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Abstract

In this paper we consider the situation where partial reversals from a finite horizon
investment are possible at discrete decision times. We are able to identify a range of
circumstances in which reversal is triggered by the investment resale rate, R, falling below
a critical value R#, assuming R to be a random variable identically and independently
distributed over decision times. This result is similar in qualitative form to results derived
in related infinite horizon formulations in that, once the random variable hits a key “fa-
vorable” interval, the optimal policy switches to reversal of investment. However, we also
show that the alternative geometric Brownian model for the resale rate (for R−1) implies
restrictions on the ranges over which reversal remains optimal which are significantly dif-
ferent in a number of ways. For instance we identify near-termination effects which do
not arise in infinite horizon settings in which the favorable interval changes in magnitude
as the final decision epoch approaches. Also we show that the optimal policy space is
richer in that the range over which reversal is optimal can take a wider set of forms and
so knowledge of a single R# may be insufficient to guide optimal investment policy. In
particular we show that for certain values of the parameters a twin switching policy may
be optimal under which as R increases, reversal is first non optimal, then optimal and
finally non optimal again.

We gratefully acknowledge the comments of Pierre Mella-Barral and seminar partici-
pants at the L.S.E.
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1 INTRODUCTION

Since many investment projects are made with a finite horizon in mind, the optimality of taking
opportunities to reverse out of such a project may in practice be sensitive to end effects which
arise in finite but not in infinite horizon settings. Thus, for instance, the parameter ranges
over which investment / disinvestment is optimal in an infinite horizon setting may differ in
important ways from the parameter ranges appropriate to a finite horizon setting.

We investigate a finite horizon model in which investment / disinvestment decisions are
taken at discrete times (regarded as sampling times) and derive the parameter ranges over
which a policy of reversal (disinvestment) is optimal. Our model is one in which the timing of
investment is motivated by capital input price hedging considerations1. This arises because the
capital input is assumed to be expected to rise in price as time progresses and hence it may be
in the interests of the firm to overinvest (relative to current needs) in capital stock. In reality
firms’ investment decisions are complicated by a mix of problems such as lumpiness, changing
technology and capital input price drift. In order to understand the effects of the later concern
in a finite horizon setting, we shall assume that firms can purchase any quantity of capital (no
lumpiness) and that the technical efficiency of capital remains constant through time. This
allows us to concentrate upon pure capital hedging considerations and derive clear intuition
for optimal policy in such settings. Clearly, a task for future research would be to incorporate
features of the other two complications.

Rather than assume firms must use all the capital they purchase, following Abel and Eberley
(1996), we allow them to reverse out of investment positions at a cost. Our model setting in
discrete time is thus close in spirit to that of Eberley and Van Mieghem (1997) in that firms
face ‘kinked costs’, but it is our costs (rather like their returns) that evolve stochastically,
whereas contrarily our returns are deterministic. In fact our returns are of Cobb-Douglas
form, which enables a tractable determination of what corresponds here to their ‘optimal ISD
control limits’ (acronym for Invest/Stay put/Disinvest) and which are referred to herein as
‘censors’. A similar Cobb-Douglas formulation is taken by Hartman and Hendrickson (2002),
albeit in continuous time and with infinite time horizon, but though their costs and returns are
stochastic, the distinguishing feature is that their resale rate R is constant in time. However,
the treatment of capital is different here, in that, consistently with an ‘inventory’ interpretation,
capital depreciates only through ‘useage’ (completely,when used), rather than merely ‘eroding’
at a constant ‘geometric rate’ that is totally unconnected with useage. In light of this, the
‘optimal ISD control limits’ here, though similar, are indeed different, and need to be derived.

We are able to identify a range of situations in which reversal is triggered by a critical value
of the time varying investment resale rate which is initially assumed to be independently and
identically distributed at the (sampling) decision moments. The results derived are similar in
qualitative form to those derived in related infinite horizon formulations of Abel and Eberley
(1996), in that once the resale rate variable enters a critical “favorable” range, the optimal policy

1See Hopp and Nair (1991) who discusses in detail additional elements of the hedging element of investment
decisons.
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switches to reversal. However, we also show that adoption, as an alternative, of a standard
geometric Brownian model for the resale rate, leads qualitatively significantly different ranges
over which reversal is optimal. Indeed, we show that a twin switching policy in which reversal is
only optimal for a bounded range of resale rates [R#, R##] can apply2. We provide intuition for
the findings and then consider how the results change as we vary the length of the investment
horizon. Next, in order to gain further insight into the significance of these results we compare
and contrast our models characteristic properties to those of the established Abel and Eberley
(1996) model3. We point out how the two models differ in important respects, over and above
the differing horizon length assumptions and explore why adopting a finite horizon formulation
can lead to a significant revision in the characterization of the optimal policy space.

The paper is organized as follows. In section 2 we present our simplest investment model,
that with two periods and irreversibility. In section 3 we relax the assumption of irreversibility
allowing the firm the possibility to resell part or all of the investment. In section 4 we compare
and contrast our results to the Abel and Eberley (1996) model of optimally triggered partial
reversibility. We present concluding comments in section 5. The general N -period model
is derived in Appendix 1 and offer numerical examples for N = 3 to illustrate the various
qualitative differences that can arise; the derivation depends on a number of technicalities which
have been removed to Appendices 2A (inductive derivation of a formula), 2B (justification of
certain limit operations). Appendix 3 derives the endogenous depreciation rate for a two period
model in terms of a general Cobb-Douglas index.

2 TWO PERIOD MODEL WITH IRREVERSIBILITY

A critical feature of any investment model is the specification of how capital is consumed. In the
simplest setting of two periods a model in which investment is depreciated purely as a function
of clock time is unattractive, because management only have a passive role to play. Instead we
develop a model in which capital depreciation results from conscious decisions by mangement.
That is in a two period setting, given for the moment a fixed stock of capital v (that can not
be added to or resold), we assume management needs to choose how optimally to split the
allocation of the opening capital input v between the two periods. That is our model is one
in which capital depreciates through usage. This assumption is important when hedging and
resale considerations arise. For instance, when the depreciation (usage) rate is a choice variable,
rather than having to resell unused capital at a discounted resale rate, it is more realistic to
allow management to alternatively decide to apply it to current production at a greater rate.
Similarly the desirability of hedging is influenced by the subsequent possibility to vary capital

2These findings are sumarized in subsection 3.5 by the M -S (mean-standard deviation) diagram.
3It is important to stress that our formulation is not a finite horizon version of the Abel and Eberley

model. In part this arises because tractability is more difficult to maintain in a finite setting and because we
argue that working within a finite horizon setting motivates one to characterize management policy choice in a
different fashion. In particular, in an infinite horizon setting optimal depreciation of an investment may differ
substantially from that in a finite setting. We discuss this in detail in section 5.
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consumption if ex-post a position becomes over-hedged given the actual evolution of the capital
input price.

In the subsection 2.1 we shall formally analze the problem of how to allocate the first period’s
capital stock between two periods. Initially it is assumed for simplicity that the capital can
be added to in the final (second) period but not first period. In subsection 2.2 we then relax
this assumption. Throughout we assume a two period setting with irreversibility of any capital
investment, but relax this irreversibility assumption in the section 3.

Commencing at time t0, we assume that a firm has vt0 (vt0 ≥ 0) units of capital in stock.
Given the firm can purchase some more capital in the next period the decision of how to
optimally allocate capital stock between the current and latter period will ceteris paribus be
driven by the capital input price process. We shall denote the price of capital as bt. It is assumed
to evolve stochasticly as a geometric Brownian motion with positive drift4 (anticipated growth)
µb > 0, i.e.

dbt = bt(µbdt + σbdWb(t))

where Wb(t) is a standard Wiener process. The firm observes the price at discrete times, in this
case at times t0 and t1 and purchase levels of capital at these discrete moments is denoted zt0

and zt1 . In order to track the stock of capital carried forward between periods we shall denote
the period t0 closing capital stock as u.

2.1 Optimizing capital stock u carried forward when no current pe-
riod purchases (NCP) are allowed (zt0 = 0)

The time order diagram reflecting this decision regime is as follows:

Time Order Line

At t = t0 with a stock of vt0 units of input:
Observe the current price of capital bt0 .
Predict E(bt1) the expected price for the following period, under the assumption that E(bt1) >
bt0 .
Between t0 and t1 :
Apply xt0 (≤ vt0) units of capital into production and carry forward u = vt0 − xt0 units.

At t = t1 after observing bt1 , purchase zt1 units at the prevailing price of bt1 .

Between t1 and t2 :
use xt1 = u + zt1 remaining units of capital in production.

4The drift is net of an implicitly assumed constant interest rate. Thus bt is to be regarded as a depreciated
price.
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The question whether any stock of capital should be carried forward is particularly pertinent
when we restrict consideration to the case of z0 = zt0 = 0, since under this regime increasing u
(priced at bt0) means less is made available for the current period.

As the above time order line makes clear, all the subscripts are timings. So we will drop
the t subscript when a specific time is being referenced. To simplify the presentation further it
is assumed5 that the functional form for the gross returns function is 2

√
xt. Given the initial

value for v0, the risk-neutral firm chooses the optimal first period production plan x∗0 such
that:

x∗0 = arg max 2
√

x0 + F1(v0 − x0, b0), (1)

where F1(.), is the expected optimal value function for the subsequent period (which we will
compute below) and v0 − x0 =def u is the capital stock carried forward to the next period.
Reformulating this production planning problem directly in terms of the carried forward capital
stock we can rewrite (1) in terms of choice of u as:

u∗ = u1(v0, b0) = arg max
0≤u≤v0

2
√

v0 − u + F1(u, b0). (2)

Let us now turn to consider the form for F1(u, b0). It is straight-forward to show that it is a
piecewise ‘dichotomous’ continuous function, in that its form depends upon whether the capital
carried forward u, set at t0, turns out to be too large or, too small given the subsequently realized
input price of b1 at t1. To see this consider the firm’s production decision at t1. Disregarding
u and z1 = zt1 for the moment, having observed b1 the (direct) returns function in the second
period is:

2
√

x1 − b1x1

and thus the first-order conditions for the optimal production imply the firm need purchase:

x∗1 =
1

(b1)2
(3)

units. Hence the form6 of the indirect returns function is:

G1 (b1|u = 0) = 2

√
1

(b1)2
− b1.

1

(b1)2

=
1

b1

.

Thus, if we now allow u to be a free variable we can identify two different scenarios arising in

the final period, as follows:

5In general we require concavity of the returns function. However, in our presentation we specialize to the
square root for simplicity of presentation.

6This most simple form results from our choice of the square root returns function.
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Figure 1: Final period returns function $G 1[u,b 1]$ against $u$

(i) Given (3) if the hedge is too small, that is u < 1
(b1)2

, it is optimal to purchase a further

z1 = 1
(b1)2

− u units and earn:
2

b1

− b1z1 =
1

b1

+ b1u, (4)

otherwise,

(ii) Given (3) if the hedge is (weakly) too large, that is u ≥ 1
(b1)2

, it is optimal to set z1 = 0 and
apply all u units to production and earn:

2
√

u.

Thus the period t1 returns function G1(u, b1) takes the form:

G1(u, b1) =

{
1
b1

+ b1u if u < 1
(b1)2

2
√

u if u ≥ 1
(b1)2

(5)

as illustrated below.
Now we can determine the expected optimal value function. We have:

F1(u, b0) = Eb1|b0 [G1(u, b1)]

and to simply the notation, denoting the density of the conditional expectation as:

q(b1) =def q(b1|b0).

Recalling the form of (5) let:

u =
1

(̃b1)2
, (6)
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That is, b̃1 defines the lowest input price which, if given u (fixed at t0) followed by observation

of b1 = b̃1 (at t1), would result in the firm not wanting to purhase additional units; infact, this
critical price is the no arbitrage equilibrium price associated with the investment u. Thus given
this definition of b̃1 we have:

F1(u, b0) =

∫ b̃1

0

(
1

b1

+ b1u

)
q(b1)db1 + 2

√
u

∫ ∞

b̃1

q(b1)db1. (7)

Recalling (2) we see that the first order necessary condition for optimal choice of the investment
requires:

∂F1

∂u
(u, b0) =

1√
v0 − u

. (8)

This equation should be regarded as defining a function of v0 and b0 which determines the
optimal investment u = u0(v0, b0). Now define:

Ψ(̃b1, b0) =def

∫ b̃1

0

b1q(b1)db1 + b̃1

∫ ∞

b̃1

q(b1)db1. (9)

Notice how b̃1 in effect censors the input price distribution. We have thus arrived at the following
lemma.

Lemma 1. (Properties of the Marginal Expected Optimal Value Function)

∂F1

∂u
(u, b0) = Ψ(1/

√
u, b0), (10)

where Ψ(̃b1, b0) is defined by (9) and has the properties that Ψ(0, b0) = 0, Ψ(∞) = E[b1|b0],

Ψ′(0) = 1, Ψ′(∞) = 0, Ψ′(̃b1, b0) > 0 and Ψ′′(̃b1, b0) ≤ 0.

Recalling (3) the first-order condition becomes:

Ψ(̃b1, b0) =
1√

v0 − 1

(̃b1)2

, (11)

where we shall call the choice of b̃1 solving this equation the NCP-censor (there being no current
purchases). Now let

Φ(v0, b̃1) =def
1√

v0 − 1

(̃b1)2

.

By inspection, Φ(v0, b̃1) is a monotonically decreasing function of b̃1 defined for b̃1 > 1√
v0

with

Φ(v0,
1√
v0

) = +∞ and Φ(v0,∞) = v−0.5
0 . Thus for the NCP-censor b̃1 = b̃1(v0, b0) to exist with:

Ψ(̃b1, b0) = Φ(v0, b̃1, b0)
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Figure 2: Ψ intersects Φ at the optimal investment level $u$

we require

E[b1|b0] >
1√
v0

,

that is we require:

v0 >
1

E[b1|b0]2
=def v0(b0)

To illustrate we provide a plot of these functions below, and summarize our findings by the
following Lemma.

Lemma 2 (Minimum Opening Stock v0 to Insure Investment (u > 0) is Desirable
When There are No Current Purchases)
For it to be optimal to choose u > 0 when z0 = 0 we require the initial opening stock v0 > v0(b0).
Proof: Established immediately above.

The intuition for this result is as follows. If at t0 when v0 > v0(b0), some u is carried forward
to period t1, then the expected gain from having positive investment is outweighed by the lost
current return at t0 resulting from insufficient input being on hand.

In order to provide a simple interpretation for the NCP-censor b̃1 (which defines the optimal
investment u∗), inspecting Figure 2 we see that applying (6) the optimal returns function

G1(̃b1, b1), the censor may be interpreted as choosing an optimal floor for realized returns. The
optimal floor return is given by:

2

√
u∗(̃b1)

which is the guaranteed minimum return the firm can earn once it commits to carrying forward
u∗. This is illustrated by Figure 3.

To summarize, we have shown how the optimal investment level u∗ is determined by the
identification of a NCP-censor b̃1. The investment level can in part be seen as providing a
hedge against uncertainty since purchasing capital in advance insures that operations are not
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Figure 3: Plot of $G 1[u,b 1]$ against $b 1$

subjected to adverse price movements of a key input and this insures that profits never fall
below a predetermined optimal floor. Having established the optimal investment policy in the
simplest case let us now relax the restriction that z0 = 0 and consider the alternative possibility
of buying a quantity of input z0 > 0 at price b0.

2.2 Optimizing investment u when current period purchases are un-
restricted (zt0 ≥ 0)

The firm must now maximize over both z0 and x0 the profit:

2
√

x0 − b0z0 + F1(v0 + z0 − x0, b0),

or, writing much as before u = v0 + z0 − x0 ,

2
√

x0 − b0(u + x0 − v0) + F1(u, b0), (12)

¿From (12) we have
F ′

1(u, b0) = b0 (13)

and

x0 =
1

b2
0

(14)

as first-order conditions, where the prime denotes differentiation with respect to u.
Let u = û(b0) denote the solution to equation (13). Writing

û(b0) =
1

b̃1(b0)2

and using the characterization (10), we see that b̃1(b0), as defined by the first-order condition,
is the solution to

Ψ(̃b1, b0) = b0. (15)
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We call (15) the censor equation. The solution exists and is unique if and only if b0 < E[b1|b0],

since, as we have already noted, Ψ(̃b1, b0) is increasing from zero to E[b1|b0]; we call the value

of b1 given by b̃1 which solves (15) the censor. We examine this solution in detail in a more
general context later. Now let

v̂0(b0) =def
1

b2
0

+ û(b0),

where û(b0) solves (13). Hence we obtain that

z0 =
1

b2
0

+ û(b0)− v0,

and z0 ≥ 0 if and only if v0 ≤ v̂0(b0). We have just proved the following.
Lemma 3 (The optimal first period investment is determined by the censor when
opening stock v0 is not too large.)
For it to be optimal to choose z0 > 0 we require the initial opening stock to satisfy v0 < v̂0(b0).
In this case the optimal second period investment is given by

û =
1

b̃1(b0)2
,

where b̃1(b0) is the censor. When v0 = v̂0(b0) the NCP-censor concides with the censor. Thus
the maximum opening stock beyond which no current purchases are made (z∗0 = 0) is given by
v̂0(b0).
Proof: Established immediately above, since v̂0(b0) > v0(b0) so that the NCP-censor is defined
by Lemma 2.

To summarize: provided the opening stock of the input is not too large (as defined by
v̂0(b0)) in the opening period, it is optimal for the firm to increase its capital to v̂0(b0) so as to
enable it to invest û(b0) units of capital for carrying forward to the following period. However,
if v0 > v̂0(b0) investment in period t0 would not be optimal, and given this the firm would use
the NCP-censor to establish the correct division of capital between the two periods.

Let us now turn to relax a further temporary restriction. Above we have assumed that once
purchased, input quantities must be used at some time in production. However in reality it
may be possible to resell some quantity of the input. Clearly if prior investment in v0 were
reversible, the firm may benefit from disinvestment (reselling) of some of the units. In order to
incorporate this possibility, we shall in the following section amend the above analysis assuming
the firm has the possibility to resell7 at a unit price of b1/R were R > 1.

7That R > 1 is standard in the literature, otherwise if R = 1 we would have the possibility of simple portfolio
rebalancing.
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3 TWO PERIOD MODEL WITH PARTIAL REVERSIBIL-

ITY

Let us now repeat the above analysis assuming that at the commencement of period t1 the
firm can (disinvest) resell input at b1/R1 where R1 > 1. In the following subsection we will
show how the optimal derived payoff schedule when R1 is deterministic, differs from that of
Figure 3 where we assumed irreversibility. In the remaining subsections we shall model R1 as
a stochastic random variable, first under the assumption that it is distributed independently of
R0 (and identically) and then more generally that R1 is sampled from a geometric Brownian
motion Rt. We will see that the form of the optimal policy space varies significantly depending
upon the assumption for the R1 process.

3.1 Analysis with a deterministic resale rate R1

Let us commence the analysis by considering the optimal policy at t1 assuming that the (in-
vestment) quantity u has been brought forward into the period8. At this time the resale rate
R1 is presumed to have been observed. Purchasing additional stock costs b1 and selling existing
stock earns b1/R1. Thus the firm needs to determine z∗1 for which

z∗1 = arg max 2
√

u + z1 − c1z1,

where c1 = c1(b1, R1) is given by

c1 =

{
b1, if z1 > 0,
b1
R1

, if z1 < 0.

There are thus three potential solutions: the corner point solution z∗1 = 0 and the two internal
solutions (z∗1 > 0, z∗1 < 0) given by:

z∗1 =
1

c2
1

− u.

The case z∗1 > 0 corresponds to a situation in which it is optimal to add to the opening

stock (given subsequently realized conditions, i.e. u < 1/b2
1 or equivalently b1 < b̃1 where

b̃1 = 1√
u
); similarly z∗1 < 0 corresponds to the over-invested position u > R2

1/b
2
1 (equivalently

b1 > R1√
u

> R1b̃1). For prices b1 between the two limits the optimal behavior is z∗1 = 0 which

generates a return of 2
√

u. Thus the optimal return at t1 is trichotomous and is given by:

G1(u, c1(b1, R1)) =

{
1
c1

+ c1u, if u ≤ 1
(b1)2

or if u ≥ R2
1

(b1)2
,

2
√

u, if 1
(b1)2

≤ u ≤ R2
1

(b1)2
.

(16)

It is interesting to note that the graph of the returns plotted against price b1 comprises two
hyperbolic curves linked smoothly by a horizontal floor as illustrated below.

8Recall operations end at t2 so there is no further need for investment. We relax this assumption in a
following section when we allow additional periods, that is allow N > 2 periods.
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Figure 4: Plot of $G 1[u,c 1(b 1,2)]$ against $b 1$

Comparing Figures 3 and 4, we clearly see the value of the possibility of reversal. In

particular for u ≥ R2
1

(b1)2
the firm earns greater return when reversal is possible since beyond this

level, reselling stock in the input resale market is more profitable than being forced to apply it
in production to produce final output.

3.2 General Analysis With a Stochastic Resale Rate

Let us commence by considering how u is optimally chosen at t0. First, note that at t0 the
optimal expected value function is given by:

F1(u,R1, b0) =

∫ b̃1

0

(
1

b1

+ b1u)q(b1)db1 + 2
√

u

∫ R1b̃1

b̃1

q(b1)db1 + (17)

+

∫ ∞

R1b̃1

(
R1

b1

+
b1

R1

u)q(b1)db1

where b̃1 = 1√
u
. That is comparing this to (7) we see that the final term incorporates the return

from being allowed now to resell capital. Furthermore it is helpful to classify these three price
policy ranges as follows:

(U) the under-invested range (0 ≤ b1 ≤ b̃1); in which additional investment in capital is made;

(IO) the (endogenously) irreversible9 over-invested range (̃b1 ≤ b1 ≤ R1b̃1), where excess capital
is put into production;
(RO) the reversible investment range (R1b̃1 ≤ b1 ≤ ∞); where excess capital is resold.

9Endogenous in the sense that though reversal is possible, it is never optimal in this setting to choose it and
hence the firm acts as if the situation was irreversible.
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Thus at t0 if an investment of u is chosen the expected payoff (now taking expectations over
the R1 ≥ 1 realization space) is:

F 1(u, b0) =

∫ ∞

1

F1(u,R1, b0)ρ(R1)dR1,

where ρ(R1) is the probability density function for R1 and E[ 1
R1

] is finite. Hence at t0 the firm
must solve an analogous, albeit two variable, maximization problem:

max
z1,u

2
√

v0 + z0 − u− c0z0 + F 1(u, b0).

Assuming z0 6= 0, u 6= 0 is optimal, the pair of first-order conditions jointly imply:

1√
v0 + z0 − u

= c0 = F
′
1(u, b0), (18)

where the prime denotes partial differentiation with respect to u. Similarly, as in earlier analysis,
we define û(c0) as denoting the solution to:

F
′
1(u, b0) = c0, (19)

and hence for both first-order conditions to be jointly satisfied we require c0 = b0/R0:

v0 ≥ û(c0) +
1

c2
0

=def v̂0(c0) (20)

and the reverse when c0 = b0. Alternatively, when z = 0, u 6= 0 is optimal, as before we have
u∗(v0) = u1(v0, b0) as denoting the solution to:

1√
v0 − u

= F
′
1(u, b0),

provided v0 > v0. Next expanding the right-hand side of (18) we have:

c0 =

∫ ∞

1

F ′
1(u,R1, b0)ρ(R1)dR1

where by (17):

F ′
1(u,R1, b0) =

∫ b̃1

0

b1q(b1|b0)db1 + b̃1

∫ R1b̃1

b̃1

q(b1|b0)db1 + (21)

+
1

R1

∫ ∞

R1b̃1

b1q(b1|b0)db1.

Next we assume the input price process is a proportional one10 so that:
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b1 = b0g,

where g has a density q̃(g) independent of b0. In particular we shall make the common assump-
tion that the input price is distributed log normally. Rescaling we have:

F ′
1(u,R1, b0) =

∫ b̃1/b0

0

b0gq̃(g)dg + b̃1

∫ R1b̃1/b0

b̃1/b0

q̃(g)dg

+
1

R1

∫ ∞

R1b̃1/b0

b0gq̃(g)dg

and, letting b̃1 = b0g̃1 and recalling (9), we can now define:

F ′
1(u, R1, b0) = defΨR1 (̃b1, b0) (22)

= b0[

∫ g̃1

0

gq̃(g)dg + g̃1

∫ R1g̃1

g̃1

q̃(g)dg +
1

R1

∫ ∞

R1g̃1

gq̃(g)dg],

with the first-order condition (18) becoming:

c0 = b0F
′
1(

1

(g̃1)2
, 1) (23)

by (6). Here it is important to notice that infimum marginal expected return is

inf
u

F ′
1(u, b0) = E[b1]E[

1

R1

], (24)

obtained by passing to the limit as g̃1 → 0 (for details see the Appendix B). Evidently this
formula as the product of two expectations reflects our assumption that the two variables R1

and b1 are independent.
We need now to consider the existence conditions for a solution of (19). We define γ > 1 as:

γ = E[g] =

∫ ∞

0

gq̃(g)dg =
E(b1)

b0

.

It follows from inspection of (22) that we have bounds upon ΨR1 (̃b1, b0) as follows:

γ

R1

< ΨR1 (̃b1, b0) < γ. (25)

Consider c0 = b0
R0

, where R0is the current period resale rate, and, to develop intuition, suppose
that for simplicity that the next period’s resale rate R1 is deterministic (we shall relax this in
a moment). Under these circumstances for (19) to be soluble and thus reselling to be optimal
we require:

γ

R1

<
1

R0

(26)

10Also called ‘multiplicative’ in R. Merton and P.A. Samuelson, 1969.
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or equivalently
E(b1)

b0

<
R1

R0

. (27)

That is, there is an increase in the resale rate and this increase must be greater than the
expected increase in the input price11. The intuition for this result is clear. If at t0 the input
price is expected to drift upwards, and the resale rate is fixed, a higher resale price will be
expected when waiting until t1 and so for early resale to be optimal, there must be a cost of
waiting. In (27) this is captured by the resale rate (discount) ‘increasing’ at a higher rate than
the input price and hence selling later, becomes costly12. Clearly when (27) does not hold
we can describe the situation as one of endogenous irreversibility, IO, since although resale is
possible, it is not optimal.

Remark 1. Note that in the case R1 = ∞ the function Ψ∞(B) is strictly concave. In general
we expect a convexity change for ΨR1(B) and there is only one point of inflection in the log-
normal case. As R1 →∞ the point of inflection recedes towards the origin. It also follows that
since

F
′
(u, 1) = Ψ(1/

√
u) (28)

F
′
(u, 1) is decreasing in u. We shall need this result later.

The above analysis assumed deterministic resale rates R0 and R1. However a more realistic
assumption in this dynamic setting is to assume that Rt evolves stochastically. Below, we shall
analyze the optimal resale policy accordingly under two scenarios for the resale rate process.
First we shall consider the case of each period’s resale rate being independently and identically
distributed through time. This simple model allows us to develop intuition before considering
the more complex but realistic second scenario under which the resale rate evolves as a geometric
Brownian motion.

3.3 Analysis with i.i.d. resale rate

The analysis of this scenario will proceed as follows. First we recall that when we are in the
over-invested situation the firm needs to choose in the final period between putting all the
(investment) stock into production (policy IO) or reselling some stock (policy RO). We show
how the choice between policies is determined by the identification of a critical trigger resale
rate R#

0 below which it is optimal to adopt RO, and above which it is optimal to adopt IO.
Recalling (26) in the stochastic R1 case and working under the assumption (20) that v0 >

v̂0(c0) for c0 = b0/R0 we have that (18) is soluble if and only if

γE[
1

R1

] <
1

R0

(29)

11In this model the resale price is some proportion of the current market price of the input.
12There may exist other costs of waiting such as working capital etc.
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Figure 5: Determination of $R 0ˆ#$

that is letting
1

R#
0

=
E(b1)

b0

E(
1

R1

) (30)

we have when:
1

R0

≤ 1

R#
0

IO is the optimal policy (31)

and for
1

R0

≥ 1

R#
0

RO is the optimal policy (32)

which is illustrated below for v0 > v̂0(c0).
The intuition for the result is straightforward. We can interpret R#

0 as the resale rate ratio13 in
the sense that the right hand side of (30) compares the proportional increase in the input price
to that of the inverse of the resale rate. This naturally arises since an increase in the former
encourages waiting (since the base input price upon which the resale rate discount is applied
has increased), while an increase in the later discourages waiting (since a larger discount is
offered on the existing purchase price). We summarize this result in the following Theorem.

Theorem 1: (Optimality Conditions for the Endogenous Reversibility Policy RO
when the Resale Rate is I.I.D.)
At t0, applying (32) when v0 > v̂0(c0), R#

0 is the trigger below which RO is the optimal policy.

Proof: Follows from immediate argument above, by (24).

3.4 Analysis with geometric Brownian resale rate

13We shall formally introduce and define this ratio below.
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Consider now14 a scenario where Rt − 1 evolves according to geometric Brownian motion, i.e

d(Rt − 1) = (Rt − 1)[µRdt + σRdWR(t)],

where WR is a standard Wiener process, assumed independent of the input price process Wb(t).

Thus R̃t = (Rt − 1) is log-normally distributed with drift µR and volatility σ2
R. So if R̃0 has

been revealed the expected value of R̃1 is R̃0e
µR .

In order to understand the condition (26) for reversal of investments, i.e.

E(
1

R1

)γ <
1

R0

we need to recognize formally the conditional dependence of the expected R1 value on the cur-
rent value R0 via E[ 1

R1
|R0] . Under the i.i.d. assumption of the previous section the expectation

γE[ 1
R1

] is represented by a (constant) horizontal curve which, if below unity, interects the 1/R0

curve exactly once, since the latter curve starts at unity and is asymptotic to the horizontal
R0-axis. In the current setting we find that the expectation E[ 1

R1
|R0] is now decreasing with

R0 and the intersection condition for the two curves is more involved. The analysis in this case
uncovers a somewhat more complicated scenario in that a single switching R#

0 trigger policy
does not fully describe the optimal policy range. Before establishing this formally we shall
first provide some intuition for two initially counter-intuitive features: the absence of a reversal
range commencing at R1 = 1; and the possibility of a double switching regime. We begin by
approximating the expectation term by its asymptotic value (derived below):

E[
1

R1

|R0] =
e(σ2

R−µR)

R0

. (33)

Now consider the condition (26) rewritten with only γ on one side:

1 < eµb =
E(b1)

b0

= γ <
1

R0

e
(σ2

R
−µR)

R0

= e(µR−σ2
R). (34)

When the drift µR > 0 we see that if the ‘relative volatility’ σ2
R/µR is close to unity then

(34) need not be satisfied. In particular if the current discount 1/R0 is close to unity (so the
resale price is close to the purchase price), then the expected discount next time, 1/R1 will
also be close to unity (because e(σ2

R−µR) is close to unity). Since the purchase price is expected
to rise there may be advantages to waiting, in the form of a higher than current resale price
occurring in the next period. The parameter values for which it is worth waiting are given, at
least approximately, by the failure of (34). This explains why for R0 close to unity non-reversal
of investment is optimal under these circumstances.

14This subsection contains perhaps the most surprising result of our work which is that the optimal switching
policy between non-reversal and reversal may be a dual switching policy. For this reason we present the analysis
in some considerable detail. For the reader who wants first to directly see the implications of the analysis,
subsection 3.5 presents a diagrammatic summarization of the results.
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Now, even though we may have (34) failing, suggesting that irreversibility is always optimal,
in that we have the dominance

e(σ2
R−µR)

R0

>
e−µb

R0

,

the exact form of the function P (R0) = E[ 1
R1
|R0] contains a further ingredient of convexity

controlled by the volatility σR ; this enables the graph of P (R0) to dip below that of e−µb

R0
for

a range of R0 and a range of volatilities, rather than behave for all R0 as in the asymptotic
situation. This makes possible two switches in policy from non-reversal to reversal at R0 =
R#

0 > 1 and again from reversal to non-reversal at R0 = R##
0 > R#

0 (with R##
0 < ∞).

We proceed with a formal analysis in the two period case. Let us define Γn for n = 0, 1 to be
the set of resale rates Rn in period n for which it is optimal to resell stock given large enough
stock levels v. Evidently at time t1 any R1 will lead to an optimal resale in the final period for
large enough stock, that is since no economic activity occurs to the right of the interval [t1, t2]
any stock not used in the optimal production plan for this interval should be sold, no matter
what the resale price. Thus we have Γ1 = [1,∞) .

We apply (34) to characterize the set of resale rates Γ0 for which RO is the optimal policy
as:

Γ0 = {R0 ≥ 1 : 1/R0 > γ

∫

Γ1

1

R1

ρ(R1|R0)dR1}. (35)

In order to determine the explicit form of Γ0 let us first consider the qualitative properties of
the expectation of the inverse of the time t1 resale rate; it will be convenient to define

γ

∫ ∞

0

ρ(R1|R0)

1 + R̃1

dR̃1 =def P1(R̃0).

We apply the substitutions:

w =
ln R̃1 − (ln(R̃0) + mR)

σR

,

mR = (µR − 1

2
σ2

R),

αR = σ2
R − µR,

to give

P1(R0) = γ

∫ ∞

−∞

e−w2/2dw

(1 + R̃0eσRw+mR)
√

2π
.

Evidently
P1(1) = γ,

and

P ′
1(R0) = −γ

∫ ∞

−∞

eσRw+mRe−w2/2dw

(1 + R̃0eσRw+mR)2
√

2π
< 0,
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so that P1(R0) is decreasing and behaves asymptotically for large R0 like

γ

R0

∫ ∞

−∞

e−w2/2dw

eσRw+mR

√
2π

=
γ

R0

eαR .

In the case where the input price process is also log-normal we write γ = eµb , where µb is the
input price drift. Thus since P1(1) = eµb > 1 (for µb > 0) a single intersection of the curve
P1(R0) with the graph of 1/R0 as required in (35) is guaranteed to occur, say at R#

0 , if the
asymptotic curve of P1(R0), namely, eαR+µb/R0 lies below the 1/R0 curve, i.e. if

1 > eαR+µb

i.e. αR < −µb. This condition in effect requires that µR > µb + σ2
R, a marked tendency for

the resale rate to rise (relative to µb + σ2
R). Alternatively, it may be read as requiring low

input price inflation (assuming µR − σ2
R > 0); but, of course, if µR = 0 (zero resale drift), this

condition cannot be satisfied (with our assumed positive µb). If the condition holds, then for
values R0 > R#

0 we have 1/R0 > P1(R0) and the possibility of resale occurs (i.e. Γ0 = (R#
0 ,∞)).

This case is illustrated by the following figure.
Given our earlier discussion it is now not surprising that the RO policy is not optimal for

R0 close enough to 1.
However, asymptotic dominance between the two curves, occurring when eαR+µb > 1, is

not a sufficient condition for characterizing P1(R0) > 1/R0 for all R0, since σR > 0 introduces
additional convexity, as we have indicated earlier.

Changing point of view with αR fixed we rewrite the first-order condition in the format

1 > R0P1(R0),

put
e−µbR0P1(R0) =def Q(R0)
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to factor out dependence on eµb and investigate this function analytically15; evidently Q(R0) =
E[R0

R1
|R0] is the expected resale ratio. A routine calculation leads to the following.

Lemma 3 (Behavior of the resale ratio). Q(1) = 1 and the initial slope at R0 = 1
of Q(R0) is (1 − eµR), whilst the second derivative is 2eµR(eµR+σ2

R − 1); thus for µR > 0 the
function is initially decreasing and for µR ≤ 0 and σR > 0 the function is initially increasing.
The asymptotic value as R0 → +∞ is eαR.

If µR < 0 it is helfpul to note the limiting case when σR = 0 , as we then have

Q(R) =
e−µRR

R− (1− e−µR)
,

which is increasing in R; since Q(1) = 1, it follows that Q(R) = e−µb is insoluble for R > 1
under our assumption that µb > 0, that is, in this case R0P1(R0) > 1 for all R0 > 1. Thus Γ0

is empty. This continues to be true for σR > 0 with µR ≤ 0.
If µR > 0, two forms of behavior occur according as the expected resale ratio

lim
R0→+∞

E(
R0

R1

|R0) = eαR

is greater than unity or less than unity (i.e. respectively αR ≥ 0 or αR < 0 ).
In the first case, see Figure 7, the equation

Q(R0) = e−µb

has two solutions for all µb with 0 < µb < µ∗R, where

µ∗R = − ln

(
inf
R0

Q(R0)

)
,

with one or no solutions according as µb = µ∗R or µb > µ∗R.
In the second case, we have to distinguish between σR > 0 and σR = 0,see Figure***(i) and

(ii).

15The definition of P1 includes the factor γ with a later generalization in mind, see the following section.
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When σR > 0, or equivalently µR > σ2
R , there are two critical values of µb. For µb < −αR

there is only one solution, i.e. Γ0 is a half infinite interval with left end-point to the right of
R0 = 1; otherwise for µb with µ∗R ≥ µb > −αR the interval Γ0 is bounded; and for µb > µ∗R the
interval Γ0 is empty (i.e. resale is never optimal).

When σR = 0, or equivalently µR > 0 , the two critical values coincide, so that αR = −µ∗R =
ln (infR0 Q(R0)), i.e. Γ0 is always a half infinite interval with left end-point to the right of
R0 = 1. Using the lemma it is easy to compute an under-estimate of the left-hand end-point
as

R#
1 ≈ 1 +

1− e−µb

eµR − 1
.

3.5 The M-S diagram in the two period geometric Brownian resale
rate setting.

For a simple diagrammatic representation of parameter values under which reversal is optimal
we turn the three parameter setting into a revised two-parameter description. Choosing to hold
µR constant and positive we can consider the dimensionless parameters of relative price drift
and realtive resale variance:

M =
µb

µR

, S =
σ2

R

µR

.

Here M is a natural measure of comparison for the two drifts. This choice of parameters leads
to the following Figure 8 in the positive MS quadrant. It is helpful to take note of certain
extreme values.

3.5.1 Single switching boundary S + M = 1

We have seen that the single switching regime (Γ0 = [R#,∞)) occurs when αR + µb < 0. Its
boundary in revised parameter notation is S +M = 1. Along this boundary we have R## = ∞.

3.5.2 Zero inflation M = 0

The limiting case M = 0 has R# = 1 (because P1(1) = 1 ); we have seen that for S ≤ 1 we
have Γ0 = [R#,∞) . For S > 1 and M = 0 by the Lemma Γ0 is necessarily a bounded interval.
The limiting case at S = 1 has R## = ∞.

3.5.3 Zero volatility S = 0

Evidently in this case we have

P1(R) =
eµb

1 + eµR(R− 1)
.

We conclude that for M ≥ 1 and R ≥ 1

P1(R) >
1

R
,
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and so Γ0 is empty, i.e. reversal is sub-optimal. We also conclude for M < 1 that

P1(R) <
1

R
if and only if R >

1− e−µR

1− e(M−1)µR
= R#,

i.e. Γ0 = [R#,∞) here, and this agrees since we are below the single switching boundary. We
note that for large R we have approximately that

∂P1

∂σ
=

2σeαR+µb

R
> 0

showing that for M = 1 and S > 0 we also have Γ0 empty as we move vertically into the interior
of the quadrant.

3.5.4 Second switching boundary

For 0 < M < 1 there is an S = S∗ > 1 − M such that Γ0 a bounded interval [R#, R##]
whenever S < S∗; this was deduced from Lemma 3. At S = S∗ we evidently have R# = R##

and for S > S∗ we have Γ0 empty. The curve S = S∗(M) may thus be termed the Double
Switching Boundary which separates the irreversible region from the reversible. This curve is
tangential to the line S = 1−M at M = 1 and is asymptotic to the vertical at M = 0.

Having now concluded our discussion of the two period policy space our next consideration is
how to generalize the results for N > 2 periods. In Appendix 1 we present the analysis and
a numerical example in the case N = 3. To summarize those findings intuitively we find that
the results depend on the values for M and S (defined in subsection 3.5) and the value of the
expected proportional price increase:

γi =
E[bi|bi−1]

bi−1

.
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In the case the expected proportional price drift γi is constant, we are able to identify the
following characterization16 of the N -period policy space:
i) (Existence of a double switching regime)
If 1 −M < S < S∗(M); for all n < N − 1, ΓN−1 = [1,∞) and the reversal range Γn is empty
or takes the form of an interval [R#

n , R##
n ] and is shrinking as n decreases.

ii) (Existence of a single switching regime)
If M + S < 1; for all n the reversal range Γn takes the form of an interval [R#

n ,∞) which is
expanding as n decreases (i.e. with R#

n decreasing as n decreases).
iii) (Existence of an irreversible regime)
If M ≤ 0 or M > 1 or S > S∗(M); for all n < N − 1 there is no reversal of investment.

4 RE-INTERPRETING THE ABEL AND EBERLEY

MODEL IN OUR FRAMEWORK

Abel and Eberley (1996; hereafter A&E) provide an infinite horizon model of optimal investment
reversibility in which investment is made (or reversed) at each moment of time t at a unit cost
of say pt (respectively pt/R with R > 1) with constant depreciation δ; suppose that at time t an
amount, say vt, of (investment) input is consumed in production to obtain revenue. In the next
period before the managers decide to increase or decrease investment by an amount zt there
is already available for consumption an amount vt(1 − δ) for the period. When interpreting
the form of their investment policy within in a discrete time framework, one must therefore
recognize that a decision to hold vt at time t makes available for future consumption (in the
production process) inputs of (1− δ)vt, (1− δ)2vt,... respectively at times t + 1, t + 2, ... . Let
us define a unit standardized investment annuity with parameter δ to be a contract for the
supply of the following discrete inputs:

1, (1− δ), (1− δ)2, ... ,

(an input stream) supplied at the discrete decision times all the way to termination of pro-
duction. It is easy to interpret their model in terms of our variables provided input price is
measured relative to output prices17 and assuming for just a moment an infinite horizon; if pt

is the price of a unit standardized annuity contracted at time t we set our input price bt equal
to the effective price per unit input in the total stream supplied by the annuity. This leads to

pt =
bt

δ

giving the simple scaling relation bt = δpt between the prices of the two formulations. Of course,
in the finite horizon N -period setting of our model we shall have for each time t = 0, 1, ..., N−1

16Recall S∗(M) is defined in subsubsection 3.5.4.
17Actually, A&E model the input price as constant and have the production function with a geometric

Brownian coefficent, raised to an appropriate power dictated by homogeneity concerns; the inverse of which
constitutes an input price pt and that too therefore remains geometric Brownian.
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the slightly more awkward relation
pt = btAt(δ),

where
At(δ) = 1 + (1− δ) + (1− δ)2 + ... + (1− δ)N−t−1,

so that bt will be geometric Brownian if pt is, albeit with a shift in drift caused by the deter-
ministic multiplier At(δ).

In the A&E model the manager needs to purchase input optimally given the depreciation
rate δ. One issue left open is how the choice of δ is made. Our own model prescribes a choice
for δ on grounds of depreciation that could easily be interpreted in terms of optimal ‘physical’
useage. We have previously defined optimal investment in terms of optimal choice over u∗,
however, this can be reinterpreted in terms of a choice of an optimal depreciation rate δ∗ so
as to allow for more direct comparison between the models. Thus, if vt is the opening stock
of any period and zt is the additional optimal purchase at the beginning of this period, then
vt + zt is split up into two portions vt + zt− ut for immediate use and ut for subsequent use. In
contrast to the A&E model we are in effect depreciating the first part of the acquired input at
a rate δ = 1 and the second at a rate δ = 0. However, such a dichotomous depreciation policy
is equivalent to an implied (average) depreciation rate of

δ∗t (vt) =
vt + zt − ut

vt + zt

between the current and next period. In the two-period model (N = 2) with an opening stock
v0 = 0 and with b0 = 1 it is optimal to choose z0 so that z0 = 1 + u where u is the optimal
investment for use in period two; this leads to the formula

δ∗0(0) =
1

1 + u
>

1

2

(we note that u < 1 as g̃ > 1) which secures optimal decision-taking for that model. The

formula continues to be valid for v0 < 1 + u by Lemma 3. Evidently, if v0 > 1 + u we have by
(8) that

δ∗0(v0) =
v0 − u1(v0, 1)

v0

,

with u1(., .) defined as in section 2.1. Thus in a three period model (N = 3) after choosing
the initial optimal depreciation rate the manager observes b1 and at this stage must reselect
a depreciation rate; the new rate is de facto a two-period initial rate δ∗0 the value of which is
dependent on the stock in hand, i.e. need not be time invariant. However, we find that at any
time the optimal depreciation rate decreases with the volume of stock in hand to a limiting
value. This illustrates the qualitative significance of adopting a finite horizon model.

Lemma 4. (Optimality of asymptotic straight-line depreciation.) In the N -period
model with a time-invariant Cobb-Douglas production function (say xθ/θ), a geometric Brown-
ian input price and equal-lengthed periods we have for t = 0, 1, ..., N − 1

lim
vt→∞

δ∗t (vt) =
1

N − t
,
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and in particular, for the two period model with N = 2

lim
v0→∞

δ∗0(v0) =
1

2
.

Proof. See [Gietzmann and Ostaszewski (1999b)].

We may call δ∗0 = δ∗0(0) the optimal endogenous rate and it is evident that this useage-
depreciation rate is determined by the production technology18. We shall establish below that
it is the optimal depreciation rate in the sense that (in the two-period model) the return is
maximised over δ if and only if it takes the value δ = δ∗0.

In order to gain intuition we analyse the two-period irreversible model in the following
subsection. Then in the next subsection we consider the arbitary N -period setting and consider
the generalized reversible setting.

4.1 The Irreversible Case

In this section we study the two period model with the aim of proving the following.
Proposition 1. In the two-period irreversible model when a manager commences by contracting
an optimal number z0 of units of standardized annuity with depreciation parameter δ, the return
is maximised over δ if and only if it is fixed at

δ = δ∗0.

Proof. In this subsection assuming v0 = 0 we have v1 given by

(1− δ)z0 =def v1

where we select z0 initially for use in the first period (begining at t = 0). In the two period
irreversible model since revenue generation ends at t = 2, the annuity value of a standardised
unit is:

A0(δ) = 1 + (1− δ)

= 2− δ.

Now at the beginning of the final period when b1 is revealed, assuming irreversibility, the firm
needs to solve the usual re-investment (z ≥ 0) decision problem of maximizing:

2
√

v1 + z − b1z,

18We have computed (see Appendix 3) that in the two period model when the production function is Cobb-
Douglas of form xθ/θ the rate is

δ∗0(θ) = (1 + g̃1/(θ−1))−1,

where g̃ is the solution to equation (15), i.e.
1 = Ψ(g̃, 1)

and so depends only on µb, σb.
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where, as before, we shall have z > 0 provided

1

b2
1

− v1 > 0.

The final period return is equal to

b1v1 +
1

b1

,

obtained by replacing u by v1 in (4), giving the expected return for the final period as:

F (v1, b0) =

∫ 1/
√

v1

0

(
b1v1 +

1

b1

)
q(b1|b0)db1

+

∫ ∞

1/
√

v1

2
√

v1q(b1|b0)db1.

Thus, as before,

F ′(v1, b0) =

∫ 1/
√

v1

0

b1q(b1|b0)db1 +
1√
v1

∫ ∞

1/
√

v1

q(b1|b0)db1.

Consequently the optimal choice of z0 is obtained by solving the maximization problem

2
√

z0 − b0z0(2− δ) + F (v1, b0)

for which the first-order condition is

(2− δ)b0 − 1√
z0

= (1− δ)F ′(v1, b0),

or writing b̃δ
1 = 1/

√
v1 we have

(2− δ)b0 − b̃δ
1

√
1− δ = (1− δ)

(∫ b̃δ
1

0

b1q(b1|b0)db1 + b̃δ
1

∫ ∞

b̃δ
1

q(b1|b0)db1

)
,

or, making the natural reference to the opening prices as a numeraire through the substitution
b1 = b0g, b̃δ

1 = b0g̃
δ
1,

(2− δ)− g̃δ
1

√
1− δ

1− δ
=

∫ g̃δ
1

0

gq̃(g)dg + g̃δ
1

∫ ∞

g̃δ
1

q̃(g)dg

= defΨ(g̃δ
1, 1) = F ′(v1, 1).

This implies that g̃δ
1 is defined as an intersection point of the rising graph of Ψ(g̃δ

1) with the
linear graph of the function

(
(2− δ)− g̃δ

1

√
1− δ

)
/(1− δ) which has therefore slope −1/

√
1− δ

and horizontal intercept at (2 − δ)/
√

1− δ. The intersection point g̃δ
1 strictly increases with
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Figure 9: The irreversible A&E annuitized censor

δ from values below g̃ to infinity. For an appropriate choice of δ we have g̃δ
1 = g̃, where g̃ is

defined by Ψ(g̃) = 1. Hence

(2− δ)− g̃
√

1− δ

1− δ
= Ψ(g̃) = 1,

so g̃
√

1− δ = 1, so that

δ =
1

1 + u
= δ∗, (36)

where ũ = 1/g̃2 = 1/(g̃δ
1)

2 = vδ
0 = v0(1− δ) is the optimal second period investment via either

approach; since ũ = v0(1 − δ) the equation (36) implies that v0 = 1. For other values of δ
we have g̃δ

1 6= g̃ and so both v0 6= 1 and ũ 6= v0(1 − δ) simultaneously. But v0 = 1 optimizes
2
√

v0 − v0 and u = ũ optimizes
F (u, 1)− u.

It follows that unless δ = δ∗ we have

2
√

v0 − v0 + F (v0(1− δ), 1)− v0(1− δ) < 1 + F (ũ, 1)− ũ.

4.2 The Reversible Case

Let us now comment briefly on the reversible case. Our aim here is to derive the A&E range
of inactivity corresponding to the optimality of the IO policy in our terms. Recall that in our
model, if the resale rate is constant no resale occurs until the last period. We now show that in
the model where only annuities may be purchased and the resale rate is constant, say Rt = R
for all t, there is a range of values of δ for which resale is optimal. The time t optimization
problem takes the form

2
√

vt + zt + Ft((1− δ)(vt + zt), bt)− At(δ)ctzt,
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where ct = bt when zt > 0 and ct = bt/R when z < 0, corresponding to buying or selling back
an annuity. The first order condition in zt is thus

At(δ)ct − 1√
vt + zt

= (1− δ)F ′
t((1− δ)(vt + zt), bt).

Writing b̃δ
t = 1/

√
(1− δ)(vt + zt) and again making the natural reference to the numeraire

through substitution bt+1 = btg, b̃δ
t = btg̃

δ
t we have

At(δ)/R− ĝδ
t (R)

√
1− δ

(1− δ)
= ΨR,t(g̃

δ
t (R)),

where R = bt/ct is either 1 or R i.e. R ∈ {1, R}.
To characterize ΨR,t(g̃) we need to generalize the result (37) above for any constant R on

the assumption that resale is possible in each period (for large enough v). In this case we have

F ae′
t−1(v, bt−1, R) = At(δ)

∫ B(v)

0

btq(bt|bt−1)dbt

+

∫ B(v,R)

B(v)

(
1√
v

+ (1− δ)F ae′
t ((1− δ)v, bt)

)
q(bt|bt−1)dbt

+At(δ)

∫ ∞

B(v,R)

bt

R
q(bt|bt−1)dbt.

To understand the formula, observe that the first and third term are the usual investment and
disinvestment terms as in (22) now adjusted for the annuity effects At(δ); the middle term arises
through differentiation with respect to v from the revenue in the period beginning at time t− 1
and the expected subsequent revenue when only depreciation occurs (i.e no new investment or
disinvestment), i.e. differentiation of

2
√

v + F ae
t ((1− δ)v, bt).

The range denoted generically by the limits [B(v), B(v, R)], indicates that we assert that there
is a price range for which the stock in hand of v is too large for additional investment and too
small for disinvestment.

It is now easy to see that the expected marginal revenue has lowest value

At(δ)

R
E[bt|bt−1]

and highest value
At(δ)E[bt|bt−1].

For each value of R ∈ {1, R} we have a potential intersection point of the ΨR,t(g̃) curve and
the line with slope −1/

√
1− δ.
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Figure 10: Reversible model: The A&E price-censors for investment (upper) and disinvestment
(lower); their ‘reciprocals’ determine the low and high v triggers.

The two lines corresponding to the two possible values of R are evidently parallel and have
vertical intersect at

At(δ)

R(1− δ)
.

When R = R the intersect is below the infimum of the ΨR,t(g̃) curve if

At(δ)

R(1− δ)
<

At(δ)

R
E[bt|bt−1]

i.e. if 1 < (1 − δ)E[bt|bt−1], whereupon there is no trigger for a sell-back. However, if 1 >
(1− δ)E[bt|bt−1], the trigger exists, so for consistency we assume this to hold.

For R = 1 the interesect At(δ)/(1−δ) is above the infimum provided R > (1−δ)E[bt|bt−1], so
if the trigger is to exist this second condition is automatically satisfied and so we have recovered
the A&E result in qualitative form, namely that if the stock in hand at time t is vt and falls in
the range

1

(g̃δ
t (R)bt)2(1− δ)

≤ vt ≤ 1

(g̃δ
t (1)bt)2(1− δ)

,

then no adjustment of investment occurs, but for vt below this range additional investment is
required, whilst for vt above this range disinvestment is required.

5 SUMMARY AND CONCLUSION

We have developed a model of the optimal investment and divestment policy which takes place
within a finite horizon setting. Unlike infinite horizon formulations our finite horizon model is
able to capture end period effects which firms may in practice face.
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For one class of simple distributions we then show that the optimal reversibility policy
is characterized as a (single) trigger policy similar in spirit to that derived in infinite hori-
zon settings. However, we then show how sensitive this comparability result is to the specific
distributional assumption. This arises because applying another often used distributional as-
sumption (geometric Brownian motion), the parameter range over which reversal is optimal is
qualitatively different since a twin trigger policy may then be optimal.

The intuition for optimality of a twin switching policy space is as follows. Given that in our
model setting, the investment asset price is expected to rise, there is ceteris paribus always a
tendency to hold back with resale in order to gain as much as possible from a future resale. That
is if the resale rate is a fixed proportion of the current market rate, delaying resale increases the
return to the firm. We describe this tendancy as the hoarding pressure. However, in our view
it does not seem reasonable to assume that the resale rate will remain a constant proportion of
the asset price and so we have explicitly allowed for the resale rate to evolve stochastically as
well. If the resale rate is expected to fall through time we describe this situation as the capital
over supply pressure. In such a setting then a firm has to balance potential hording benefits
against potential over supply costs.

In the simplest context of an iid resale rate, the balance is simply between the two growth
rates - one in price and one in the discount rate (for resale). There exists a simple switching
regime which agrees with simple intuition: resell when the resell rate is sufficiently close to
unity, that is when the sale price for the asset is close to the market rate. Our technical
analysis makes precise what is precisely meant by sufficient.

However we find this simple intuitive result does not carry over to the case where we as-
sume that the discount rate, Rt − 1 follows a geometric Brownian motion. following the same
comparative argument as above we commence by comparing the current resale price 1/R0 to
that expected in the next period, inclusive of price inflation. However, critically this time the
expectation is a convex function of R0, whose value is asymptotically a constant multiple of the
current ‘resale price’.

b0

R0

>
1

b0

E[
b1

R1

|R0, b0] =
E[b1|b0]

b0

· E[
1

R1

|R0] ≈ eµb

R0eµR−σ2
R

The convexity of E[ 1
R1
|R0] as a function of R0 is influenced by the variance σ2

R in such a way
that the dominance of current resale occurs in quite different circumstances than in the iid case.
That is we have shown that dominance may be altogether absent, it may be present only for
an intermediate interval of values of Rt, or it may be present only for very large Rt.
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6 Appendix 1: The general N-period model

We begin by observing how formula (21) generalizes beyond two periods. We expect two regimes
in the time period between tn and tn+1: one in which resale (reversal) of part of the opening
stock is optimal, when the resale rate Rn lies in the set Γn and a complementary one in which
resale is never optimal, i.e. for Rn lying in Γ̃n, the complement of Γn. Thus given observation
of a resale rate Rn ∈ Γn the optimal value function is made up of three integrals over the U,
IO and RO ranges respectively:

F ′
n(vn, Rn, bn−1) =

∫ b̃n(vn,1)

0

bnq(bn|bn−1)dbn + (37)

∫ b̃n(vn,Rn)

b̃n(vn,1)

F
′
n+1(un+1(vn, bn), bn, Rn)q(bn|bn−1)dbn +

1

Rn

∫ ∞

b̃n(vn,Rn)

bnq(bn|bn−1)dbn.

Here un+1(v, b) is the direct generalization of the function solving the investment problem at
time tn (for use in the next period) when the opening stock v is held and the current input
price is b. The bar notation in the second term implies that the future marginal revenue term
is an expectation over future resale rates Rn+1 given the current Rn value. It is important to
notice the behavior of this expression as vn →∞. We shall show that

F ′
n(∞, Rn, bn−1) =

1

Rn

∫ ∞

0

bnq(bn|bn−1)dbn =
E[bn|bn−1]

Rn

.

In contrast given observation of an Rn ∈ Γ̃n resale is not optimal and the optimal value
function is made up of two integrals over the U and IO ranges, giving:

F ′
n(vn, Rn, bn−1) =

∫ b̃n(vn,1)

0

bnq(bn|bn−1)dbn +

∫ ∞

b̃n(vn,1)

F
′
n+1(u(vn, bn), bn, Rn)q(bn|bn−1)dbn. (38)

Likewise, appealing to some homogeneity, we shall prove that in this regime

F ′
n(∞, Rn, bn−1) =

∫ ∞

0

F
′
n+1(∞, 1, Rn)bnq(bn|bn−1)dbn

= F
′
n+1(∞, 1, Rn)E[bn|bn−1].

Thus in computing F
′
n we need to mix the marginal revenues F ′

n occurring in the two regimes

as two integrals over Rn, one in the range Γn and the other in the range Γ̃n. This yields the
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following infimum marginal expected return formula.

bn−1 inf
vn

F
′
n(vn, 1, Rn−1) = E[bn|bn−1] ·

{E[
1

Rn

|Rn ∈ Γn, Rn−1] + E[F
′
n+1(∞, 1, Rn)|Rn ∈ Γ̃n, Rn−1]}. (39)

This is the generalization of (21) and evidently, as before, its form reflects the independence
of the Rt and bt processes. The proof of this generalization depends on a detailed recursive
analysis which we give in Appendix 2A. We confine ourselves to a very brief outline of the main
ideas here; we then clarify the recursive nature of (39) drawing general conclusion about the
nature of reversability and follow this with a study of the log-normal case and an illustrative
example for the three period model.

6.1 Key points in the derivation of the formula.

The key observation is that the function u = un(v, b) solving the investment problem at time
tn (for use in the next period)

1√
v − u

= F
′
n(u, b) (40)

may be rescaled; if we write ũ = ub2, ṽ = vb2 we obtain in ‘numeraire-form’ the equation

1√
ṽ − ũ

= F
′
n(ũ, 1). (41)

Letting the solution of (41) be ũn(ṽ) the carry forward hedge given a prevailing price b is then

un(v, b) = ũ(vb2)/b2.

¿From here one proves a monotonicity lemma that the function un+1(v, b) is monotonically
increasing in the input stock v. The argument depends only on the inductive hypothesis that
F
′
n(u, b) is decreasing in u and has some (restricted) homogeneity in b. The other ingredient is

to prove lemmas justifying the ranges for the optimality of each of the three regimes U,IO,RO.

6.2 Recursive structure of the reversal ranges Γn

We wish to show that the sets Γn are defined explicitly by inductive application of (39). Recall
that the price sequence in the N -period model is b0, ...., bN−1 and that FN = 0 (since there
is no further economic activity after tN). Let us write γi for the ratio E[bi|bi−1]/bi−1, which
we assume, for simplicity, to be deterministic, and let us put Pi(R) = F̄ ′

i (∞, 1|R); we have of
course PN = 0. We may rewrite the recursion (39) in the form:

Pi(Ri−1) = γi

{
E[

1

Ri

|Ri ∈ Γi, Ri−1] + E[Pi+1(Ri)|Ri /∈ Γi, Ri−1]

}
. (42)
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Since ΓN−1 = [1,∞) we have

PN−1(R) = γN−1

∫ ∞

1

ρ(R′, R)

R′ dR′ ≤ γN−1, (43)

the equality being strict unless all the probability resides at R = 1. We need this inequality for
the Appendix 2A. We notethat when N = 2 this notation coincides with our earlier notation
for P1(R)and so expalins the reason for including the factor γ.

Once PN−1 is defined we may obtain ΓN−2 via (54) as the set {R ≥ 1 : 1 > RPN−1(R)}.
Suppose for example that ΓN−2 = [R∗

1,∞) then

PN−2(R) = γN−2

∫ ∞

R∗1

ρ(R′, R)

R′ dR′ + γN−2γN−1

∫ R∗1

1

∫ ∞

1

ρ(R′′, R′)ρ(R′, R)

R′′ dR′′dR′.

This function in turn allows us to determine ΓN−3 and so on. Thus the sequence Pi is well-
defined.

Note that since 1 < RiPi(Ri) for Ri /∈ Γi (i.e. Pi > 1/Ri) we have by (42) in general that

Pi(R) ≥ γi

∫ ∞

1

ρ(R′, R)

R′ dR′ =
γi

γN−1

PN−1(R).

6.3 The log-normal model

We investigate this sequence for the log-normal distribution. We re-write the recursion thus

Pi(R) = γi

∫

wΓi

ϕ(w)dw

1 + R̃eσw+m
+ γi

∫

wΓ̃i

Pi−1(1 + R̃eσw+m)ϕ(w)dw,

using the transformation

w = wR(R′) =def
ln(R̃′/R̃)−m

σ
, (44)

where ϕ(w) denotes the standard normal density, m = mR = µ− 1
2
σ2 and we have suppressed

the subscript i on m,µ and σ; recall that R̃ = (R − 1). Evidently PN−1(1) = γN−1 and more
generally Pi(1) ≥ γi with equality iff Γ̃i is bounded. To see this notice that one of Γi, Γ̃i

is bounded, and observe that if ∆ is a bounded interval then, in the limit as R → 1+, its
boundary ∂∆ is taken under w to one point at infinity:

w∂∆ → +∞,

and is similarly taken to -∞ as R →∞. If Γi is unbounded we obtain γiPi−1(1) ≥ γiγi−1 > γi.
We differentiate to obtain (since the integrand is continuous across the boundary of Γi) the

result:

P ′
i (R) = −γi

∫

wΓi

ϕ(w)eσw+mdw(
1 + R̃eσw+m

)2 + γi

∫

wΓ̃i

P ′
i−1(1 + R̃eσw+m)eσw+mϕ(w)dw.
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Hence by induction P ′
i (R) < 0 and in particular the function is bounded on [1,∞).

The earlier observation about the transformation of bounded intervals allows us to show
inductively that Pi(R) is asymptotic to Ai/R as R → ∞ for some constant Ai. Thus if Γ̃i is
bounded we have

Pi(R) ∼ eαγi

R

where αR = σ2
R − µR; whereas if Γi is bounded we have

Pi(R) ∼ Ai−1

R
γi

∫

wΓ̃i

e−σw−mϕ(w)dw =
Ai−1γie

α

R
.

The calculation in the former case relies on the boundedness of Pi−1 and the following applica-
tion of l’Hôpital’s rule to R

∫
wΓ̃i

P ′
i−1ϕ(w)dw. Let W = W (R) = wR(R∗) where R∗ is the right

end-point of Γ̃i, then since R = R∗e−σW−m , by (44), we have

lim
R→∞

∫ W

−∞ ϕ(w)dw

1/R
= lim

R→∞
−R2ϕ(W )W ′ =

R∗

σ
lim

W→∞
e−σW−mϕ(W ) = 0,

as W ′ = 1/(σR̃). The latter case is treated similarly.
We note the over-estimate

PN−1(R) < γN−1

∫ ∞

−∞

ϕ(w)dw

R̃eσw+m
=

γN−1e
α

R̃
=

γN−1e
α

R− 1
. (45)

6.3.1 Situation with eαγ < 1 (αR + µb < 0) :

In the case when eαγN−1 < 1 it is possible to solve the inequality RPN−1(R) < 1 by solving the
stronger inequality

ReαγN−1

R− 1
< 1

in view of (45) and this which holds when

1

1− eαγN−1

< R.

Thus R∗
1 < 1/(1− eαγN−1).

We may also usefully over-estimate of PN−2 when ΓN−2 = [R∗
1,∞). Letting W1 = W1(R) =def

wR(R∗
1), we have

1

γN−2

PN−2(R) =

∫ ∞

W1

ϕ(w)dw

1 + R̃eσw+m
+

∫ W1

−∞
PN−1(1 + R̃eσw+m)ϕ(w)dw,

<

∫ ∞

W1

ϕ(w)dw

R̃eσw+m
+ γN−1

∫ W1

−∞

eα

R̃eσw+m
ϕ(w)dw

=
eα

R̃
{Φ(−W1 + σ) + eαγN−1Φ(W1 − σ)}.
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Thus

PN−2(R) <
eαγN−2

R̃
{(1− eαγN−1)Φ(−W1 + σ) + eαγN−1}.

Now W1 = W1(R) is decreasing with R, so if eαγN−1 < 1, the function {(1− eαγN−1)Φ(−W1 +
σ) + eαγN−1} is increasing with R from eαγN−1 to unity. Hence

PN−2(R) <
eαγN−2

R− 1
. (46)

Then just as in the previous stage it is possible to solve the inequality RPN−2(R) < 1 by solving
the stronger inequality

ReαγN−2

R− 1
< 1,

which holds when R > 1/(1− eαγN−1). This gives R∗
2 < 1/(1− eαγN−1).

This method of overestimation may be applied inductively. Thus in this case for all i we
have Γi unbounded. We note the case µR = 0 is not included here since σ2

R > 0 and µb > 0.

6.3.2 Situation with eαγ > 1(αR + µb > 0) :

Here γ > eµR−σ2
R , i.e. selling price inflation may be considered ‘sufficiently strong’. Assuming

ΓN−2 bounded, we shall have PN−2(R) ∼ (eαγ)2/R so whilst in principle ΓN−3 will again be
bounded it is possible for ΓN−3 = ∅ depending on parameter choices. In any event we shall
have PN−3(R) ∼ (eαγ)3/R. It is thus likely for irreversibility to obtain throughout.

6.3.3 General conclusions

When the γi are all equal we find that there are several scenarios depending on the three
parameters.

i) The N -period double switching regime: 1 − M < S < S∗(M); for all n < N − 1,
ΓN−1 = [1,∞) and the reversal range Γn is empty or takes the form of an interval [R#

n , R##
n ]

shrinking as n decreases.
ii) The N -period single switching regime: (M +S < 1); for all n the reversal range Γn takes

the form of an interval [R#
n ,∞) which is expanding as n decreases (i.e. with R#

n decreasing
as n decreases).

iii) The N -period irreversible regime: M ≤ 0 or M > 1 or S > S∗(M); for all n < N − 1
there is no reversal of investment.

We give some worked examples in the case N = 3 illustrating these phenomena.
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6.4 Examples for N = 3.

Recalling the opening remarks of section 4 that we need to take a mix of the two formats (37)
and (38); from (39) we now need to solve

1

R0

= E[
eµb

R1

|R0, R1 ∈ Γ1]

+

∫ R#
1

1

(∫ ∞

1

e2µbρ(R2, R1)

R2

dR2

)
ρ(R1, R0)dR1.

Here with two periods each of unit duration remaining (i.e. γ1 = γ2 = eµb), on the left we have
the current resale input price (the buying price being normalized to unity); on the right the first
term corresponds to the discounted resale price in one period’s time, assuming resale may occur,
and the second term corresponds to the discounted price in two period’s time, both suitably
weighted by transition probabilities. The formula assumes that Γ1 is an infinite interval. The
corresponding formula when Γ1 = [R#

1 , R##
1 ] is

1

R0

= E[
eµb

R1

|R0, R1 ∈ Γ1]

+

∫ R#
1

1

(∫ ∞

1

e2µbρ(R2, R1)

R2

dR2

)
ρ(R1, R0)dR1

+

∫ ∞

R##
1

(∫ ∞

1

e2µbρ(R2, R1)

R2

dR2

)
ρ(R1, R0)dR1.

We have computed Examples 1 and 2 with µR = 0.07 and µb = 0.02 for two close values of
σR namely 0.24 and 0.2468, showing in the latter case endogenous irreversibility at time t = 0;
in the former case there is an expanding reversal range as time progresses.

7 Appendix 2A: Formula for the infimum value

In this section we prove the formula (39) which is at the heart of any resale. This will be done
by backwards induction standard to the dynamic programming approach. The calculations also
provide how much resale needs to be effected. We also identify the optimal investment policy.

7.1 Inductive hypotheses

We make the following inductive hypotheses on F
′
n(ũ, bn) which we verify for n = N −1 and

then show that the validity of the hypotheses at n implies validity at n− 1. In course of doing
this we will establish, also by backwards induction, the formula (39).

i) Homogeneity hypothesis:

F
′
n(u, bn) = bnF

′
n(ub2

n, 1). (47)
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Figure 11: Three-period Example 1: (i) Two periods to go and Γ is a bounded interval; (ii)
One period to go and Γ is a bounded interval; (iii) Reversible region Γ is a shrinking bounded
interval. (µR = 0.07, µb = 0.02, σR = 0.24.)
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Figure 12: Three-period Example 2: (i) Two periods to go and Γ is a small bounded interval:
close up; (ii) One period to go and Γ is empty: close up; (iii) Reversible region Γ is a shrinking
bounded interval.(µR = 0.07, µb = 0.02, σR = 0.2468.)
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It now follows that if in the carry-forward equation

1√
v − u

= F
′
n(u, bn). (48)

we write ũ = ub2
n, ṽ = vb2

n we obtain its ‘numeraire-form’:

1√
ṽ − ũ

= F
′
n(ũ, 1). (49)

Letting the solution be ũn(ṽ) , the carry forward hedge in (48) given a prevailing price bn is
then

un(v, bn) = ũn(vb2
n)/b2

n. (50)

ii) Concavity hypothesis:

F
′′
n(u, 1) < 0,

i.e. F
′
n(u, bn) is differentiable and decreasing in u.

7.2 Definitions

Next we need to formulate some definitions.
We begin by noting that just as in section 2.2 at time tn the firm must maximize over both

zn and xn the profit:
2
√

xn − cnzn + F n(vn + zn − xn, bn),

where cn = bn/R where R ∈ {1, 1/Rn},or

2
√

xn − cn(un − vn + xn) + Fn(un, bn),

where un = vn + zn − xn . We can re-write the first order condition for u = un

cn = F
′
n(u, bn)

divided through by bn as:
1/R = F

′
n(b2

nu, 1). (51)

Let u = ûn(R) denote the solution to (51) for bn = 1 whenever it exists (i.e. since F
′
n(u, 1) is

decreasing in u,this occurs when 1/R > F
′
n(∞, 1)); we note that the solution u = ûn(R, bn) to

F
′
n(u, bn) = bn/R

is then evidently

ûn(R, bn) =
ûn(R)

b2
n

,
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which is yet another manifestation of the homogeneity of the returns function. Its monotonicity
in bn is of paramount importance.

The manager selects either zn = 0, or the one of zn = z(Rn), or zn = z(1) whichever is
positive, where

z(R) =
R2

b2
n

+
ûn(R)

b2
n

− v,

or writing ûn = 1
g̃n(R)2

(as in (23))

z(R) =
1

b2
n

(R2 +
1

g̃n(R)2
)− v.

It is natural to invoke the Cobb-Douglas duality between input price and input quantity
and to write ûn(R)/R2 =def 1/Bn(R)2 (so that the hedge is compared against buying price

when R = 1 and against selling price when R = Rn). Thus z(R) = R2

b2n
(1+ 1

Bn(R)2
). We shall see

in Appendix B that ûn(R)/R2 has a limit as R →∞.

7.3 Base step of the induction

We verify the hypothesis when n = N − 1.
Recalling (22) from the two period setting, we have the following calculation at time tN−1

when RN−1 is just known but not bN−1. (since b̃N−1

bN−1
= 1√

b2N−2u
):

F ′
N−1(u,RN−1, bN−2) =

∫ 1/
√

b2N−1u

0

bN−1gq̃(g)dg +
bN−1√
b2
N−1u

∫ R1/
√

b2N−1u

1/
√

b2N−1u

q̃(g)dg (52)

+
1

R1

∫ ∞

R1/
√

b2N−1u

bN−1gq̃(g)dg

= bN−1F
′
1(b

2
N−1u,RN−1, 1),

showing the required homogeneity. See the Remark at the end of section 3.2 for the concavity
property.

7.4 A lemma

We now prove from our hypotheses the following.
Monotonicity Lemma. The carry-forward function un(v, bn) is monotonically increasing

in the input stock v.
Proof. Observe that from (50) we have:

∂

∂v
un(v, bn) = ũ′n(vbn)
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and we now show that
ũ′n > 0.

By (49) we have

ṽ = ũ + 1/F
′
n(ũ, 1)2

so differentiating with respect to ũ we have

ṽ′ = 1− 2F
′
n(ũ, 1)−3F

′′
n(ũ, 1) > 0

since by (28) F
′
n(ũ, 1) is decreasing.

7.5 Optimal investment policies

Returning to our analysis, we note that working with the first-order conditions we have identified
two policies which satisfy the internal first-order conditions (investment or reversal) and one
which is a corner solution (zero-investment). These generalize our earlier three policies.

For ease of notation we will write F for Fn whenever convenient.
It now remains to verify the circumstances under which the specific policy type dominates

the others.

7.5.1 Deterministic resale rate

In this subsection only we assume that for all n the discount rate Rn is constant and equal to
R. (The results of this section should be seen in contrast to those of the following subsection
where the rate is stochastic.) We now prove:

Dominance Lemma (Deterministic case). With a single discount Rn+1 = R and for
v > (R/bn)2 we have

2
√

v − u(v, bn) + F (u, bn) >
bn

R
v +

R

bn

+ F (0, bn)

> 2
√

v + F (0, bn),

that is the “no resale and zero-investment” policy dominates a policy of “efficient resale with
zero carry-forward” which in turn dominates “exhausting the stock without resale”.

We prove the result in a series of steps.
Observation 1. If bn < 1/

√
v, then we have

2
√

v + F (0, bn) < bnv +
1

bn

+ F (0, bn),

i.e. the acquisition strategy U dominates “immediate exhaustion of the stock”.
This is clear from completing the square.
Sublemma 1.In the constant resale ratio case we have for v > v = 1/(γbn)2 that

2
√

v − u(v, bn) + F (u, bn) > 2
√

v + F (0, bn),
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i.e. it is better to carry forward than to utilize all resources.
Sublemma 2. In the constant resale ratio case we have for v > v∗ = 1/cn where cn = bn

R
,

that

2
√

v − u(v, bn) + F (u, bn) >

(
cnv +

1

cn

+ F (0, bn)

)
,

i.e. it is better to carry forward than to sell off resources according to a first-order condition.
Proof of Sublemma 1. Define

∆1(v) =
(
2
√

v−+ F (u(v, bn), bn)
)− (

2
√

v + F (0, bn)
)

Differentiate ∆1(v) with respect to v to obtain

∆′
1(v) =

(
1− u′√

v − u(v, bn)
+ F ′(u, bn)u′

)
− 1√

v

and noting that the first-order condition (48) simplifies this to

∆′
1(v) =

1√
v − u(v, bn)

− 1√
v
.

Define v to be the largest v such that u(v, bn) = 0. Evidently the first order condition gives in
the limit as v tends to v from above that

1√
v

= F ′(0, bn) =def β(bn),

so
v = 1/β(bn)2.

Remark. We shall see that the definition above yields a generalization to any function F
representing the optimal future expected profit and irrespective of the number of periods to
expiry we shall have

βF (bn) =

∫ ∞

0

bnq̃(g)dg = bnγ.

This result is already obvious with one period to expiry from (22).
Thus ∆′

1(v) is positive as soon as u(v, bn) > 0 i.e. for v > v. Thus for v > v we have
∆1(v) > 0 as ∆1(v) = 0. We have just proved Sublemma 1.

Proof of Sublemma 2.
Let

∆2(v) =
(
2
√

v − u(v, bn) + F (u(v, bn), bn)
)
−

(
cnv +

1

cn

+ F (0, bn)

)

Differentiate ∆2(v) with respect to v to obtain

∆′
2(v) =

1√
v − u(v, bn)

− cn

= F ′(u(v, bn), bn)− cn
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which is positive since for any w we have by (25) that F ′(w, bn) > cn. Let v∗ = 1/cn, then we
have v∗ > v since

R
2

bn

>
1

γ2bn

is equivalent to γR > 1 (valid under our inflation assumption γ > 1). Thus from ∆1(v
∗) > 0

we obtain
(
2
√

v∗ − u(v∗, bn) + F (u(v∗, bn), bn)
)

>
(
2
√

v∗ + F (0, bn)
)

= cnv
∗ +

1

cn

+ F (0, bn),

i.e. ∆2(v
∗) > 0 and so ∆2(v) > 0 for v > v∗. This proves Sublemma 2.

Proof of Lemma: We note that for v ≥ 1/cn we have (completing the square) that

2
√

v ≤ cnv +
1

cn

with equality when v = 1/cn. Thus for v > 1/cn we have

2
√

v − u(v, bn) + F (u(v∗, bn), bn) > cnv +
1

cn

+ F (0, bn)

> 2
√

v + F (0, bn).

7.5.2 Stochastic resale rate

We contrast this result with the following.
Dominance Lemma (Stochastic case). With a stochastic discount, if Rn < R∗

n = 1/
(γE[1/Rn+1]) then for

w(bn, Rn) =
û(Rn)

bn

+
R2

n

bn

=
R2

n

bn

(û(Rn) + 1) ,

we have dominance of RO iff v ≥ w(bn, Rn), i.e.

cn(v − û) +
1

cn

+ F (û, bn) ≥ 2
√

v − u(v, bn) + F (u(v), bn),

with equality when v = w(bn, Rn). Here û = ûR1(bn) solves F
′
(û, bn) = bn/Rn.

Proof of lemma. We begin as usual by considering the difference

∆3(v) =

(
cn(v − û) +

1

cn

+ F (û, bn)

)

−
(
2
√

v − u(v, bn) + F (u(v), bn)
)

44



and note that as before

∆′
3(v) = cn −

(
1− u′√

v − u(v, bn)
+ F

′
(u(v), bn)u′

)

= cn − 1√
v − u(v, bn)

= cn − F
′
(u(v, bn), bn). (53)

Now F
′
(w, bn) is decreasing in w and if we may solve F

′
(û, bn) = bn/Rn = cn then ∆′

3(v) > 0
for v with u(v, bn) > û. Finally, if w = w(bn, Rn) is defined so that u(w, bn) = û we have

∆′
3(w) = 0

and so for v > w we have ∆′
3(v) > 0.

Now, since u(w, bn) = û, and

1√
w − u(w, bn)

= F
′
(û, bn) = cn

we have

w = û +
R2

n

bn

=
Rn

bn

(
û(Rn)2 + 1

)
.

Furthermore

∆3(w) =

(
cn(w − û) +

1

cn

+ F (û, bn)

)

−
(
2
√

w − û + F (û, bn)
)

= cn(
1

cn

) +
1

cn

− 2

cn

= 0.

Thus ∆3(v) > 0 for v > w. Of course the inequality is reversed for v < w (for then ∆′
3(v) < 0

by (53).
Remark. A similar argument may be applied to the function

∆(v) =

(
b(v − û) +

1

b
+ F (û, bn)

)
−

(
2
√

v − u(v, b) + F (u(v, b), b)
)

We note that letting

v(b) =
1

b2
+ û

we have
1√

v(b)− û
= b = F

′
(û, bn),
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so u(v(b), b) = û. Also
∆(v(b)) = 0.

Appealing to the Monotonicity Lemma, we have if v < v(b) that u(v, b) < u(v(b), b) = û. Thus

∆′(v) = b− F
′
(u(v, b), b) < 0.

so for v < v(b) we have ∆(v) > 0, i.e. topping up is prefered. Of course the carry-forward
option is unavailable as soon as u(v, b) = 0 i.e. when v = v. (see Sublemma 1). We note that
the monotonicity property implies that

v < v(b),

i.e. that
1

γ2
< 1 + û(1),

providing the lower bound

û(1) >
1− γ2

γ2
.

7.6 Form of F ′
n−1 and the infimum formula

The dominance lemma and the concluding remark together show which is the optimal policy
in the three ranges [0, v(b, 1)), [v(b, 1), v(b, R)), [v(b, R),∞) when R ∈ Γn. If R /∈ Γn we are left
with just the two ranges [0, v(b, 1)), [v(b, 1),∞).

Suppose the previous period buying-price was bn−1 and that a quantity v of input was
carried forward into the current period. Suppose the current resale rate is Rn, given these
three parameters, we may now compute the expected value over all prices bn of the production
from the current time onwwards, which we denote by Fn−1(v,Rn, b−1). There are two cases to
consider. First, when Rn ∈ Γn we have

Fn−1(v, Rn, bn−1) =

∫ b(v,1)

0

{bn(v − ûn(1, bn)) +
1

bn

+ F̄n(û(1, bn), bn)}qn(bn)dbn

+

∫ b(v,Rn)

b(v,1)

{2
√

v − un(v, bn) + F̄n(un(v, bn), bn)}qn(bn)dbn

+

∫ ∞

b(v,Rn)

{ bn

Rn

(v − ûn(Rn, bn)) +
Rn

bn

+ F̄n(ûn(Rn, bn), bn)}qn(bn)dbn.

Here b = b(v, R) solves the equation

v =
R2

b2
+

ûn(R)

b2
,

i.e.
b(v, R) =

√
R2 + ûn(R)/

√
v.
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To obtain the formula for Fn−1(v, Rn, bn−1) when Rn /∈ Γn, we drop the third term and replace
b(v, Rn) by +∞.

Using the fact that û(R, bn) = u(w(R, bn), bn), it is routine to verify that when Rn ∈ Γn

F ′
n−1(v,Rn, bn−1) =

∫ b(v,1)

0

bnqn(bn)dbn

+

∫ b(v,Rn)

b(v,1)

F̄ ′
n(u(v, bn), bn)qn(bn)dbn

+

∫ ∞

b(v,Rn)

bn

Rn

qn(bn)dbn,

where the prime denotes differentiation with respect to v. The form of the middle term is
derivable from the first-order condition (48). Evidently when Rn /∈ Γn we need to drop the
third term and replace b(v, Rn) by +∞; in this connection note that as bn tends to infinity

F̄ ′
n(u(v, bn), bn) = bnF̄

′
n(ũ(b2

nv)b2
n, 1) → bnF̄

′
n(∞, 1),

where we have use the homogeneity assumption (i). Suppose that the previous resale rate was
Rn−1. Taking expectations over Rn it now follows subject to some mild technical assumptions
connecting the inequality of growth rates (see the Appendix 2B) that

F̄ ′
n−1(∞, bn−1, Rn−1) = E[bn|bn−1]

{
E[

1

Rn

|Rn ∈ Γn, Rn−1] + E[F̄ ′
n(∞, 1, Rn)|Rn /∈ Γn, Rn−1]

}
.

At this stage the formula is true subject to our inductive hypotheses. It will therefore be
valid generally if the inductive hypothesis itself is validated. By the principle of induction all
we need to do is now to verify the hypothesis at n − 1. This we do by way of deductions this
recursion formula.

First notice that F̄ ′
n(u(v, b(v, R), b(v, R)) = F̄ ′

n(û(R, b(v, R), b(v, R)) = b(v, R) so we may
deduce that

F ′′
n−1(v, Rn, bn−1) =

∫ b(v,Rn)

b(v,1)

F̄ ′′
n (un(v, bn), bn)u′n(v, bn)q0(bn)dbn,

where as usual the prime denotes differentiation with respect to the input, here v. By the
Monotonicity Lemma u′ ≥ 0 (where defined) and by the inductive hypothesis F̄ ′′

n ≤ 0. Thus
F̄ ′′

n−1 ≤ 0. This verifies the concavity hypothesis (ii).
Next, since

b(b2
n−1v,R) = b(v, R)/bn−1

we have
F̄ ′

n−1(v, Rn, bn−1) = bn−1F̄
′
n−1(b

2
n−1v, Rn, 1).

Thus the homogeneity hypothesis (i) is satisfied by F̄ ′
n−1.
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The inductive hypotheses have thus been validated for all n.
We note from the concavity property that

F̄ ′
n−1(v, bn−1|Rn−1) ≥ F̄ ′

n−1(∞, bn−1|Rn−1), (54)

which we need elsewhere.

8 Appendix 2B: Passage to the limit

We prove
Proposition 1. Provided E[1/R] < ∞ we have

lim
u→∞

F̄ ′
1(u, bn) = E[

1

R
]E[b1|bn].

This result follows easily from the following lemma and equation (heart) on writing B = 1/
√

u.
Lemma A.

lim
B→0

∫ ∞

1

dR

∫ RB

0

bq(b)
ρ(R)

R
db = 0.

Proof. Changing the order of integration we need to consider two contributing integrals.

I1(B) =

∫ B

0

db

∫ ∞

1

bq(b)
ρ(R)

R
dR =

∫ B

0

bq(b)db

∫ ∞

1

ρ(R)

R
dR ≤ BE[

1

R
]

which tends to zero with B. Also

I2(B) =

∫ ∞

1

dR

∫ RB

B

bq(b)
ρ(R)

R
db ≤

∫ ∞

1

ρ(R)

R

{∫ RB

0

bq(b)db

}
dR

≤
∫ ∞

1

ρ(R)

R

{∫ RB

0

RBq(b)db

}
dR

≤
∫ ∞

1

ρ(R)

R

{∫ ∞

0

RBq(b)db

}
dR = B.

Place Diagram here.
Before stating and proving a fundamental technical result we amplify notation by giving a

time index to some already defined quantities. We thus recall.
Definition. At period i the optimal hedge quantity û(R) = ûi(R) is defined for R ∈ Γi by

F̄i(û(R), 1, R) =
1

R
.

We let
bi(v, R) =

√
1 + ûi(R)/

√
v.
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We now prove three propositions which together justify certain manipulations in section 4. We
write

Ei[
1

R′ |R] =

∫

Γi

ρi(R
′, R)

R′ dR′,

where ρi(R
′, R) is the resale rate density for period i when the previous resale rate was R.

Proposition 2. Suppose that Ei[1/R] < ∞ and that the function ûi(R)/R2 remains
bounded for i = 1, ..., N − 1. Then we have

lim
v→∞

∫

Γi

ρ(R′, R)

R′

∫ ∞

bi(v,R′)
qi(b)dbdR′ = γiE[

1

R′ |R′ ∈ Γi, R].

Proof. We consider Γi unbounded and follow Lemma A but this time write B = bi(v, 1) =√
1 + ûi(1)/

√
v, then

b(v, R) = B

√
R2 + ûi(R)

1 + ûi(1)
= Bfi(R).

Thus

fi(R)

R
=

√
1 + ûi(R)/R2

1 + ûi(1)

Since ûi(R)/R2 remains bounded let the bound be M . The proof of Lemma A now gives

I2(B) ≤
∫ ∞

1

ρ(R)

R

{∫ f(R)B

0

f(R)Bq(b)db

}
dR ≤ B · E[f(R)/R] ≤ B ·M.

We now prove inductively that ûi(R)/R2 remains bounded for each i. A technical assumption
will be needed. At each stage of the induction we shall invoke Proposition 2; we begin with
i = N − 1 and then embelish the argument.

Proposition 3. Suppose that limR→∞ E[ R
R′ |R] 6= 1/γN−1 then

√
ûN−1(R)/R remains

bounded.
Proof. We re-express the defining equation for û = ûN−1(R) in terms of the characterization

of F̄ ′
N−1(u, bN−2, RN−2). We will drop the tildes on q̃i(g) in the course of this proof and so write

for R ∈ ΓN−2 (which set we assume unbounded) as follows:

∫ 1/
√

û

0

bq(b)db + E[
1√
û

∫ R′/
√

û

1/
√

û

q(b)db +
1

R′

∫ ∞

R′/
√

û

bq(b)db|R] =
1

R
.

Suppose, if possible, that
√

û(R)/R → +∞ for some sequence of values of R tending to infinity,

so that R/
√

û(R) → 0 and 1/
√

û(R) → 0. Cross-multiplying by R and noting that

∫ 1/
√

û

0

bq(b)db ≤ 1√
û(R)

and E[

∫ R′/
√

û

1/
√

û

q(b)db] ≤ 1,
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we deduce from Lemma A that

lim
R→∞

γN−1E[
R

R′ |R] = 1

and this is manifestly a contradiction if limR→∞ EN−1[
R
R′ |R] 6= 1/γN−1.

Remark 1. The technical condition will be repeated each time, so we note now that
appropriate perturbations in the choice of the resale rate parameters may easily be made to
satisfy the omission of the stated values. Thus to all intents and purposes the function fi(R)/R
will always be O(1).

Remark 2. Evidently we have û∞ = limR→∞ û(R) = ∞. For, if 0 < û∞ < ∞ we shall have
in the limit that

0 <

∫ 1/
√

û∞

0

bq(b)db ≤
∫ 1/

√
û∞

0

bq(b)db +
1√
û∞

E[

∫ R′/
√

û∞

1/
√

û∞
q(b)db|R] = 0,

a contradiction (and the same idea applies if û∞ = 0). This observation enables us to see
why

√
û(R)/R has a positive limit when the resale rate follows an asymptotically proportional

process. Write y = R′/R and suppose for large R that the distribution of R′ has density
p(R′/R). Define

f(x) =

∫ ∞

0

{p(y)

∫ xy

0

q̃(g)dg}dy;

then f ′(x) =
∫∞
0

yp(y)q̃(xy)dy > 0 and f(0) = 0, f(∞) = 1. Write B = 1/
√

û(R). Letting λ
be the limit of BR as R →∞, we deduce from

BR

∫ B

0
bq(b)db

B
+ BR · E[

∫ BR′

B

q(b)db] +
1

R′

∫ ∞

BR′
bq(b)db|R] = 1.

that
λf(λ) = 1− eα

where eα = limR→∞ E[ R
R′ |R]. Hence if α < 0 we may solve for the unique λ such that

f(λ) =
1− eα

λ
,

to obtain
R/

√
û(R) → λ.

In the log-normal case we have R′ = 1 + (R − 1)eσw+m, so we compute, changing the order of

50



integration that

∫ ∞

1

dR′
∫ BR′

B

q(b)ρ(R′, R)db =

∫ ∞

B

db

∫ b/B

1

q(b)ρ(R′, R)dR′

=

∫ ∞

B

db

∫ W (b/B)

−∞
q(b)ϕ(w)dw

=

∫ ∞

B

Φ

(
ln b− ln B − (ln(R− 1) + mR)

σR

)
q(b)db

=

∫ ∞

W (B)

Φ

(
σbw + mb − ln B − (ln(R− 1) + mR)

σR

)
ϕ(w)dw

∼
∫ ∞

ln(BR)/σb

ϕ(w)dw = Φ(− ln(BR)/σb).

Here W (B) = (ln B−mb)/σb → −∞. The approximation to the integrand on the right-hand side
is obtained by noting that it is above 0.95 as soon as σbw+mb−ln B−(ln(R−1)+mR) ≥ 3σRσb,
i.e. approximately as soon as w ≥ ln(BR)/σb. We may thus obtain an approximation of sorts
ot λ by replacing f(λ) by Φ(−(ln λ)/σb) and solving the equation

Φ(−x) = (1− eα)e−σbx.

Proposition 4. Suppose that limR→∞ Ei[
R
R′ |R] 6= 1/γi where γi is the finite inflation rate

constant E[bi|bi−1]/bi−1 (for i = 1, ..., N − 1); then the functions ûi(R)/R2 remain bounded for
i = 1, ..., N − 1.

Proof. Again we will drop the tildes on q̃i(b) in the course of this proof. We repeat the
argument of the last proposition inductively. Begin as before for R ∈ Γi (assumed unbounded)
with the definition of ûi = ûi(R) (we drop the subscript i here whenever convenient).

R

∫ b(û,1)

0

bq(b)db + R · Ei−1[

∫ b(û,R′)

b(û,1)

F̄ ′
i−1(u(û(R), b), b, R′)qi−1(b)db +

1

R′

∫ ∞

bi−1(û,R′)
bq(b)db] = 1.

Again suppose that
√

û(R)/R → +∞, then we have û(R) →∞ so

bi−1(û, 1) =

√
1 + ûi−1(1)

ûi(R)
→ 0

for R → +∞ and for fixed R′

bi−1(û, R′) =

√
R′2 + ûi−1(R′)

ûi(R)
→ 0.
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Now F̄ ′
i−1(w, 1, R′) is decreasing in w so we have

∫ b(û,R′)

b(û,1)

F̄ ′
i−1(b

2ũ(û(R)b2), 1, R′)bq(b)db ≤ F̄ ′
i−1(∞, 1, R′)

∫ 1

0

bq(b)db.

We now have

lim
R→∞

R√
û(R)

· Ei−1[F̄
′
i−1(∞, 1, R′)|R] = 0,

since F̄ ′
i−1(∞, 1, R′) ≤ γi−1, by (43), and also

R

∫ bi−1(û,1)

0

bqi−1(b)db ≤ R · bi−1(û, 1) =
R√
ûi(R)

√
1 + ûi−1(1) → 0.

We deduce from Proposition 2 taking v =
√

ûi(R) → ∞ (since by inductive hypothesis√
ûi−1(R)/R remains bounded) that

lim
R→∞

γi−1Ei−1[
1

R′ |R] = 1,

contradicting our assumption. Hence after all
√

ûi(R)/R remains bounded.
Remark 3. Again we have û∞ = limR→∞ û(R) = ∞, by the same argument as in Remark

2.

One step in the above proof is required elsewhere in section 4 so we isolate it here.

Lemma B . Provided E[bn] < ∞ we have

lim
v→∞

∫ ∞

b(v,1)

F̄ ′
i (u(v, bn), bn)q0(bn)dbn = F̄ ′

i (∞, 1)E[bn].

Proof. Dropping the subscript i we have for any constant K that

lim
v→∞

∫ K

b(v,1)

F̄ ′(u(v, bn), bn)q0(bn)dbn = lim
v→∞

∫ K

b(v,1)

F̄ ′(bnũ(vbn), 1)bnq0(bn)dbn

= F̄ ′(∞, 1)

∫ K

0

bnq0(bn)dbn.

Also, since F̄ ′′ ≤ 0 we have F̄ ′(bnũ(vbn), 1)bn ≤ F̄ ′(0, 1)bn so

∫ ∞

K

F̄ ′(u(v, bn), bn)q0(bn)dbn ≤ F̄ ′(0, 1)

∫ ∞

K

bnq0(bn)dbn
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9 Appendix 3: Derivation of the endogenous rate

We show that in the two period model when the production function is Cobb-Douglas of form
xθ/θ the endogenous depreciation rate is

δ∗0(θ) = (1 + g̃1/(θ−1))−1,

where g̃ is the solution to equation (15), i.e.

1 = Ψ(g̃, 1)

and depends only on µb, σb. We note that

δ′(θ) =
g̃1/(θ−1)(1 + g̃1/(θ−1))−2 ln g̃

(θ − 1)2
,

is increasing.
Indeed, since the maximisation of

xθ

θ
− bx

occurs with x = b1/(θ−1) and has maximal value 1−θ
θ

bθ/(1−θ), it is easy to see that the same
addition to investment rules apply so that in the two-period case we have

F (u, 1) =

∫ uθ−1

0

(
1− θ

θ
bθ/(1−θ) + bu

)
q(b)db +

uθ

θ

∫ ∞

uθ−1

q(b)db.

Hence putting B = uθ−1 it is routine to verify that

F ′(u, 1) =

∫ uθ−1

0

bq(b)db + uθ−1

∫ ∞

uθ−1

q(b)db = Ψ(B, 1).

Thus the equation F ′(u, 1) = 1 has solution u = g̃1/(θ−1), where Ψ(g̃, 1) = 1, as asserted.
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Figure 13: Graph of the endogeneous depreciation rate δ∗0(θ) against Cobb-Douglas index θ
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