: But
d1 = w(�)z0 + �d0

so the value of � is uniquely determined by the equation

�(d0 � d�M�1z0) = d1 � dM�1z0

provided d does not lie on the hyperplane determined by the data

d0 = d�M
�1z0:

35


