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Abstract. We introduce a limit order book model with a multiplicative relationship
between the unaffected price process and the shadow limit order book. This model can
be viewed as a multiplicative version of the limit order book model of Obizhaeva and
Wang [11], Alfonsi, Fruth and Schied [4] and Predoiu, Shaikhet and Shreve [12], which
have an additive relationship between the unaffected price process and the shadow limit
order book. In the multiplicative limit order book, the shadow order book scales with the
unaffected price process and bid prices remain positive for arbitrary sales orders, which is
not the case for the additive model. In particular, we show that the optimal purchasing
strategy and the optimal liquidation strategy are deterministic in the multiplicative limit
order book model, and that if the additive and the multiplicative models have the same
shadow limit order books at time 0, the optimal execution strategies for the two models
coincide.

1. Introduction

Recent years have seen an increasing interest in limit order book models and problems
related to optimal order execution. Obizhaeva and Wang [11] introduced a model for the
limit order book and addressed the problem of optimal purchasing within a given time-
horizon. In their model, they introduce the notion of the unaffected price process. The
unaffected price process represents the ask price if the large investor does not submit any
market orders. If the investor submits a market order, this has the effect of ”eating into” the
limit order book until the order is filled, thus affecting the ask price. The size of this effect
is determined by the shape of the shadow limit order book, which is assumed deterministic
and constant. In relation to our paper, we note that there is an additive relationship
between the randomness, represented by the unaffected price process, and the effect the
large investor’s trading is having on the ask price process. Obizhaeva and Wang [11]
assume that the ask price reverts to the unaffected price at an exponential rate, i.e. that
the market has exponential resilience. The problem they study is that of minimising the
expected cost of purchasing a given number of shares within a fixed time horizon. Because
of the additive relationship between the unaffected price process and the effect on the ask
price process due to the large investor’s trading, it is quite straightforward to show that
the optimal strategy is deterministic. Alfonsi, Fruth and Schied [4] generalised the limit
order book model of Obizhaeva and Wang [11] to incorporate more general strictly positive
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shape functions. They also introduced two different notions of exponential resilience, one
as in Obizhaeva and Wang [11], and one based on price. Predoiu, Shaikhet and Shreve [12]
further generalised the limit order book model to allow for a general shadow limit order
book shape (i.e. not necessarily strictly increasing and continuously differentiable as in [4])
and resilience based on a general function (i.e. not necessarily exponential resilience).

The aforementioned papers address the problem of minimising the expected cost of
purchasing, and do not explicitly address the related problem of optimal liquidation (i.e.
starting with a given position of shares, to maximise the expected cash position at a fixed
future time). To address this problem one needs to specify the bid price limit order book.
If these are specified according to the Obizhaeva and Wang [11] model, there is a positive
probability of negative bid prices if the large investor trades according to any non-trivial
strategy. Within the optimal execution literature, positivity of prices is not crucial. In
fact the Bachelier model forms the basis of randomness in a number of the more popular
models (see e.g. Almgren and Chriss [2], Almgren [3], Kissel and Malamut [10], Gatheral [7]
and Schied and Schöneborn [14]). However, models which exhibits positive prices have a
conceptual advantage. In this paper, we therefore propose a version of the Obizhaeva and
Wang [11] model (with the general specification of Predoiu, Shaikhet and Shreve [12])
with a multiplicative relationship between the unaffected price process and the effect on
the bid/ask price caused by the large investor’s trading. The multiplicative relationship
has the effect that the constant shadow limit order book scales with the unaffected price
process and that prices therefore remain positive. A version of this multiplicative model
with transaction costs, but without resilience, was introduced by Guo and Zervos [8], who
use singular control theory to obtain the optimal execution strategy. In our paper, we show
that the multiplicative model can be expressed in terms of the additive model of Obizhaeva
and Wang [11], but with a time varying stochastic limit order book. Fruth, Schöneborn and
Urusov [6] address the problem of optimal execution in an additive limit order book with
stochastic, time-varying linear impact using dynamic programming. Bank and Fruth [5]
address the problem of optimal execution in an additive limit order book with time-varying
deterministic linear impact and exponential resilience using convex optimization.

We show that for the multiplicative limit order book that we introduce, regardless of the
shape of the shadow order book, there exists an additive model with a shadow order book
which coincides with that of the multiplicative model at time zero. In this case we say
that the two models are equally calibrated at time zero, and provide an explicit formula
for the relationship between the two order books when this is the case. We then prove that
the optimal purchasing strategy for the multiplicative model involves no sales orders and
is deterministic, and that the optimal liquidation strategy involves no purchasing orders
and is deterministic. Due to the multiplicative relationship, this involves arguments which
differ from the additive case. We then show that if the multiplicative model and the
additive model are equally calibrated at time zero, the optimal purchasing strategy for the
multiplicative model coincides with the optimal purchasing strategy for the additive model,
and that the optimal liquidation strategy for the multiplicative model coincides with the
optimal liquidation strategy for the additive model. In view of the results of Predoiu,
Shaikhet and Shreve [12], which provide the solution to the optimal purchasing problem
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in the additive model, this provides the solution to the optimal execution problems for the
multiplicative model and demonstrate a kind of robustness for the optimal strategy.

The paper is organized as follows. In Section 1 and 2 we specify the full limit order
book corresponding to the model in Predoiu, Shaikhet and Shreve [12]. In Section 1 and
3, we specify the multiplicative version of the limit order book model, and in Section
4 we provide a basic connection between the additive and the multiplicative limit order
book models. In Section 5, we review the solution to the optimal purchasing problem
obtained by Predoiu, Shaikhet and Shreve [12], and provide a relationship between the
optimal purchasing problem and the optimal liquidation problem for the additive limit
order book model. In section 6 we provide the solution to the optimal purchasing problem
and the optimal liquidation problem for the multiplicative model by showing that if the
multiplicative limit order book has the same shadow limit order book as the additive model
at time 0, then the optimal strategies for the two models coincide.

2. Mathematical preliminaries and basic concepts

Throughout the paper we will consider a fixed time-horizon [0, T ], which represents
the time-horizon the large investor wants to either purchase Y > 0 number of shares
or liquidate a position of Y number of shares. Let (Ω,F , (Ft),P) be a complete filtered
probability space satisfying the usual conditions, supporting a one-dimensional, positive
and continuous (Ft)-martingale I satisfying

E
[

max
0≤t≤T

It

]
<∞.(2.1)

From Karatzas and Shreve [9, Appendix B], it follows that there exists a continuous (Ft)-
martingale M such that I is the unique positive solution to

It = I0 +

∫ t

0

Iu dMu, I0 > 0,

i.e. I is the Doleans-Dàdè exponential of M .
In the absence of trading by the large investor, we assume that the bid price Bt (i.e. the

best offered bid price) at time t is given by Bt = It, and that the ask price At (i.e. the
best offered ask price) at time t is given by At = It.

Definition 2.1. Let Ap denote the set of all pairs of Ft-adapted processes (X, Y ), where
X and Y are càdlàg processes such that X is non-decreasing with X0− = 0, Y is non-
increasing with Y0− = 0, and XT + YT = Y .

The set Ap represents the set of purchasing strategies which allow intermediate sales of
shares, where Xt is the number of shares purchased up to time t, −Yt is the number of
shares sold up to time t and Xt + Yt is the net position in shares at time t.

Definition 2.2. Let As denote the set of all pairs of Ft-adapted processes (X, Y ), where
X and Y are càdlàg processes such that X is non-decreasing with X0− = 0, Y is non-
increasing with Y0− = Y , and XT + YT = 0.
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The set As corresponds to the set of liquidation strategies which allow intermediate pur-
chases of shares, where Xt is the number of shares purchased up to time t, Y − Yt is the
number of shares sold up to time t, and Xt + Yt is the net position in shares at time t.

We will also consider the following smaller sets of strategies P and S, which do not allow
intermediate sales and purchases, respectively.

Definition 2.3. Let P denote the set of all Ft-adapted, càdlàg, non-decreasing processes
satisfying X0− = 0 and XT = Y .

Definition 2.4. Let S denote the set of all (Ft)-adapted, càdlàg, non-increasing processes
satisfying Y0− = Y and YT = 0.

Let h be a strictly increasing, locally lipschitz function defined on R satisfying

h(0) = 0, lim
x→−∞

h(x) < −Y
T
, lim

x→∞
h(x) >

Y

T
.(2.2)

The function h is called the resilience function and determines the speed at which the limit
order book recovers in relation to the volume effect process E. We note that the properties
of h listed in (2.2) correspond to the properties required for the resilience function in
Predoiu, Shaikhet and Shreve [12].

For a càdlàg and Ft-adapted process Z defined on [0, T ], which is either increasing or
decreasing, denote by EZ the Ft-adapted process satisfying

EZ
t = Zt − Z0− −

∫ t

0

h
(
EZ
s−
)
ds.(2.3)

According to Predoiu, Shaikhet and Shreve [12, Appendix A], equation (2.3) has a unique
solution. In the next two sections, we will describe how the impact of the large investors
trading can be expressed in terms of the volume effect process E in the additive and the
multiplicative limit order book models.

3. The additive limit order book (ALOB) model

For some extended negative real number x̄− and some extended positive real number
x̄+, let µa be a measure on (x̄−, x̄+) that is infinite on (x̄−, 0] and [0, x̄+), finite on each
compact subset of (x̄−, x̄+) and satisfies µa({0}) = 0. Define a function Fa : (x̄−, x̄+)→ R
by

Fa(x) =


−µa

(
(x, 0]

)
, x̄− < x < 0,

0, x = 0,

µa
(
[0, x)

)
, 0 < x < x̄+.

We assume that Fa(x) < 0 for every x < 0 and that Fa(x) > 0 for every x > 0. With the
exception of the condition µa({0}) = 0, this is the exactly the specification and assumptions
corresponding to the full limit order book version of the model in Predoiu, Shaikhet and
Shreve [12], which only considered the one sided case. The condition µa({0}) = 0 is
natural if one want a symmetric specification of the ask limit order book and the bid
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limit order book. It follows from the definition of Fa and the assumptions on µa that
Fa(x) is continuous at x = 0, Fa(x) is right-continuous for x ≤ 0 and left-continuous
for x ≥ 0. Moreover, a function Fa satisfying these properties completely determines the
corresponding measure µa.

If S is a measurable subset of (x̄−, 0], then at time t, the number of bid limit orders in
the shadow limit order book with prices in

Bt + S =
{
Bt + x | x ∈ S

}
is µa(S). If S is a measurable subset of [0, x̄+), then at time t, the number of ask limit
orders in the shadow limit order book with prices in At + S is µa(S).

Define a function ψa : R→ (x̄−, x̄+) by

ψa(y) =


inf
{
x ≤ 0 | Fa(x) > y

}
, y < 0,

0, y = 0,

sup
{
x ≥ 0 | Fa(x) < y

}
, y > 0.

(3.1)

It follows from the properties of Fa that ψa(y) is continuous at y = 0, right-continuous for
y ≤ 0 and left-continuous for x ≥ 0.

If the large investor trades according to a strategy (X, Y ) ∈ Ap ∪As, then in the ALOB
model, the ask price process is defined by

At + ψa
(
EX
t

)
, 0 ≤ t ≤ T,

which represents the best offered ask price observable in the market. The bid price process
is defined by

Bt + ψa
(
EY
t

)
, 0 ≤ t ≤ T,

which represents the best offered bid price observable in the market.
For a purchasing strategy (X, Y ) ∈ Ap, the total cost of purchasing Y number of shares

is in the ALOB model given by

Cp
a(X, Y ) =

∫ T

0

{
At + ψa

(
EX
t−
)}
dXc

t +
∑

0≤t≤T

∫ 4Xt

0

{
At + ψa(E

X
t− + x)

}
dx

+

∫ T

0

{
Bt + ψa

(
EY
t−
)}
dY c

t +
∑

0≤t≤T

∫ 4Yt
0

{
Bt + ψa(E

Y
t− + y)

}
dy,

which corresponds to the market sales orders being matched with the best bid prices
available until the order is filled, and the market buy orders being matched with the best
ask prices available until the order is filled. In particular, we can observe that the total
cost of purchasing Y number of shares using a purchasing strategy X ∈ P is given by

Cp
a(X) =

∫ T

0

{
At + ψa

(
EX
t−
)}
dXc

t +
∑

0≤t≤T

∫ 4Xt

0

{
At + ψa(E

X
t− + x)

}
dx,
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which in view of [12, equation (3.7)], is exactly the formulation in Predoui, Shaikhet
and Shreve [12]. If the large investor choose to liquidate his position using a strategy
(X, Y ) ∈ As, then in the ALOB model, his cash position at time T is given by

Cs
a(X, Y ) = −

∫ T

0

{
Bt + ψa

(
EY
t−
)}
dY c

t −
∑

0≤t≤T

∫ 4Yt
0

{
Bt + ψa(E

Y
t− + y)

}
dy

−
∫ T

0

{
At + ψa

(
EX
t−
)}
dXc

t −
∑

0≤t≤T

∫ 4Xt

0

{
At + ψa(E

X
t− + x)

}
dx.

In particular, we can observe that if the large investor use a liquidation strategy Y ∈ S,
then the cash position at time T corresponding to the liquidation strategy Y is

Cs
a(Y ) = −

∫ T

0

{
Bt + ψa

(
EY
t−
)}
dY c

t −
∑

0≤t≤T

∫ 4Yt
0

{
Bt + ψa(E

Y
t− + y)

}
dy.

Given a non-decreasing function F = F (x) which is continuous at x = 0, right-continuous
for x ≤ 0 and left-continuous for x ≥ 0, this uniquely defines a measure µ satisfying the
properties listed in the beginning of this section. Therefore, the data for the ALOB model
is a pair (h, F ), where h is the resilience function and F describes the shape of the shadow
limit order book as outlined in this section with F equal to Fa. We will refer to this model
as the ALOB model with data (h, F ).

Definition 3.1. The ALOB purchasing problem consists of minimising the expected cost
E
[
Cp
a(X, Y )

]
of purchasing Y shares by time T . In particular, we are interested in find-

ing a purchasing strategy (X∗, Y ∗) ∈ Ap which attains the minimum, i.e. an admissible
purchasing strategy (X∗, Y ∗) such that

E
[
Cp
a(X∗, Y ∗)

]
= min

(X,Y )∈Ap

E
[
Cp
a(X, Y )

]
.(3.2)

Without prior knowledge, it is not obvious that such a strategy (X∗, Y ∗) ∈ Ap exists.
However, the optimal purchasing problem formulated in Definition 3.1 coincides with the
optimal execution problem in Predoiu, Shaikhet and Shreve [12], who completely solved the
problem, and in particular proved the existence of an optimal strategy satisfying equation
(3.2).

Definition 3.2. The ALOB liquidation problem consists of maximising the expected cash
position E

[
Cs
a(X, Y )] at time T , given initial position of Y shares. In particular, we are

interested in finding a liquidation strategy (X∗, Y ∗) ∈ As which attains the maximum, i.e.
an admissible liquidation strategy (X∗, Y ∗) such that

E
[
Cs
a(X

∗, Y ∗)
]

= max
(X,Y )∈As

E
[
Cs
a(X, Y )

]
.(3.3)

In Section 5 we will establish a certain symmetry relation between the problem formulation
in Definition 3.1 and the problem formulation in Definition 3.2, and the existence of an
optimal strategy satisfying equation (3.3) will then follow from the existence of an optimal
strategy satisfying equation (3.2).
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4. The multiplicative limit order book (MLOB) model

For some extended negative real number ȳ− and some extended positive real number
ȳ+, let µm be a measure on (ȳ−, ȳ+) that is infinite on (ȳ−, 0] and [0, ȳ+), finite on each
compact subset of (ȳ−, ȳ+) and satisfies µm({0}) = 0. Define a function Fm : (ȳ−, ȳ+)→ R
by

Fm(x) =


−µm

(
(x, 0]

)
, ȳ− < x < 0,

0, x = 0,

µm
(
[0, x)

)
, 0 < x < ȳ+.

We assume that Fm(x) < 0 for every x < 0 and that Fm(x) > 0 for every x > 0. From
the assumptions on µm, it follows that Fm(x) is continuous at 0, right-continuous for
ȳ− < x ≤ 0 and left-continuous for 0 ≤ x < ȳ+.

If S is a measurable subset of (ȳ−, 0], then at time t, the number of bid limit orders in
the shadow limit order book with prices in

Bte
S =

{
Bte

x | x ∈ S
}

is µm(S), and if S is a measurable subset of [0, ȳ+), then at time t, the number of ask limit
orders in the shadow limit order book with prices in Ate

S is µm(S).
Denote by ψm : R→ (ȳ−, ȳ+) the function given by

ψm(y) =


inf
{
x ≤ 0 | Fm(x) > y

}
, y < 0,

0, y = 0,

sup
{
x ≥ 0 | Fm(x) < y

}
, y > 0.

It follows from the properties of Fm that ψm(y) is continuous at y = 0, right-continuous
for y ≤ 0 and left-continuous for y ≥ 0.

If the large investor trades according to a strategy (X, Y ) ∈ Ap∪As, then in the MLOB
model, the ask price process is given by

At exp
(
ψm(EX

t )
)
, 0 ≤ t ≤ T,

which represents the best offered ask price observable in the market, and the bid price
process is given by

Bt exp
(
ψm(EY

t )
)
, 0 ≤ t ≤ T,

which represents the best offered bid price observable in the market. Observe that the
assumptions on µm ensure that for any admissible strategy, the bid price process remains
strictly positive in the MLOB model. For the ALOB model however, there is typically a
strictly positive probability that the bid price can be negative for any admissible strategy
which involve sales orders.
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For a purchasing strategy (X, Y ) ∈ Ap, the total cost of purchasing Y number of shares
is in the MLOB model given by

Cp
m(X, Y ) =

∫ T

0

Ate
ψm(EX

t−) dXc
t +

∑
0≤t≤T

∫ 4Xt

0

Ate
ψm(EX

t−+x) dx

+

∫ T

0

Bte
ψm(EY

t−) dY c
t +

∑
0≤t≤T

∫ 4Yt
0

Bte
ψm(EY

t−+y) dy,

which corresponds to the best offered limit orders being executed first until the market
orders are filled. For future reference, also observe that the total cost of purchasing Y
number of shares using a strategy X ∈ P is given by

Cp
m(X) =

∫ T

0

Ate
ψm(EX

t−) dXc
t +

∑
0≤t≤T

∫ 4Xt

0

Ate
ψm(EX

t−+x) dx.

If the large investor choose to liquidate his position using a strategy (X, Y ) ∈ As, then
in the MLOB model, his cash position at time T is given by

Cs
m(X, Y ) = −

∫ T

0

Ate
ψm(EX

t−) dXc
t −

∑
0≤t≤T

∫ 4Xt

0

Ate
ψm(EX

t−+x) dx

−
∫ T

0

Bte
ψm(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bte
ψm(EY

t−+y) dy.

In particular, the cash position at time T corresponding to a liquidation strategy Y ∈ S is
given by

Cs
m(Y ) = −

∫ T

0

Bte
ψm(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bte
ψm

(
EY

t−+y
)
dy.

Definition 4.1. The MLOB purchasing problem consists of minimising the expected cost
E
[
Cp
m(X, Y )

]
of purchasing Y shares by time T . In particular, we are interested in find-

ing a purchasing strategy (X∗, Y ∗) ∈ Ap which attains the minimum, i.e. an admissible
purchasing strategy (X∗, Y ∗) such that

E
[
Cp
m(X∗, Y ∗)

]
= min

(X,Y )∈Ap

E
[
Cp
m(X, Y )

]
.(4.1)

The existence of a strategy (X∗, Y ∗) satisfying equation (4.1) will follow from the exis-
tence of an optimal purchasing strategy for the ALOB model and a correspondence between
ALOB purchasing problem and the MLOB purchasing problem which we will establish in
Section 7. The same applies to the existence of an optimal strategy for the optimal liqui-
dation problem formulated in Definition 4.2.

Definition 4.2. The MLOB liquidation problem consists of maximising the expected cash
position E

[
Cs
m(X, Y )] at time T , given an initial position of Y shares. In particular, we
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are interested in finding a liquidation strategy (X∗, Y ∗ ∈ As which attains the maximum,
i.e. an admissible liquidation strategy (X∗, Y ∗) such that

E
[
Cs
m(X∗, Y ∗)

]
= max

(X,Y )∈As

E
[
Cs
m(X, Y )

]
.(4.2)

Remark 4.3. For a continuous stricly increasing function ξ : R→ R satisfying ξ(0) = 1,

lim
z→−∞

ξ(z) ≤ 0 and lim
z→∞

ξ(z) =∞,

one can alternatively define the shadow limit order book for the MLOB model as follows.
For a measurable set S ⊆ R−, let the number of bid limit orders at time t with prices in
Btξ(S) =

{
Btξ(x) | x ∈ S

}
be µm(S). For a measurable set S ⊆ R+, let the number of

ask limit orders at time t with prices in the set Atξ(S) be µm(S). One can then show that
all the results and proofs in this paper remains true for ξ replaced by exp(·), and where
appropriate, ln(·) replaced by ξ−1. Thus, while the exponential function is a natural choice,
it is the multiplicative relationship between the unaffected price process and the impact
the large investor’s trading has on bid and ask prices which is important.

5. Basic connections between the ALOB and the MLOB models

A natural question to ask is whether it is possible to specify the shape of the shadow
limit order book for the ALOB model and the shape of the shadow limit order book for the
MLOB model in such a way that they have the same shadow limit order book at a given
time t. This involves specifying the measures µa and µm, or equivalently the functions Fa
and Fm, in such a way that the ALOB model and the MLOB model have the same shadow
limit order books at time t. This turns out to be possible, and in this section we explore
the connection between the functions Fa and Fm when such a relationship to holds.

Recall that for x̄− < y < 0, −Fa((y, 0])) is the number of bid limit orders in the ALOB
model for which

Bt + x ∈ (Bt + y,Bt].

We can then observe that Bte
x ∈ (Bt + y,Bt] if and only if

ln

(
Bt + y

Bt

)
< x ≤ 0, for −Bt < y ≤ 0.

It follows that the ALOB and the MLOB model have the same bid shadow limit order
books at time t, if and only if

Fa(y) = Fm

(
ln

(
Bt + y

Bt

))
, for x̄− < y ≤ 0 and x̄− = Bte

ȳ− −Bt.(5.1)

Further, recall that for y > 0, Fa([0, y)) is the number of ask limit orders in the ALOB
model for which

Bt + x ∈ [Bt, Bt + y),
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from which it follows that Bte
x ∈ [Bt, Bt + y) if and only if

0 ≤ x < ln

(
Bt + y

Bt

)
, for y > 0.

Therefore the ALOB and the MLOB model have the same ask limit order books at time t
if and only if

Fa(y) = Fm

(
ln

(
Bt + y

Bt

))
, for 0 ≤ y < x̄+ and x̄+ = Bte

ȳ+ −Bt.(5.2)

Definition 5.1. We say that the ALOB and the MLOB models are equally calibrated at
time 0 if equations (5.1) and (5.2) hold for t = 0.

From the considerations above, it follows that the MLOB model can be expressed in the
ALOB form, but now with a time varying and stochastic limit order book shape given by

Fa(y; t) = Fm

(
ln

(
Bt + y

Bt

))
, for Bte

ȳ− −Bt < y < Bte
ȳ+ −Bt.(5.3)

For future reference, we note that if the ALOB and the MLOB models are equally calibrated
at time 0 then it follows from the definition of ψm that

ψm(z) = ln

(
B0 + ψa(z)

B0

)
, for z ∈ R.

Hence in particular,

exp
(
ψm(z)

)
=
B0 + ψa(z)

B0

, for z ∈ R,(5.4)

as expected.

6. The solution to the optimal execution problems; the ALOB case

The optimal purchasing problem for the ALOB model given by Definition 3.1 was solved
by Predoiu, Shaikhet and Shreve in [12]. They showed that the optimal purchasing strategy
takes either one of two explicit forms, which they refer to as Type A and Type B strategies.
Instead of going into more details regarding these forms and how the optimal strategy is
obtained (the reader is referred to the paper by Predoiu, Shaikhet and Shreve [12] for
the details), we will solve the optimal liquidation problem for the ALOB model given by
Definition 3.2 by proving a symmetry relation between the optimal purchasing problem and
the optimal liquidation problem, which will provide the solution to the optimal liquidation
problem.

By the arguments given in Predoiu, Shaikhet and Shreve [12, Remark 3.1], it follows that
the optimal purchasing strategy for the ALOB purchasing problem given in Definition 3.1
involves no sales orders, i.e.,

min
X∈P

E
[
Cp
a(X)

]
= min

(X,Y )∈Ap

E
[
Cp
a(X, Y )

]
.
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Observe that

(X, Y ) ∈ Ap if and only if (−Y, Y −X) ∈ As,(6.1)

or alternatively

(X, Y ) ∈ As if and only if (Y − Y,−X) ∈ Ap.(6.2)

For a function f : (a, b) → R, where a < 0 < b are extended real numbers, define the
symmetric mirror of f around the line {(x, y) ∈ R2 | y = −x} by

f̃(x) = −f(−x), −b < x < −a.

Let (X, Y ) ∈ Ap and define (X ′, Y ′) ∈ As by X ′ = −X and Y ′ = Y − X. Let
Cs
a

(
(X ′, Y ′); (h, Fa)

)
denote the cash position at time T in the ALOB model with data

(h, Fa) corresponding to the liquidation strategy (X ′, Y ′) and let Cp
a

(
(X, Y ); (h̃, F̃a)

)
denote

the purchasing cost in the ALOB model with data (h̃, F̃a) corresponding to the purchasing
strategy (X, Y ) ∈ Ap. Now observe that

−EX
t = −Xt +

∫ t

0

h̃(EX
u−) du = Y ′t − Y −

∫ t

0

h(−EX
u−) du.

On the other hand

EY ′

t = Y ′t − Y −
∫ t

0

h(EY ′

u−) du,

which verifies that EY ′ = −EX , since equation (2.3) has a unique solution (see Predoiu,
Shaikhet and Shreve [12, Appendix A]). Similarly,

−EY
t = −Yt +

∫ t

0

h̃(EY
u−) du = X ′t −

∫ t

0

h(−EY
u−) du,

from which it follows that EX′ = −EY . In view of the observation that ψ̃a and F̃a satisfy
the defining relation given by (3.1), we calculate that

E
[
Cp
a

(
(X, Y ); (h̃, F̃a)

)]
= E

[∫ T

0

At dXt +

∫ T

0

ψ̃a(E
X
t−) dXc

t +
∑

0≤t≤T

∫ 4Xt

0

ψ̃a(E
X
t− + x) dx

+

∫ T

0

Bt dYt +

∫ T

0

ψ̃a(E
Y
t−) dY c

t +
∑

0≤t≤T

∫ 4Yt
0

ψ̃a(E
Y
t− + x) dx

]

= E
[
−
∫ T

0

Bt dY
′
t +

∫ T

0

ψa(E
Y ′

t−) d(Y ′t )
c +

∑
0≤t≤T

∫ 4Y ′t
0

ψa(E
Y ′

t− + x) dx

−
∫ T

0

Bt dX
′
t +

∫ T

0

ψa(E
X′

t− ) d(X ′t)
c +

∑
0≤t≤T

∫ 4X′t
0

ψa(E
X′

t− + x) dx

]
= 2B0Y − E

[
Cs
a

(
(X ′, Y ′); (h, Fa)

)]
.(6.3)
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We then have the following result regarding the solution to the optimal liquidation
problem for the ALOB model.

Proposition 6.1. Let X∗ ∈ P be an optimal strategy for the optimal purchasing problem

in the ALOB model given by Definition 3.1 with data (h̃, F̃a). Then Y ∗ = Y − X∗ ∈ S
is an optimal strategy for the optimal liquidation problem in the ALOB model given by
Definition 3.2 with data (h, Fa).

Proof. From Prediou, Shaikhet and Shreve [12], we know that there exists X∗ ∈ P such
that

E
[
Cp
a

(
(X∗, 0); (h̃, F̃a)

)]
= max

(X,Y )∈Ap

E
[
Cp
a

(
(X, Y ); (h̃, F̃a)

)]
.

With reference to (6.3), we therefore obtain

sup
(X′,Y ′)∈As

E
[
Cs
a

(
(X ′, Y ′); (h, Fa)

)]
≤ 2B0Y − E

[
Cp
a

(
(X∗, 0); (h̃, F̃a)

)]
,

and

E
[
Cs
a

(
(0, Y ∗); (h, Fa)

)]
= 2B0Y − E

[
Cp
a

(
(X∗, 0); (h̃, F̃a)

)]
,

from which the result follows. �

7. The solution to the optimal execution problems; the MLOB case

In order to solve the optimal execution problems for the MLOB model, we will first
prove that the optimal purchasing strategy involves no sales orders and that the optimal
liquidation strategy involves no purchasing orders. We will then show that the optimal
purchasing strategy and the optimal liquidation strategy are deterministic. This is the
result in this paper which is the hardest to prove, and a key result in order to solve these
problems. Once we have proved that the optimal strategies are deterministic, we can use
the relationship between the ALOB and MLOB models which are equally calibrated at
time 0. It turns out that if the models are equally calibrated at time 0, then the optimal
strategies for the execution problems are equal in the ALOB model and the MLOB model,
and that the corresponding expected cost/cash for both models coincide.

Lemma 7.1. It holds that

inf
X∈P

E
[
Cp
m(X)

]
= inf

(X,Y )∈Ap

E
[
Cp
m(X, Y )

]
,(7.1)

i.e., the optimal strategy for the purchasing problem in the MLOB model given by Definition
4.1 involves no sales orders, and

sup
Y ∈S

E
[
Cs
m(Y )

]
= sup

(X,Y )∈As

E
[
Cs
m(X, Y )

]
,(7.2)

i.e., the optimal strategy for the liquidation problem in the MLOB model given by Definition
4.2 involves no purchasing orders.
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Proof. Let us first prove that the optimal strategy for the liquidation problem given by
Definition 4.2 involves no purchasing orders. Let (X, Y ) ∈ As, and define Y +

t = max{Yt, 0
}

and Y −t = min{Yt, 0}. Then Y = Y + + Y −, Y +
T = 0 and Y −T = −XT . We calculate that

Cs
m(X, Y ) ≤ −

∫ T

0

Bte
ψm(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bt eψm(EY
t−+y) dy −

∫ T

0

Bt dXt

= −
∫ T

0

Bte
ψm(EY +

t− ) d(Y +)ct −
∑

0≤t≤T

∫ 4Y +
t

0

Bte
ψm(EY +

t− +y) dy

−
∫ T

0

Bte
ψm(EY

t−) d(Y −)ct −
∑

0≤t≤T

∫ 4Y −t
0

Bte
ψm(EY

t−+y) dy −
∫ T

0

Bt− dXt

≤ Cm(Y +)−
∫ T

0

Bt dY
−
t −

∫ T

0

Bt dXt

= Cm(Y +) +

∫ T

0

(
Xt− + Y −t−

)
dBt,

Hence for every (X, Y ) ∈ As, the strategy Y + ∈ S satisfy

E
[
Cs
m(X, Y )

]
≤ E

[
Cs
m(Y +)

]
,

from which (7.2) follows. In order to verify (7.1), let (X, Y ) ∈ Ap and define X+ =
min{Y ,X}. Then X+ ∈ P , and similar arguments as above verify that

E
[
Cp
m(X, Y )

]
≥ E

[
Cs
m(X+)

]
,

from which the result follows. �

The next result states that the optimal purchasing strategy and the optimal liquidation
strategy are deterministic. Due to the multiplicative relationship between the random-
ness in the MLOB model, represented by I, and the impact of trading, represented by
exp
(
ψm(EY

· )
)

and exp
(
ψm(EX

· )
)
, it is not as obvious as in the ALOB model. In fact, in

view of equation 5.3, which shows that the MLOB model can be written in the ALOB
form, but with a limit order book structure which vary stochastically in time, it may seem
rather surprising that the optimal strategy for the MLOB problems can be taken to be
deterministic.

Proposition 7.2. Let Pd and Sd denote the set of deterministic strategies in P and S,
respectively. Then

inf
X∈P

E
[
Cp
m(X)

]
= inf

X∈Pd

E
[
Cp
m(X)

]
(7.3)

and

sup
Y ∈S

E
[
Cs
m(Y )

]
= sup

Y ∈Sd
E
[
Cs
m(Y )

]
.(7.4)
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Proof. We start with the proof of equation (7.4). Let δ be a non-negative C∞(R) function

with support in [0, 1] satisfying
∫ 1

0
δ(x) dx = 1, and define a sequence of functions {δ(n)}∞n=1

by

δ(n)(x) = nδ(nx), x ∈ R.

Further, define two sequences of functions {ψ(n)}∞n=1 and {Φ(n)}∞n=1 by

ψ(n)(x) =

∫ 1

0

ψm(x+ s)δ(n)(s) ds, x ∈ R,

and

Φ(n)(x) =

∫ x

0

exp
(
ψ(n)(u)

)
du, x ∈ R.

Then, ψ(n) and Φ(n) are continuously differentiable functions, for every n ∈ N. Since ψm(x)
is right-continuous for every x ≤ 0 and continuous at x = 0, it follows that, for every x ≤ 0,
ψ(n)(x) converges pointwise to ψm(x) and Φ(n)(x) converges pointwise to Φ(x) given by

Φ(x) =

∫ x

0

eψm(u) du, x ∈ R,

as n tends to infinity. Observe that

0 ≤ −
∫ T

0

Bt eψ
(n)(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bt eψ
(n)(EY

t−+y) dy ≤
∫ T

0

Bt dYt.

From the previous inequality and the dominated convergence theorem, it follows that

E
[
Cs
m(Y )

]
= lim

n→∞
E
[
−
∫ T

0

Bt eψ
(n)(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bt eψ
(n)(EY

t−+y) dy

]
.

To ease notation, denote by B(n) the process given by

B
(n)
t = Bt eψ

(n)(EY
t ), t ≥ 0,

and set

Cn(Y ) = −
∫ T

0

Bt eψ
(n)(EY

t−) dY c
t −

∑
0≤t≤T

∫ 4Yt
0

Bt eψ
(n)(EY

t−+y) dy.

We calculate

Cn(Y ) = −
∫ T

0

B
(n)
t− dY c

t −
∑

0≤t≤T

B
(n)
t−4Yt −

∑
0≤t≤T

B
(n)
t−

∫ 4Yt
0

{
eψ

(n)(EY
t−+y)−ψ(n)(EY

t−) − 1

}
dy

= −
∫ T

0

B
(n)
t− dYt −

∑
0≤t≤T

B
(n)
t−

∫ 4Yt
0

{
eψ

(n)(EY
t−+y)−ψ(n)(EY

t−) − 1

}
dy.

(7.5)
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Observe that the quadratic co-variation [B(n), Y ] between B(n) and Y is

[B(n), Y ]T =
∑

0≤t≤T

B
(n)
t−

{
eψ

(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1

}
4Yt,

since Y has finite variation and hence the quadratic co-variation is the sum of the products
of the jumps (see e.g. Protter [13]). Therefore,

B
(n)
T YT −B(n)

0−Y0− =

∫ T

0

B
(n)
t− dYt +

∫ T

0

Yt− dB
(n)
t

+
∑

0≤t≤T

B
(n)
t−

{
eψ

(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1

}
4Yt.(7.6)

With reference to the definition of B(n), we calculate that∫ T

0

Yt− dB
(n)
t =

∫ T

0

Yt−B
(n)
t− dMt −

∫ T

0

h
(
EY
t−
)
(ψ(n))′

(
EY
t−
)
Yt−B

(n)
t− dt

+

∫ T

0

(ψ(n))′
(
EY
t−
)
Yt−B

(n)
t− dY c

t

+
∑

0≤t≤T

Yt−B
(n)
t−
{

eψ
(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1
}
.(7.7)

Equation (7.6) provides an expression for
∫ T

0
B

(n)
t− dYt, which combined with (7.5) and (7.7),

imply that

Cn(Y ) = −B(n)
T YT +

∫ T

0

Yt−B
(n)
t− dMt −

∫ T

0

h
(
EY
t−
)
(ψ(n))′

(
EY
t−
)
Yt−B

(n)
t− dt

+

∫ T

0

(ψ(n))′
(
EY
t−
)
Yt−B

(n)
t− dY c

t +
∑

0≤t≤T

Yt−B
(n)
t−

{
eψ

(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1

}

−
∑

0≤t≤T

B
(n)
t−

∫ 4Yt
0

{
eψ

(n)
(
EY

t−+y
)
−ψ(n)

(
EY

t−

)
− 1

}
dy

+
∑

0≤t≤T

B
(n)
t−

{
eψ

(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1

}
4Yt.

(7.8)

Introduce a sequence of functions {Gn}∞n=1, where Gn : R3 → R3 is given by

Gn(x, y, z) = x

(
yeψ

(n)(z) +

∫ z−y

z

eψ
(n)(s) ds

)
.

Then by Itô’s formula,

Gn

(
BT , YT , E

Y
T

)
= Gn

(
B0, Y0−, E

Y
0−
)

+

∫ T

0

{
Yt−eψ

(n)(EY
t−) +

∫ EY
t−−Yt−

EY
t−

eψ
(n)(s) ds

}
Bt dMt
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+

∫ T

0

(ψ(n))′
(
EY
t−
)
Yt−B

(n)
t− dY c

t −
∫ T

0

h
(
EY
t−
)
(ψ(n))′

(
EY
t−
)
Yt−B

(n)
t− dt

−
∫ T

0

h
(
EY
t−
){

eψ
(n)
(
EY

t−−Yt−
)
−ψ(n)

(
EY

t−

)
− 1

}
B

(n)
t− dt

+
∑

0≤t≤T

B
(n)
t− Yt−

{
eψ

(n)
(
EY

t−+4Yt
)
−ψ(n)

(
EY

t−

)
− 1

}

+
∑

0≤t≤T

eψ
(n)
(
EY

t−+4Yt
)
B

(n)
t−4Yt +Bt

∑
0≤t≤T

∫ EY
t−

EY
t−+4Yt

eψ
(n)(s) ds.

This provides an expression for
∫ T

0
(ψ(n))′(EY

t−)YtB
(n)
t− dY c

t , which inserted in (7.8) implies
that

Cn(Y ) = −B(n)
T YT +Gn

(
BT , YT , E

Y
T

)
−Gn

(
B0, Y0−, E

Y
0−
)

−
∫ T

0

(∫ EY
t−−Yt−

EY
t−

eψ
(n)(s) ds

)
Bt dMt

+

∫ T

0

h
(
EY
t−
){

eψ
(n)
(
EY

t−−Yt−
)
− eψ

(n)
(
EY

t−

)}
Bt dt

= −B0Φ(n)
(
−Y
)

+

∫ T

0

(
Φ(n)

(
EY
t−
)
− Φ(n)

(
EY
t− − Yt−

))
Bt dMt

+

∫ T

0

h
(
EY
t−
){

eψ
(n)
(
EY

t−−Yt−
)
− eψ

(n)
(
EY

t−

)}
Bt dt.

Now introduce a measure P̃ given by

dP̃
dP


Ft

=
Bt

B0

,

which in view of (2.1) is a probability measure. Then

E
[
Cs
m(Y )

]
= lim

n→∞
E
[
Cn(Y )

]
= −B0 lim

n→∞
Φ(n)

(
−Y
)

+B0 lim
n→∞

∫ T

0

Ẽ
[
h
(
EY
t−
){

eψ
(n)
(
EY

t−−Yt−
)
− eψ

(n)
(
EY

t−

)}]
dt

= −B0Φ
(
−Y
)

+B0Ẽ
[∫ T

0

h
(
EY
t−
){

eψm

(
EY

t−−Yt−
)
− eψm

(
EY

t−

)}
dt

]
.

Since

Y 7→
∫ T

0

h
(
EY
t−
){

eψm

(
EY

t−−Yt−
)
− eψm

(
EY

t−

)}
dt
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is a deterministic function of Y , equation (7.4) follows.
By similar arguments as in the proof of equation (7.4), one can show that

E
[
Cp
m(X)

]
= B0Φ(Y )−B0Ẽ

[∫ T

0

h
(
EX
t−
){

eψm

(
EX

t−−Xt−+Y
)
− eψm

(
EX

t−

)}
dt,

from which equation (7.3) follows. �

We can now proceed by deriving a relationship between the optimal liquidation problem
for the MLOB model and the optimal liquidation for the ALOB problem. Let X ∈ P
be a deterministic purchasing strategy. If the ALOB and the MLOB models are equally
calibrated at time 0, then with reference to equation (5.4), we calculate that

E
[
Cp
m(X)

]
=

∫ T

0

A0eψm(EX
t−) dXc

t +
∑

0≤t≤T

∫ 4Xt

0

A0eψm(EX
t−+x) dx

=

∫ T

0

(
A0 + ψa(E

X
t−)
)
dXc

t +
∑

0≤t≤T

∫ T

0

(
A0 + ψa(E

X
t− + x)

)
dx

= E
[
Cp
a(X)

]
.(7.9)

Similarly, if Y ∈ S is a deterministic liquidation strategy and the ALOB and the MLOB
models are equally calibrated at time 0, then

E
[
Cs
m(Y )

]
= −

∫ T

0

B0eψm(EY
t−) dY c

t −
∑

0≤t≤T

∫ 4Yt
0

B0eψm(EY
t−+y) dy

= −
∫ T

0

(
B0 + ψa(E

Y
t−)
)
dY c

t −
∑

0≤t≤T

∫ T

0

(
B0 + ψa(E

Y
t− + y)

)
dy

= E
[
Cs
a(Y )

]
.(7.10)

We can now state the main result of the paper.

Theorem 7.3. Suppose that the ALOB model and the MLOB model are equally calibrated
at time 0. Then an optimal purchasing strategy X∗ ∈ P and an optimal liquidation strategy
Y ∗ ∈ S for the MLOB execution problems exist, and the following holds.

(i) X∗ ∈ P is an optimal purchasing strategy for the ALOB problem formulated in Def-
inition 3.1 if and only if X∗ is an optimal liquidation strategy for the MLOB problem
formulated in Definition 4.1. Moreover, the optimal expected purchasing cost E

[
Cp
a(X∗)

]
for the ALOB problem is equal to the optimal expected purchasing cost E

[
Cm(Y ∗)

]
for the

MLOB problem.

(ii) Y ∗ ∈ S is an optimal liquidation strategy for the ALOB problem formulated in Def-
inition 3.2 if and only if Y ∗ is an optimal liquidation strategy for the MLOB problem
formulated in Definition 4.2. Moreover, the optimal expected cash amount E

[
Cs
a(Y

∗)
]

for

the ALOB problem is equal to the optimal expected cash amount E
[
Cs
m(Y ∗)

]
for the MLOB

problem.
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Proof. The proof for the optimal purchasing case follows from Lemma 7.1, Proposition 7.2
and equation (7.9). The proof for the optimal liquidation case follows from Proposition
6.1, Lemma 7.1, Proposition 7.2 and equation (7.10). �
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