
OPTIMAL LIQUIDATION IN A LIMIT ORDER BOOK FOR A RISK
AVERSE INVESTOR

ARNE LØKKA

Abstract. In a limit order book model with exponential resilience, general shape func-
tion, and an unaffected stock price following the Bachelier model, we consider the problem
of optimal liquidation for an investor with constant absolute risk aversion. We show that
the problem can be reduced to a two dimensional deterministic problem which involves
no buy orders. We derive an explicit expression for the value function and the optimal
liquidation strategy. The analysis is complicated by the fact that the intervention bound-
ary, which determines the optimal liquidation strategy, is discontinuous if there are levels
in the limit order book with relatively little market depth. Despite this complication, the
equation for the intervention boundary is fairly simple. We show that the optimal liqui-
dation strategy possess the natural properties one would expect, and provide an explicit
example for the case where the limit order book has a constant shape function.

1. Introduction

The growing popularity of algorithmic execution has resulted in an increasing interest
in asset price models incorporating illiquidity and optimal execution of large orders. A
brief history of the growth of algorithmic execution can be found in Aldridge [1], which
also provides an overview of current market practise and common models. These models
tend to be based on the investor’s trading rate, like the Almgren and Chriss [2] model, or
to be variations of the limit order book model of Obizhaeva and Wang [17].

Bertsimas and Lo [9] introduced a class of discrete time models for asset prices incor-
porating illiquidity effects, and used dynamic programming to derive the strategy which
minimize the expected cost of trading. Almgren and Chriss [2],[3] addressed the problem of
maximizing the expected revenue of trading, taking into account its variance. Almgren [4]
generalized the model of Almgren and Chriss [2],[3] to incorporate non-linear impact func-
tions. Gatheral [13] further generalized the Almgren model [4] to incorporate a decay
kernel and provide conditions for existence and absence of price manipulation strategies.
Based on the model of Almgren [4] with a linear impact factor, Schied and Schöneborn [21]
study the problem of optimal liquidation of a large stock position for an investor aiming
to maximize the expected utility of their cash position at the end of time, and compare
the qualitative behaviour of the optimal strategy for different utility functions in case of
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increasing and decreasing prices. They relate their results to the strategies correspond-
ing to the various criteria discussed in Kissel and Malamut [16], which involves different
benchmark price targets. The models listed above have in common that the underlying
price process is based on the Bachelier model, with an additional impact depending on
the transactions made by a large trader who wants to purchase or sell a large number of
shares. There is a permanent effect depending on the size of the trade, and a temporary
effect on the stock price depending on the time derivative of the large trader’s position in
the stock. The problem of finding the optimal liquidation or purchase strategy typically
takes the form as the solution to an Euler-Lagrange equation.

Obizhaeva and Wang [17] introduced a limit order book model, which specifies the
stochastic dynamics of limit orders and the best offered bid and ask price. The cost of
purchasing or selling shares thus depend on the limit orders and the behaviour of the best
offered bid and ask price as orders eat into the limit order book, as well as the resilience of
the limit order book, which specifies how the best offered bid and ask prices recover after
orders have been executed. Alfonsi, Fruth and Schied [5] generalize the limit order book
model of Obizhaeva and Wang to allow more general shape functions, and provide two
slightly different ways to model resilience. Predoiu, Shaikhet and Shreve [18] introduce a
one-sided limit order book model where the shape of the limit orders are given in terms
of a measure. Alfonsi and Schied [6] and Alfonsi, Schied and Slynko [7] provide conditions
for the absence of price manipulation strategies in limit order books and models related to
that of Gatheral [13]. Gatheral, Schied and Slynko [14] introduce a limit order book with
a general resilience function and provide a comparison between such models and that of
Gatheral [13]. Schied, Schöneborn and Tehranchi [22] provide a connection between the
maximization criterion of Almgren and Chriss [2],[3] and maximization of expected CARA
utility. They also show that if the risk of the stock price is given in terms of a Lévy process
and if there is a certain additive structure between the risk and the trading cost, then the
optimal strategy for an investor with CARA utility is deterministic.

In this paper we adopt a limit order book model with a general shape function and ex-
ponential resilience rate as in Alfonsi, Fruth and Schied [5], where the stochastic dynamics
of the non-affected stock price follows the Bachelier model, and consider a large investor
with constant absolute risk aversion who wants to liquidate his share position without time
constraints. This model for the dynamics of the risky asset can be viewed as the limit order
book equivalent to the models of Almgren and Chriss [2], Almgren [4] and Gatheral [13].
We do not explicitly model the ask orders and best ask price, but assume that the best
bid price and bid orders are unaffected by the investor’s buy orders and that the unaf-
fected bid price process provides a lower bound for the best offered ask price. The utility
maximization problem that we consider can be viewed as a limit order book version of the
problem considered by Schied and Schöneborn [21], provided that the investor has constant
absolute risk aversion. Based on the ideas in Schied, Schöneborn and Tehranchi [22], we
prove that the optimal strategy is deterministic and involves no buy orders. Moreover, the
maximum expected utility is strictly negative and can be expressed in terms of the value
function of a certain two dimensional optimal control problem.
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Under fairly mild condition on the shape function of the limit order book, we derive
an explicit solution to the optimal liquidation problem for a general shape function. The
optimal strategy turns out to differ from the corresponding optimal strategy in the Alm-
gren [4] model. Depending on the investor’s past trading history, the optimal liquidation
strategy involves an initial block trade and then continuously sell shares, or first wait for
a certain amount of time to let the limit order book recover, and then continuously sell
shares. If there are levels in the limit order book with relatively little market depth, there
are periods where it is optimal to wait in order for the best bid price to recover from the
level with relatively little depth. To the best of the author’s knowledge, this Markovian
dependence on the investor’s past trading history and corresponding state of the limit or-
der book has not previously been explicitly explored, and in the Almgren model [4] there
is no such dependence since the returns in this case do not depend on the investor’s past
trading history. Also, the optimal liquidation strategy in models based on the trading rate,
like the Almgren [4] model, does not involve any block trades. It is therefore interesting
to note that the optimal liquidation strategy for the large investor in a limit order book
model typically consists of an initial block trade.

In order to derive the optimal liquidation strategy for the large investor, we derive
an explicit solution to the Hamilton-Jacobi-Bellman equation corresponding to the value
function of the reduced deterministic optimization problem. The Hamilton-Jacobi-Bellman
equation takes the form of a free boundary problem, where it turns out that the boundary
can be discontinuous. The discontinuities happen when there are levels in the limit order
book with relatively little market depth. While the discontinuities of the intervention
boundary complicates the analysis and proofs, the equation for the boundary takes a fairly
simple form. The optimal strategy then essentially consist of trading in such a way that
the state process, which consists of the number of shares held and the current state of the
limit order book, remain on the boundary at all times. We also show that the optimal
strategy possess the natural properties one would expect, e.g. that an increased depth
implies faster liquidation, increased volatility of the unaffected stock price implies faster
liquidation, and an increased risk aversion implies faster liquidation.

At the end, we provide an example of a limit order book with a constant shape
function, and compare the optimal liquidation strategy to that provided in Schied and
Schöneborn [21] for the Almgren model with a linear impact function.

2. Model specification and problem formulation

We adopt the limit order book model of Alfonsi, Fruth and Schied [5] with an unaffected
best bid price process following the Bachelier model. However, instead of modelling the full
limit order book, we explicitly model the bid order book and assume that the unaffected
bid price provides a lower bound for the best ask price and that the best bid price and bid
prices are unaffected by the large investor’s buy orders. These assumptions are satisfied
in the full limit order book model. We show that under these assumptions, the optimal
liquidation strategy does not involve any buy orders.
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Let (Ω,F , (Ft),P) be a complete filtered probability space satisfying the usual conditions
and supporting a one-dimensional Brownian motion W , and set

R+ = [0,∞) and R− = (−∞, 0].

We consider the following set of admissible liquidation strategies for the large investor.

Definition 2.1. For y ∈ R+, let A(y) denote the set of all pairs (X, Y ), where X and Y
are (Ft)-adapted, càdlàg processes, X is non-decreasing and Y is non-increasing, X0− = 0
and Y0− = y and ∫ ∞

0

‖Xt + Yt‖2
L∞(Ω) dt <∞.(2.1)

The non-negative quantity Xt represents the number of shares bought over the time interval
[0, t], Yt − y represents the number of shares sold over the time interval [0, t] and Xt + Yt
is the net position in shares held at time t. Denote by A−D(y) the set of all deterministic
strategies (X, Y ) ∈ A(y) with X = 0. Thus, we can identify A−D(y) with the set of
deterministic càdlàg, non-increasing processes with values in [0, y] satisfying Y0− = y and∫ ∞

0

|Yt|2 dt <∞.(2.2)

The unaffected bid process B0 is assumed to follow the Bachelier model, that is

B0
t = b+ σWt, t ≥ 0,

where b > 0 is the bid price at time 0 and σ > 0 is the volatility. The interpretation
of the unaffected bid process B0 is that if the large investor make no trades, then the
best offered bid price at time t is B0

t . The Bachelier model may seem simplistic, but the
Bachelier model is widely used in the optimal liquidation literature (see e.g. Almgren and
Criss [2], Kissel and Malamut [16], Schied and Schöneborn [21] and Gatheral [13]). We do
not explicitly model the ask prices, but make the following assumption

Assumption 2.2. The best bid prices are unaffected by the large investor’s buy orders
and the best unaffected bid price provides a lower bound for the best ask price.

In particular we note that the full limit order book in Obizhaeva and Wang [17], Alfonsi,
Fruth and Schied [5] and Gatheral, Schied and Slynko [14], all satisfy this assumption.

There are two other components which together specify the limit order book model. One
is the shape function, which we denote by φ, and the other is the resilience rate, which
describes how the market recover. The shape function φ is static, and the connection
between the shape function φ and the bid prices in the limit order book is that, at time t,
the number of bids at price Bt + x is equal to φ(x) dx, where x ≤ 0, provided the investor
has not made any large trades before time t. We impose the following condition on the
shape function.

Assumption 2.3. The shape function φ : R− → (0, φmax] is continuous.
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Let BY
t denote the best bid price offered at time t if the large investor follows a liquidation

strategy (X, Y ) ∈ A(y). As the notation suggests, the best offered bid price depends on
the past history of the strategy Y , but according to Assumption 2.2, does not depend on
the buy strategy X. We assume that BY is a càdlàg process. Denote by DY the spread
process given by

DY
t = BY

t −B0
t , t ≥ 0,

i.e. the spread between the best offered bid price and the unaffected bid price if the large
investor adopts a liquidation strategy Y . If the large trader adopts a strategy Y which
consists of selling a number 4Yt = Yt − Yt− of shares at time t, then the effect of this
on the best offered bid price is that the new spread changes from DY

t− to DY
t , where DY

t

satisfies ∫ DY
t

DY
t−

φ(u) du = 4Yt.

This corresponds to the best bid orders being executed in order to match the large trader’s
sales order of −4Yt number of shares. In order to ease notation, introduce the functions
Φ : R− → R− and ψ : R− → R− by

Φ(x) =

∫ x

0

φ(u) du and ψ(z) = Φ−1(z).(2.3)

The inverse of Φ is well defined since Φ is strictly increasing, due to the assumption that
φ takes strictly positive values. From the assumptions made on the properties of φ in
Assumption 2.3, it follows that ψ : R− → R− is an increasing C1(R−) function satisfying

ψ(0) = 0,(2.4)

there exists δ > 0 such that ψ′(z) ≥ δ, for all z ∈ R−,(2.5)

there exists C > 0 and ε > 0 such that ψ′(z) ≤ C, for all z ∈ (−ε, 0].(2.6)

As in Alfonsi, Fruth and Schied [5] and Obizhaeva and Wang [17], we assume that the
limit order book has an exponential resilience rate, which means that the limit order book
recovers at an exponential rate. Introduce the process ZY given by

ZY
t = ze−λt +

∫ t

0

e−λ(t−s) dYs, t ≥ 0,(2.7)

where z ≤ 0 is the initial value of ZY at time 0 and λ > 0 is the resilience speed. For
future reference, note that ZY is the unique càdlàg solution to

dZY
t = −λZY

t− dt+ dYt, ZY
0 = z ∈ R−.(2.8)

The process ZY captures how the large investor’s implementation of the liquidation strategy
Y affects the best offered bid price and how this recovers over time through the relation

ZY
t = Φ(DY

t ),

where DY
t is the spread at time t. The initial state z therefore provides the initial state

of the limit order book, which takes into account the past trading history of the large
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investor. In the literature the letter E is often used rather than Z to denote the process
ZY , since it represent the part of the order book which is ”eaten up”. With reference to
the definition of the spread process DY and (2.3), the best offered bid price BY

t , at time t,
is given by

BY
t = B0

t + ψ(ZY
t ),(2.9)

if the large investor use the liquidation strategy Y .
So far we have described how the large investor’s trading affect the best offered bid price,

but not how this affects the large investor’s cash position. Suppose that the large investor’s
initial cash position is c and that he implements a strategy (X, Y ) ∈ A(y) which consists
of a number of block sales, i.e. Y is a decreasing step function and X is zero. Then the
large investor’s cash position at time T > 0 is

CT (X, Y ) = c−
∑

0≤t≤T

∫ 4Yt
0

{
B0
t + ψ

(
ZY
t− + x

)}
dx,(2.10)

which corresponds to the best bids offered at all times being executed first so as to match
the large trader’s sales orders. Let Y c denote the continuous part of Y , as defined in e.g.
Protter [19]. If the large trader implements a continuous sales strategy Y = Y c with no
buy orders, then his cash position at time T > 0 is given by the Lebesgue-Stieltjes integral∫ T

0

BY
t− dYt.(2.11)

By assumption the best ask prices are greater than or equal to the unaffected bid prices,
from which it follows that the cost of purchasing the shares at the best offered ask prices
is greater than or equal to purchasing the shares at the unaffected bid prices. In view of
(2.10) and (2.11), we therefore conclude that if the large investor’s initial cash position is
c and he use a liquidation strategy (X, Y ) ∈ A(y), his cash position at time T > 0 satisfies

CT (X, Y ) ≤ c−
∫ T

0

BY
t− dY

c
t −

∑
0≤t≤T

∫ 4Yt
0

{
B0
t + ψ

(
ZY
t− + x

)}
dx−

∫ T

0

B0
t dXt,(2.12)

where we have equality in (2.12) if X = 0. We note that (2.12) can be viewed as a version
of Alfonsi and Schied [6, Proposition 2.22].

We assume that the large trader has constant absolute risk aversion, an initial cash
position c and an initial position in the stock consisting of y number of shares. We further
assume that the large trader wants to maximize the expected utility of his cash position at
the end of time. In mathematical terms, the large investor’s optimal liquidation problem
is

sup
(X,Y )∈A(y)

E
[
U
(
C∞(X, Y )

)]
,(2.13)

where the utility function U is given by

U(c) = −e−Ac, A > 0.
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This can be seen as the limit order book equivalent formulation of the optimal liquidation
problem studied by Schied and Schöneborn [21], but restricted to the case of large investors
with constant absolute risk aversion.

3. Preliminary observations and problem simplification

Our approach to solving the utility maximization problem (2.13) is to first show that
the problem can be reduced to a deterministic optimization problem involving only liqui-
dation strategies in A−D(y). This reduction of the problem is based on the ideas in Schied,
Schöneborn and Tehranchi [22], who proved that if the market has a certain structure and
the investor has a constant absolute risk aversion, the optimal strategy is deterministic.

Let (X, Y ) ∈ A(y) be an admissible liquidation strategy. Then it follows from (2.12)
that

CT (X, Y ) ≤ c+ by −B0
T (XT + YT ) +

∫ T

0

(
Xt− + Yt−

)
σ dWt − FT (Y ),(3.1)

where F is given by

FT (Y ) =

∫ T

0

ψ
(
ZY
t−
)
dY c

t +
∑

0≤t≤T

∫ 4Yt
0

ψ
(
ZY
t− + x

)
dx,(3.2)

and where we have equality in (3.1) if X = 0. It follows from (2.1) that B0
T (XT +YT ) tends

to 0 in L1(P) as T →∞, and that∫ ∞
0

(Xt− + Yt−)σ dWt

is a well defined random variable with expectation 0 and finite variance. Also note that
FT (Y ) is an increasing function of T , and therefore F∞(Y ) is well defined, possibly being
equal to +∞. Thus F∞ is a function from the set of càdlàg, non-increasing functions into
the extended non-negative real numbers. We conclude that

C∞(X, Y ) ≤ c+ by +

∫ ∞
0

(
Xt− + Yt−

)
σ dWt − F∞(Y ),(3.3)

where we have equality in (3.3) if X = 0. Also note that

C∞(X, Y ) ≤ c+ by +

∫ ∞
0

(
Xt− + Yt−

)
σ dWt,

from which it follows that the market is arbitrage free. In particular there does not exist any
price manipulation strategies (see Huberman and Stanzl [15], Gatheral [13] or Alfonsi and
Schied [6]). We have the following monotonicity result for the function F and deterministic
strategies.

Lemma 3.1. Let F be given by (3.2) and (X, Y ) ∈ A(y) be any deterministic liquidation

strategy. Then there exists a strategy Ỹ ∈ A−D(y) such that∫ ∞
0

(
Xt− + Yt−

)2
dt ≥

∫ ∞
0

Ỹ 2
t− dt and F∞(Y ) ≥ F∞(Ỹ ).
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Proof. Let ξ be a càdlàg, non-increasing function satisfying ξ0− = 0. Then

ZY+ξ
t − ZY

t = −λ
∫ t

0

(
ZY+ξ
u− − ZY

u−
)
du+ ξt,

from which it follows that ZY+ξ
t ≤ ZY

t , for all t ≥ 0. Therefore

F∞(Y + ξ) =

∫ ∞
0

ψ
(
ZY+ξ
t−
)
dY c

t +

∫ ∞
0

ψ
(
ZY+ξ
t−
)
dξct

+
∑
t≥0

∫ 4Yt
0

ψ
(
ZY+ξ
t− + x

)
dx+

∑
t≥0

∫ 4Yt+4ξt
4Yt

ψ
(
ZY+ξ
t− + x

)
dx

≥
∫ ∞

0

ψ
(
ZY
t−
)
dY c

t +
∑
t≥0

∫ 4Yt
0

ψ
(
ZY
t− + x

)
dx

= F∞(Y ),

by the monotonicity of ψ. Thus if Y ≤ Ỹ then F∞(Y ) ≥ F∞(Ỹ ). Let (X, Y ) ∈ A(y) be a

deterministic strategy, and define Ỹt = max
{

0, Yt
}

and X̃ = 0. Then the strategy (X̃, Ỹ )

is in A−D(y), and since Y ≤ Ỹ and∫ ∞
0

(
Xt− + Yt−

)2
dt ≥

∫ ∞
0

Ỹ 2
t− dt,

the result follows. �

Let (X, Y ) ∈ A(y) and define the process M by

Mt = exp

(
−σA

∫ t

0

(
Xs− + Ys−

)
dWs −

1

2
σ2A2

∫ t

0

(
Xs− + Ys−

)2
ds

)
.

From the assumption (2.1) it follows that M is a martingale closed by M∞ (see e.g. Prot-

ter [19]). We can therefore define a probability measure P̃ by

dP̃
dP

= M∞.

Based on the ideas of Schied, Schöneborn and Tehranchi [22, Theorem 2.8], (3.3) and
Lemma 3.1, we calculate

sup
(X,Y )∈A(y)

E
[
U
(
C∞(X, Y )

)]
(∗)
≤ −e−A(c+by) inf

(X,Y )∈A(y)
E
[
exp

(
−A

∫ ∞
0

(
Xt− + Yt−

)
σ dWt + AF∞(Y )

)]
= −e−A(c+by) inf

(X,Y )∈A(y)
E
[
M∞ exp

(
1

2
σ2A2

∫ ∞
0

(
Xt− + Yt−

)2
dt+ AF∞(Y )

)]
= −e−A(c+by) inf

(X,Y )∈A(y)
Ẽ
[
exp

(
1

2
σ2A2

∫ ∞
0

(
Xt− + Yt−

)2
dt+ AF∞(Y )

)]
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= −e−A(c+by) exp

(
inf

Y ∈A−D(y)

{
1

2
σ2A2

∫ ∞
0

(
Xt− + Yt−

)2
dt+ AF∞(Y )

})
,

(3.4)

where (∗) holds with equality for strategies (X, Y ) ∈ A(y) with X = 0. In particular
(∗) in (3.4) holds with equality for strategies Y ∈ A−D(y). The last step in (3.4) follows
from Jensen’s inequality and Lemma 3.1. We have therefore reduced the utility maximiza-
tion problem (2.13) to an optimization problem involving only deterministic liquidation
strategies which involve no buy orders.

In order to derive a Hamilton-Jacobi-Bellman equation for the value function of the
optimization problem, we want to obtain an expression for F∞ which is more convenient
for this purpose. As a first step towards this, the next result express the cash position at
a time T > 0 corresponding to a liquidation strategy which involves no buy orders.

Lemma 3.2. For every initial cash position c and liquidation strategy (X, Y ) ∈ A(y)
satisfying X = 0, the large investor’s cash position at time T > 0 is given by

CT (Y ) = c+B0
0−Y0− −

∫ ZY
0−−Y0−

ZY
0−

ψ(s) ds−B0
TYT +

∫ ZY
T −YT

ZY
T

ψ(s) ds

+

∫ T

0

Yt− dB
0
t +

∫ T

0

λZY
t−
{
ψ(ZY

t− − Yt−)− ψ(ZY
t−)
}
dt.(3.5)

The expression for the cash position at time T in Lemma 3.2 should be of independent
interest. It can be used to derive the Hamilton-Jacobi-Bellman equation for the optimal
liquidation problem with a finite time-horizon and a general utility function. Our idea is
similar to the idea in Schied and Schöneborn [21], which consists of rewriting the expression
for the cash position at the end of time in such a way that you make use of the assumption
that the stock position at the end of time is zero. The next result makes use of Lemma
3.2 and provides an expression for the cash position at the end of time in accordance with
this idea.

Lemma 3.3. Assume that the large investor’s initial cash position is c and that the large
investor use a liquidation strategy (X, Y ) ∈ A(y), with X = 0. Then the large investor’s
cash position at the end of time is

C∞(Y ) = c+ by −
∫ z−y

z

ψ(s) ds

+

∫ ∞
0

σYt− dWt +

∫ ∞
0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt,(3.6)

where b = B0
0 and z = ZY

0−. Moreover,

0 ≤
∫ ∞

0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt ≤

∫ z−y

z

ψ(s) ds.(3.7)
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The various terms in (3.6), for the cash position at the end of time, all have economic
interpretations. The term

c+ by −
∫ z−y

z

ψ(s) ds

corresponds to the cash position of the large investor after immediate liquidation of the
entire position in risky assets. The term∫ ∞

0

σYt− dWt

represent the risk of the large investor’s cash position at the end of time if the stock position
is not liquidated immediately, and∫ ∞

0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt

represents the gain to the large investor’s cash position for not liquidating immediately.

Remark 3.4. From the bounds established in the proof of Lemma 3.6, it follows that if
Y n is a sequence of liquidation strategies in A−D(y) such that Y n converges to Y ∈ A−D(y)
in total variation, then C∞(Y n) converges to C∞(Y ) in L1(P). This shows that the limit
order book model exhibits a certain robustness. For instance, given a sequence of absolutely
continuous liquidation strategies converging to a liquidation strategy consisting of block
trades, the corresponding cash position of the absolutely continuous strategy will converge
to the cash position corresponding to that consisting of the block trades. This differs
completely from the situation in the supply curve models of Cetin, Jarrow and Protter [10]
and Baum and Bank [8].

For strategies Y ∈ A−D(y), (3.3) takes the form

C∞(Y ) = c+ by +

∫ ∞
0

σYt− dWt − F∞(Y ),

and by comparing this expression for C∞(Y ) with the expression for C∞(Y ) in Lemma 3.3,
we conclude that

F∞(Y ) =

∫ z−y

z

ψ(s) ds+

∫ ∞
0

λZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}
dt.(3.8)

From the calculations in (3.4) and equation (3.8), it follows that the optimization problem
(2.13) takes the form

sup
(X,Y )∈A(y)

E
[
U
(
C∞(X, Y )

)]
= − exp

(
−A(c+ by) + A

∫ z−y

z

ψ(s) ds

)
exp
(
AV (y, z)

)
,

(3.9)

where

V (y, z) = inf
Y ∈A−D(y)

∫ ∞
0

λYt−

(
aYt− + ZY

t−
ψ(ZY

t−)− ψ(ZY
t− − Yt−)

Yt−

)
dt,(3.10)
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with a = σ2A
2λ

and z = ZY
0−. Thus we have reduced the original utility optimization problem

to (3.10). Moreover, from assumption (2.2) and Lemma 3.3, it follows that V given by
(3.10) is well defined and real valued.

Remark 3.5. Observe that from Lemma 3.3, it follows that for a liquidation strategy
Y ∈ A−D(y),

E
[
C∞(Y )

]
= c+ by −

∫ z−y

z

ψ(s) ds+

∫ ∞
0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt

and

Var
(
C∞(Y )

)
=

∫ ∞
0

σ2Y 2
t− dt.

Therefore the right-hand side of (3.10), with a = σ2A
2λ

, can be written

c+ by −
∫ z−y

z

ψ(s) ds+ inf
Y ∈A−D(y)

{
A

2
Var
(
C∞(Y )

)
− E

[
C∞(Y )

]}
,

which corresponds to the Almgren and Chriss [3] criterion. Schied, Schöneborn and
Tehranchi [22] proved that this relationship between the Almgren and Chriss criterion
and CARA utility holds also in the more general setting where the unaffected price process
follows a Lévy process.

4. The solution to the optimization problem

Our next aim is to derive an explicit solution to the optimization problem (3.10), which
will be based on the principle of dynamic programming. With reference to the general
theory of optimal control (see e.g. Fleming and Soner [11]), the Hamilton-Jacobi-Bellman
equation corresponding to V given by (3.10) takes the form

max

{
zvz(y, z)− ay2 − z

(
ψ(z)− ψ(z − y)

)
, max

0≤4≤y
v(y, z)− v(y −4, z −4)

}
= 0,(4.1)

with associated boundary condition v(0, z) = 0, for all z ≤ 0. Formally, we can obtain
equation (4.1) as follows. As we are optimizing over deterministic selling strategies (no
buy orders), there are only two choices; to sell a number 4 > 0 of shares or to wait. Given
a state (y, z), it may or may not be optimal to sell a number 4 of shares, hence

v(y, z) ≤ v
(
y −4, z −4

)
,(4.2)

as the sale of 4 number of shares decrease the number of shares held from y to y−4 and
the state of the limit order book from z to z −4. The inequality (4.2) should hold for all
0 ≤ 4 ≤ y, which implies that

max
0≤4≤y

{
v(y, z)− v(y −4, z −4)

}
≤ 0.(4.3)
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On the other hand, it may or may not be optimal to wait for a period of time 4t > 0,
hence

v(y, z) ≤ v
(
y, Z4t

)
+

∫ 4t
0

λy

(
ay + Zu−

ψ
(
Zu−

)
− ψ

(
Zu− − y

)
y

)
du

= v(y, z) +

∫ 4t
0

{
λy

(
ay + Zu−

ψ
(
Zu−

)
− ψ

(
Zu− − y

)
y

)
− vz

(
y, Zu−

)
λZu−

}
du,

(4.4)

where Zu = ze−λu, for 0 ≤ u ≤ 4t. By multiplying inequality (4.4) by (4t)−1 and letting
4t tend to 0, we obtain

zvz(y, z)− ay2 − z
{
ψ(z)− ψ(z − y)

}
≤ 0.(4.5)

Since it is optimal to either sell a certain number of shares or wait, we must have equality
in either (4.3) or (4.5), and we obtain (4.1).

For this type of singular optimal control problem, the optimal strategy can be charac-
terized by two disjoint sets Ds and Dw, where the union of Ds and Dw is equal to the state
space R+ × R−. These sets satisfy

max
0≤4≤y

{
v(y, z)− v(y −4, z −4)

}
= 0, for (y, z) ∈ Ds,

zvz(y, z)− ay2 − z
{
ψ(z)− ψ(z − y)

}
= 0, for (y, z) ∈ Dw.(4.6)

If (y, z) ∈ Ds, then the optimal strategy consists of making an immediate sale of4 number
of shares, where 4 is such that (y−4, z−4) is on the nearest boundary between Ds and
Dw (or the line y = 0). If (y, z) ∈ Dw, then the optimal strategy consists of waiting until
the first time

(
y, ze−λt

)
is on the boundary between Ds and Dw, as the limit order book

recovers at an exponential rate λ. If (y, z) is on the boundary between Ds and Dw, then
the optimal strategy consists of taking minimal action to ensure that the state process
(Yt, Z

Y
t ) remain on the boundary.

The simplest case is when Ds and Dw are separated by a function h, i.e. (y, z) ∈ Ds if
z ≥ h(y) and (y, z) ∈ Dw if z < h(y) (or vice versa). Since

λy

(
ay + z

ψ(z)− ψ(z − y)

y

)
(4.7)

is positive if z is large (i.e. close to zero) compared to y, and increasingly negative for
small values of z, it is natural that (y, z) ∈ Ds if z ≥ h(y) and (y, z) ∈ Dw if z < h(y). It
turns out that this indeed is the case, and that the boundary between Ds and Dw can be
described by a strictly decreasing càdlàg function h : R+ → R− satisfying h(0) = 0 and
limy→∞ h(y) = −∞, and that we should be looking for a function v satisfying

vy(y, z) + vz(y, z) = 0, for z ≥ h(y),(4.8)

zvz(y, z)− ay2 − z
(
ψ(z)− ψ(z − y)

)
≤ 0, for z > h(y),(4.9)

and

zvz(y, z)− ay2 − z
(
ψ(z)− ψ(z − y)

)
= 0, for z ≤ h(y),(4.10)
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D+
y v(y, z) + vz(y, z) ≤ 0, for z < h(y),(4.11)

where

D+
y v(y, z) = lim

ε→0+

1

ε

(
v(y + ε, z)− v(y, z)

)
.(4.12)

Let us examine in more detail the strategy corresponding to the case where Ds and Dw
are described by an intervention boundary function h. Given a strictly decreasing càdlàg
function h : R+ → R− satisfying h(0) = 0 and limy→∞ h(y) = −∞, and corresponding
sets Ds and Dw given by (y, z) ∈ Ds if z ≥ h(y) and (y, z) ∈ Dw if z < h(y), we might
ask whether the corresponding liquidation strategy, denoted by Y h, exists. For future
reference, introduce the following functions related to h:

γh(y) = h(y)− y, for y ∈ R+,(4.13)

ρh(z) = z − h−1(z), for z ∈ R−,(4.14)

h−1(z) = sup
{
y ∈ R+ : h(y) ≥ z

}
, for z ∈ R−,(4.15)

γ−1
h (z) = sup

{
y ∈ R+ : γh(y) ≥ z

}
, for z ∈ R−,(4.16)

and let ρ−1
h denote the inverse of ρh. We can then observe that if (y, z) ∈ Ds, then the

strategy Y h corresponding to the intervention boundary described by h, will consist of
making an initial sale of 4 number of shares such that (y −4, z −4) is on the graph of

h (see Figure 1). Hence, we want (y −4, z −4) = (h−1(z −4), z −4). With ZY h

0− = z

and ZY h

0 = z −4, we see that this equation is equivalent to

ρh
(
ZY h

0

)
= ZY h

0 − h−1(ZY h

0 ) = z − y,

from which it follows that ZY h

0 = ρ−1
h (z− y) and 4 = z− ρ−1

h (z− y). For future reference,
we can also observe that ρ−1

h (x) = x+γ−1
h (x), for x ∈ R−. Hence, the number 4 of shares,

can also be expressed by4 = y−γ−1
h (z−y). If (y, z) ∈ Dw, i.e. z < h(y), then the strategy

Y h consists in waiting until the state process (Y h
t , Z

Y h

t ) is on the graph of h (see Figure

1). While no action is taken, Y h
t = y and ZY h

t = ze−λt, from which it follows that the first
time tw that the state process is on the graph of h is given by the equation ze−λtw = h(y).

Once the state process (Y h, ZY h
) is on the graph of h, the strategy Y h consists of taking

minimal action such that the state process remains on the graph of h (see Figure 1). This

implies that
(
Y h
t , Z

Y h

t

)
=
(
h−1(ZY h

t ), ZY h

t

)
. With reference to (2.8), this implies that ZY h

should solve

dZY h

t = −λZY h

t− dt+ dh−1
(
ZY h

t

)
,

which is equivalent to

dρh
(
ZY h

t

)
= −λZY h

t− dt.

The following result establish the existence and uniqueness of such a strategy Y h for a
given intervention boundary function h.
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Lemma 4.1. Let (y, z) ∈ R+ × R− and let h : R+ → R− be a strictly decreasing càdlàg
function satisfying h(0) = 0 and limy→∞ h(y) = −∞, let h−1 and γ−1

h be given by (4.15)
and (4.16). Set

tw =

{
0, if z ≥ h(y),

λ−1
{

ln(−z)− ln(−h(y))
}
, if z < h(y),

(4.17)

and let Y h denote the decreasing càdlàg liquidation strategy with the following description:

(a) If z ≥ h(y), then immediately sell y − γ−1
h (z − y) number of shares. This block

trade ensures that Y h
0 = h−1

(
ZY h

0

)
. Then continuously sell shares so that Y h

t =

h−1
(
ZY h

t

)
, for all t ≥ 0.

(b) If z < h(y), then do nothing until time tw. The time tw has the property that

y = h−1
(
ZY h

tw

)
. Then continuously sell shares so that Y h

t = h−1
(
ZY h

t

)
, for all

t ≥ tw.

Such a strategy Y h exists and is unique. In particular,

Y h
t = h−1(ZY h

t ), for t ≥ tw,(4.18)

and ZY h
is the unique solution to

ZY h

t = ZY h

tw − h
−1(ZY h

tw )−
∫ t

tw

λZY h

u du+ h−1(ZY h

t ),(4.19)

where

ZYh
tw = h(y), if z < h(y), and ZY h

tw = z − y + γ−1
h (z − y), if z ≥ h(y).(4.20)

If tw > 0, then Y h
t = y and ZY h

t = ze−λt, for 0 ≤ t ≤ tw.

The next result concerns the relative speed of liquidation corresponding to two different
intervention boundaries. In particular, we will need this result later in order to prove that
our candidate for the optimal strategy is admissible.

Lemma 4.2. Let h1, h2 : R+ → R− be strictly decreasing càdlàg functions satisfying
h1(0) = h2(0) = 0 and limy→∞ h1(y) = limy→∞ h1(y) = −∞. Denote by Y h1 and Y h2 the
strategies defined in Lemma 4.1 by (4.18)–(4.19) corresponding to h1 and h2, respectively.
If h1 ≤ h2 then Y h1 ≤ Y h2. In particular, if there exist C > 0 and ε > 0 such that
h(y) ≤ −Cy for all y < ε, then Y h ∈ A−D(y).

In order to obtain an explicit expression for the value function of our problem, we progress
by deriving an explicit expression for the performance associated with a strategy Y h, given
an arbitrary intervention boundary function h. For an initial state (y, z) and strategy Y h,

with associated bid order book state process ZY h
, define the performance function Jh by

Jh(y, z) =

∫ ∞
0

λY h
t−

(
aY h

t− + ZY h

t−
ψ
(
ZY h

t−
)
− ψ

(
ZY h

t− − Y h
t−
)

Y h
t−

)
dt,(4.21)
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where Y h
0− = y and ZY h

0− = z. Also, define

Ih(z) = Jh
(
h−1(z), z

)
, for z ∈ R−,

which corresponds to the performance of the strategy Y h if the initial state is on the graph
of h. If the initial state (y, z) is such that z ≥ h(y) then the strategy Y h consists of an
initial sale of y − γ−1

h (z − y) = z − ρ−1
h (z − y) number of shares, and the state after the

block sale is
(
Y h

0 , Z
Y h

0

)
=
(
h−1
(
ρ−1
h (z − y)

)
, ρ−1

h (z − y)
)
, where γ−1

h and ρh are given by
(4.16) and (4.14), respectively. Hence,

Jh(y, z) = Ih
(
ρ−1
h (z − y)

)
, for z ≥ h(y).(4.22)

Thus, if we obtain an explicit expression for Ih, we have an explicit expression for Jh(y, z),
for all z ≥ h(y). For an initial state (y, z) = (h−1(z), z), the liquidation strategy Y h

satisfies (Y h
t , Z

Y h

t ) =
(
h−1(ZY h

t ), ZY h

t

)
, for all t ≥ 0. Therefore,

Ih(z) =

∫ ∞
0

(
aλ
(
h−1(ZY h

t− )
)2

+ λZY h

t−
{
ψ
(
ZY h

t−
)
− ψ

(
ρh(Z

Y h

t− )
)})

dt, ZY h

0− = z.

With reference to (2.8), we note that formally,

dt = −dρh(Z
Y h

t )

λZY h

t−
,

and hence

Ih(z) = −
∫ ∞

0

a
(
h−1(ZY h

t− )
)2

ZY h

t−
dρh
(
ZY h

t

)
+

∫ ∞
0

ψ
(
ρh(Z

Y h

t− )
)
dρh
(
ZY h

t

)
−
∫ ∞

0

ψ
(
ZY h

t−
)
dρh
(
ZY h

t

)
= −

∫ ∞
0

a
(
γ−1
h

(
ρh(Z

Y h

t− )
))2

ρ−1
h

(
ρh(ZY h

t− )
) dρh

(
ZY h

t

)
+

∫ ∞
0

ψ
(
ρh(Z

Y h

t− )
)
dρh
(
ZY h

t

)
−
∫ ∞

0

ψ
(
ρ−1
h

(
ρh(Z

Y h

t− )
))
dρh
(
ZY h

t

)
=

∫ ρh(z)

0

(
a
(
γ−1
h (u)

)2

ρ−1
h (u)

+ ψ
(
ρ−1
h (u)

)
− ψ(u)

)
du,

where we have used that γ−1
h

(
ρ−1
h (x)

)
= h−1(x), for x ∈ R−. With reference to (4.22) we

conclude that

Jh(y, z) =

∫ z−y

0

(
a
(
γ−1
h (u)

)2

ρ−1
h (u)

+ ψ
(
ρ−1
h (u)

)
− ψ(u)

)
du, for z ≥ h(y).(4.23)

In order to obtain an expression for Jh(y, z) for z < h(y), we note that the strategy Y h

consists of waiting until the first time tw for which (Y h
tw , Z

Y h

tw ) is on the graph of h, where
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Y h
t = y and ZY h

t = ze−λt, for 0 ≤ t ≤ tw. Therefore, tw = λ−1 ln
(
z/h(y)

)
, and

Jh(y, z) =

∫ tw

0

λy

(
ay + ze−λt

ψ
(
ze−λt

)
− ψ

(
ze−λt − y

)
y

)
dt+ Ih

(
h(y)

)
= ay2 ln

(
z

h(y)

)
+

∫ h(y)−y

z−y
ψ(u) du−

∫ h(y)

z

ψ(u) du

+

∫ h(y)−y

0

(
a
(
γ−1
h (u)

)2

ρ−1
h (u)

+ ψ
(
ρ−1
h (u)

)
− ψ(u)

)
du, for z < h(y).

While this provides an explicit expression for Jh(y, z), it is not obvious from this expression
that it is continuous in y (and has a one-sided derivative with respect to y), as h is only a
càdlàg function. However, we can calculate that∫ γh(y)

0

(
a
(
γ−1
h (u)

)2

ρ−1
h (u)

+ ψ
(
ρ−1
h (u)

))
du =

∫ y

0

(
au2

h(u−)
+ ψ

(
h(u−)

))
dγch(u)

+
∑

0≤u≤y

au2 ln

(
h(u)

h(u−)

)
+
∑

0≤u≤y

∫ h(u)

h(u−)

ψ(s) ds.

From this expression, as well as∫ h(y)

0

ψ(u) du =

∫ y

0

ψ(u) dhc(u) +
∑

0≤u≤y

∫ h(u)

h(u−)

ψ(s) ds,

and

ay2 ln
(
−h(y)

)
=

∫ y

0

2au ln
(
h(u−)

)
du+

∫ y

0

au2

h(u−)
dhc(u) +

∑
0≤u≤y

au2 ln

(
h(u)

h(u−)

)
,

it follows that the performance function Jh(y, z) admits the expression

Jh(y, z) = ay2 ln
(
−z
)

+

∫ z

z−y
ψ(u) du

−
∫ y

0

(
au2

h(u)
+ ψ

(
h(u)

)
+ 2au ln

(
−h(u)

))
du. for z < h(y),

The next result provides an explicit equation for the intervention boundary function h and
the corresponding value function which solves equation (4.1) with associated boundary
condition v(0, z) = 0, for all z ∈ R−.

Proposition 4.3. For y ∈ R+, define the function Γ(·; y) : R− → R by

Γ(x; y) = ψ(x) +
ay2

x
+ 2ay ln(−x),

and let h = h(y) be the smallest h ∈ R− satisfying

max
x≤0

Γ(x; y) = Γ
(
h(y); y

)
.(4.24)
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This defines a unique strictly decreasing càdlàg function h : R+ → R− satisfying h(0) = 0
and limy→∞ h(y) = −∞, and in particular

ψ′
(
h(y)

)
h(y)2 + 2ayh(y)− ay2 = 0, for all y ∈ R+.(4.25)

Let γ−1
h , ρh and ρ−1

h be the functions defined in (4.16) and (4.14). Then v : R+×R− → R−
given by

v(y, z) =

∫ z−y

0

(
a
(
γ−1
h (s)

)2

ρ−1
h (s)

+ ψ
(
ρ−1
h (s)

)
− ψ(s)

)
ds, for z ≥ h(y),(4.26)

and

v(y, z) = ay2 ln
(
−z
)

+

∫ z

z−y
ψ(s) ds

−
∫ y

0

(
as2

h(s)
+ ψ

(
h(s)

)
+ 2as ln

(
−h(s)

))
ds, for z < h(y),(4.27)

is a C0,1(R+ × R−) function which solves equation (4.1) with the boundary condition
v(0, z) = 0, for all z ∈ R−. In particular, v satisfies (4.8)–(4.11). Moreover, D+

y v :
R+×R− → R is continuous in z and càdlàg in y, and v is continuously differentiable with
respect to y, for z ≥ h(y).

Based on the expression for the performance function Jh(y, z) and the principle of smooth
fit, it follows that the intervention boundary function h should satisfy (4.25). However,
(4.25) does not necessarily have a unique solution and the value function does in general
not satisfy the smoothness principle. Based on the observation that

D+
y v(y, z) + vz(y, z) = Γ(z; y)− Γ

(
h(y); y

)
, for z < h(y),

and with reference to (4.11), equation (4.24) is a natural candidate.
The following result states that the function v given by (4.26) and (4.27) is equal to

the value function V given by (3.10), that the strategy Y h corresponding to h given by
(4.24) is an optimal liquidation strategy, and hence provides the solution to the utility
maximization problem (2.13).

Theorem 4.4. Let the large investor’s risk aversion be A, the volatility of the non-affected
asset price be σ and let the resilience rate be λ. Set a = σ2A

2λ
and let h denote the smallest

solution to (4.24), let v be given by (4.26) and (4.27) and let V be given by (3.10). Then
v = V and

sup
(X,Y )∈A(y)

E
[
U
(
C∞(X, Y )

)]
= − exp

(
−A(c+ by) + A

∫ z−y

z

ψ(s) ds

)
exp
(
Av(y, z)

)
,

where z = ZY
0− is the initial state of the bid order book. The optimal strategy Y ∗ is equal to

Y h ∈ A−D(y), where Y h is the strategy given by (4.18)–(4.20) in Lemma 4.1 corresponding
to h, with Y h

0− = y.
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As a corollary, we obtain that the optimal liquidation strategy possess all the properties
one would expect, like increased limit order depth implies faster liquidation, increased
volatility of the unaffected stock price implies faster liquidation, and increased risk aversion
implies faster liquidation.

Corollary 4.5. Let Y ∗1 ∈ A−D(y) be the strategy which attains the optimality in (2.13) given
a shape function φ1, and let Y ∗2 ∈ A−D(y) denote the strategy which attains the optimality
in (2.13) given a shape function φ2. Then φ1 ≤ φ2 implies Y ∗1 ≥ Y ∗2 , provided the volatility
σ, the resilience rate λ and the large investor’s risk aversion A is the same.

Let Y ∗1 ∈ A−D(y) be the strategy which attains the optimality in (2.13) given volatility σ1

and risk aversion A1, and let Y ∗2 ∈ A−D(y) denote the strategy which attains the optimality
in (2.13) given volatility σ2 and risk aversion A2. Then σ2

1A1 ≤ σ2
2A2 implies that Y ∗1 ≥ Y ∗2 ,

provided that the shape function φ and the resilience rate λ is the same.

Proof. Observe that φ1 ≤ φ2 implies that ψ′1 ≥ ψ′2, and hence ψ1 ≤ ψ2. It follows that
h1 ≥ h2, where h1 and h2 denote smallest solution to (4.24) corresponding to ψ1 and ψ2,
respectively. The result then follows from Lemma 4.2.

Notice that a1 ≤ a2 implies that h1 ≥ h2, where h1 and h2 denote the smallest solution
to (4.24) corresponding to a1 and a2, respectively. The result then follows from Lemma
4.2. �

The next example shows that if the shape function φ is constant, and hence ψ is a linear
function, the solution to equation (4.1) is a linear function, and the corresponding optimal
strategy takes an even simpler form. In this case the impact of the large trader’s strategy
is linear, so it is natural to compare the results with the corresponding strategy for the
Almgren and Chriss [2] model with an infinite horizon as in Schied and Schöneborn [21].

Example. Suppose that the shape function φ of the limit order book is constant, i.e.
φ = c, for some c > 0. Let the large investor’s risk aversion be A, the volatility of the
unaffected stock price be σ, let the resilience rate be λ and set a = σ2A

2λ
. Observe that for

all y ∈ R+, equation (4.25) has a unique solution h = h(y) given by

h(y) = −κy,

where κ = ac+
√
a2c2 + ac. It follows that this function h is the unique solution to equation

(4.24), and therefore defines the optimal intervention boundary. Moreover, we can observe
that

h−1(z) = −1

κ
z, γ−1

h (z) = − 1

κ+ 1
z and ρ−1

h (z) =
κ

κ+ 1
z.

With reference to (4.26) and (4.27), it follows from Proposition 4.3 that

v(y, z) =
ac− κ

2cκ(κ+ 1)
(y − z)2, if z ≥ −κy,

and

v(y, z) =
ac(κ+ 1) + κ(κ− 1)

2cκ
y2 +

zy

c
+ ay2 ln

(
−z
κy

)
, if z < −κy,
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is a C1,1(R+ × R−) solution to equation (4.1) with boundary condition v(0, z) = 0, for all
z ≤ 0. Equation (4.19) takes the form

ZY h

t = ZY h

tw +
1

κ
ZY h

tw −
∫ t

tw

λZu− du−
1

κ
ZY h

t , for t ≥ tw.

from which it follows that

ZY h

t = ZY h

tw exp

(
−t λκ

κ+ 1

)
, for t ≥ tw.

Therefore, the strategy Y ∗ ∈ A−D(y) which attains the optimality in (2.13) is as follows:

(a) if z ≥ −κy, then immediately sell κy+z
1+κ

number of shares, i.e. Y ∗0 − y = −κy+z
1+κ

,
and then continuously sell shares according to

Y ∗t =
y − z
κ+ 1

exp

(
−t λκ

1 + κ

)
, for t ≥ 0;

(b) if z < −κy, then do nothing until time tw = λ−1
{

ln(−z) − ln(κy)
}

, and then
continuously sell shares according to

Y ∗t = y exp

(
−(t− tw)

λκ

1 + κ

)
, for t ≥ tw.

It is natural to compare our result for the limit order book with constant shape function
with the optimal liquidation strategy in the Almgren and Chriss model [2]. In this model,
the stock price dynamics are

Pt = P0 + σWt + α(Yt − Y0) + βẎt,(4.28)

where Yt denotes the number of shares held by the large investor at time t, and where the
process Y is absolutely continuous with density Ẏ , i.e.

Yt = y +

∫ t

0

Ẏu du.

The parameter α ≥ 0 is a parameter for the level of permanent impact of the large investor’s
trading, and the parameter β ≥ 0 describes the temporary impact of the large investor’s
trading. The optimal liquidation strategy for a large investor with an initial position of y
number of shares is

Y ∗t = y exp

(
−t

√
σ2A

2β

)
, t ≥ 0,

(see Schied and Schöneborn [21]) if the large investor has constant absolute risk aversion A
and aim to maximize his cash position at the end of time. We can observe that the optimal
strategy in the limit order book model and the optimal strategy in the Almgren and Chriss
model [2] look similar, as in both models liquidation follows an exponential function. Yet,
there are two aspects which make the strategies different. In the limit order book model,
the optimal strategy depends on the past history of the large investor, while in the Almgren
model there is no such dependence since future returns are unaffected by the large investor’s
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past trades. Also, in the limit order book model, the optimal strategy typically consist
of an initial block trade, while in the Almgren and Chriss model the optimal strategy is
absolutely continuous. However, as pointed out by an anonymous referee, we can recover
the optimal liquidation strategy for the Almgren and Chriss model by taking the limit as
λ → ∞ with c = c(λ) = 1

βλ
. Thus as the resilience rate tends to infinity, the quantity

available in the limit order book decreases such that the cost of trading has a finite limit.
More specifically, since

lim
x→0+

x+
√
x2 + x√
x

= 1,

we calculate that

lim
λ→∞

λκ(λ) = lim
λ→∞

λ

√
σ2A

2λ
c(λ) =

√
σ2A

2β
.

In the limit as λ → ∞, the stateprocess Z is identically equal to 0. Therefore, if we let
Y ∗,λ denote the optimal strategy described in (a) and (b) corresponding to λ, we conclude
that

lim
λ→∞

Y ∗,λt = lim
λ→∞

y

κ(λ) + 1
exp

(
−t λκ(λ)

1 + κ(λ)

)
= y exp

(
−t

√
σ2A

2β

)
,

which is the optimal strategy in the Almgren and Chriss model. To explain this result, we
can note that if Y is an admissible liquidation strategy which has the form

Ẏt =
m∑
n=1

qn1[τn,τn+1)(t),

for stopping times 0 ≤ τ1 < τ2 · · · < τm+1 and random variables q1, . . . , qm+1, where qn is
Fτn-measurable, then

lim
λ→∞

BY
t = B0

t + lim
λ→∞

ZY,λ
t

c(λ)

= B0
t + lim

λ→∞
βλe−λt

∫ t

0

eλsẎs ds

= B0
t +

m∑
n=1

βqn lim
λ→∞

(
eλ(min{τn+1,t}−t) − eλ(min{τn,t}−t)

)
= B0

t + βẎt,

which is the Almgren and Chriss model with permanent impact factor α equal to zero.
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5. Proofs of results

Proof. (of Lemma 3.2.) With reference to equation (2.12) we calculate

CT (Y ) = c−
∫ T

0

BY
t− dY

c
t −

∑
0≤t≤T

∫ 4Yt
0

{
B0
t + ψ

(
ZY
t− + x

)}
dx

= c−
∫ T

0

BY
t− dY

c
t −

∑
0≤t≤T

BY
t−4Yt −

∑
0≤t≤T

∫ 4Yt
0

{
ψ(ZY

t− + x)− ψ(ZY
t−)
}
dx

= c−
∫ T

0

BY
t− dYt −

∑
0≤t≤T

∫ 4Yt
0

{
ψ(ZY

t− + x)− ψ(ZY
t−)
}
dx.(5.1)

Since Y is a càdlàg process of finite variation, it follows from Protter [19, Theorems II.26
and II.28] that the quadratic co-variation [BY , Y ] between BY and Y is

[BY , Y ]T =
∑

0≤t≤T

{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}
4Yt.

Hence,

BY
T YT −BY

0−Y0− =

∫ T

0

BY
t− dYt +

∫ T

0

Yt− dB
Y
t

+
∑

0≤t≤T

{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}
4Yt.(5.2)

With reference to the dynamics of BY given by (2.9),∫ T

0

Yt− dB
Y
t =

∫ T

0

σYt− dWt −
∫ T

0

λZY
t−ψ

′(ZY
t−
)
Yt− dt

+

∫ T

0

ψ′
(
ZY
t−
)
Yt− dY

c
t +

∑
0≤t≤T

Yt−
{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}
.(5.3)

Equation (5.2) provides an expression for
∫ T

0
BY
t− dYt, which combined with (5.1) and (5.3)

imply

CT (Y ) = c−BY
T YT +BY

0−Y0− +

∫ T

0

σYt− dWt −
∫ T

0

λZY
t−ψ

′(ZY
t−
)
Yt− dt

+

∫ T

0

ψ′
(
ZY
t−
)
Yt− dY

c
t +

∑
0≤t≤T

Yt−
{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}

−
∑

0≤t≤T

∫ 4Yt
0

{
ψ
(
ZY
t− + x

)
− ψ

(
ZY
t−
)}
dx

+
∑

0≤t≤T

{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}
4Yt.(5.4)
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Define the function f : R+ × R− → R2 by

f(y, z) = yψ(z) +

∫ z−y

z

ψ(s) ds.

Then by Itô’s formula,

f
(
YT , Z

Y
T

)
= f

(
Y0−, Z

Y
0−
)

+

∫ T

0

ψ′
(
ZY
t−
)
Yt− dY

c
t

−
∫ T

0

λZY
t−ψ

′(ZY
t−
)
Yt− dt−

∫ T

0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt

+
∑

0≤t≤T

Yt−
{
ψ
(
ZY
t− +4Yt

)
− ψ

(
ZY
t−
)}

+
∑

0≤t≤T

ψ
(
ZY
t− +4Yt

)
4Yt

+
∑

0≤t≤T

∫ ZY
t−

ZY
t−+4Yt

ψ(s) ds.

This provides an expression for
∫ T

0
ψ′(ZY

t−)Yt dY
c
t , which inserted in (5.4) imply that

CT (Y ) = c−BY
T YT +BY

0−Y0− + f
(
YT , Z

Y
T

)
− f

(
Y0−, Z

Y
0−
)

+

∫ T

0

σYt− dWt +

∫ T

0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt,

from which the result follows. �

Proof. (of Lemma 3.3.) With reference to the expression for the large investor’s cash
position at time T > 0 obtained in Lemma 3.2, we first note that z − y ≤ ZY

t ≤ 0, for all
t ≥ 0. Therefore

lim
T→∞

(
YTZ

Y
T +

∫ ZY
T −YT

ZY
T

ψ(s) ds

)
= 0,

almost surely and in L1(P). By the Cauchy-Schwartz inequality, we calculate that

lim
T→∞

E
[BY

T YT
] ≤ σ

(
lim
T→∞

E
[
TY 2

T

])1/2

= 0,(5.5)

since (2.2) implies

lim
t→∞

E
[
tY 2
t

]
= 0.(5.6)

The convergence of
∫∞

0
σYt− dWt follows from (2.2) and the Itô isometry. In order to

establish the inequalities (3.7), observe that B0 ≥ BY , for every (X, Y ) ∈ A(y). Since Y
is decreasing, it follows that

CT (Y ) ≤ c−
∫ T

0

B0
t dYt = c+B0

0−Y0− −B0
TYT +

∫ T

0

σYt− dWt.
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By similar arguments as in (5.5), B0
TYT converges to 0 in L1(P) as T →∞. Since

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
≥ 0, t ≥ 0,

we conclude that the inequalities (3.7) hold and that the integral∫ ∞
0

λZY
t−
{
ψ
(
ZY
t− − Yt−

)
− ψ

(
ZY
t−
)}
dt

is almost surely convergent. �

Proof. (of Lemma 4.1.) Let Z(z) be the set of continuous functions Z : R+ → [z−h−1(z), 0]
satisfying Z0 = z and limt→∞ Zt = 0, where z ∈ R−. We consider Z(z) as a subset of C0(R),
i.e. the space of all real-valued continuous functions vanishing at infinity, equipped with
the uniform topology. Observe that Z(z) is a convex set, and by the Ascoli-Arzelà theorem
(see e.g. Folland [12]) it follows that Z(z) is compact. Introduce the function Ψz given by(

Ψz(Z)
)
t

=

{
z − h−1(z)−

∫ t
0
λZu du+ h−1(Zt), for 0 ≤ t ≤ t̄,

0, for t > t̄,

where

t̄ = inf

{
t ≥ 0 : z − h−1(z)−

∫ t

0

λZu du+ h−1(Zt) = 0

}
.

Since h−1 is continuous and decreasing, it follows that Ψz : Z(z) → Z(z) is continuous.
The Schauder-Tychonoff fixed point theorem (see e.g. Rudin [20]) therefore guarantees the
existence of a Z ∈ Z(z) such that Z = Ψz(Z). We want to show that such a Z is unique.

Assume that Z(1) = Ψz

(
Z(1)

)
and Z(2) = Ψz

(
Z(2)

)
, where Z(1), Z(2) ∈ Z(z) and Z

(1)
t = Z

(2)
t

for 0 ≤ t ≤ t1, and Z
(1)
t < Z

(2)
t for t1 < t < t2. Then for t1 < t < t2,

Z
(1)
t = z − h−1(z)−

∫ t

0

λZ(1)
u + h−1

(
Z

(1)
t

)
> z − h−1(z)−

∫ t

0

λZ(2)
u + h−1

(
Z

(2)
t

)
= Z

(2)
t ,

which contradicts the assumption that Z
(1)
t < Z

(2)
t for t1 < t < t2. We conclude that there

exists a unique Z ∈ Z(z) such that Z = Ψz(Z). Moreover, since the function z 7→ z−h−1(z)

is strictly increasing for z ∈ R− and t 7→ z − h−1(z) −
∫ t

0
λZu du is strictly increasing as

long as Zt < 0, it follows that the solution to Z = Ψz(Z) is strictly increasing while Zt < 0.

Suppose that z ≥ h(y), and let ZY h
be given by (4.19)–(4.20). The existence and

uniqueness of such a ZY h
follows from the previous part of the proof. We calculate that

h−1
(
ξ + γ−1

h (ξ)
)

= γ−1
h (ξ), for all ξ ∈ R−,

and therefore

h−1
(
ZY h

0

)
= h−1

(
z − y + γ−1

h (z − y)
)

= γ−1
h (z − y) = Y h

0 ,
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as required. With reference to (4.18) and (4.19) we have that

ZY h

t = ZY h

0 − h−1(ZY h

0 )−
∫ t

0

λZY h

u du+ h−1(ZY h

t )

= ZY h

0 −
∫ t

0

λZY h

u du+ Y h
t − Y h

0 ,(5.7)

since z ≥ h(Y ) is equivalent to tw = 0, and Y h
t = h−1(ZY h

t ). Equation (5.7) shows that

ZY h
satisfies (2.8), and we conclude that Y h is the unique process with the property that

Y h
t = h−1(ZY h

t ), for all t ≥ 0. Also note that from the first part of the proof, t 7→ ZY h

t is
continuous and decreasing for t > 0, which combined with the monotonicity and continuity
of h−1 imply that Y h is càdlàg and decreasing. Hence Y h is the unique decreasing càdlàg
process satisfying the description given in part (a).

Suppose that z < h(y), and let Y h be given by (4.18)–(4.20). Then

ZY h

t = ze−λt, for 0 ≤ t ≤ tw,(5.8)

and ZY h

tw = h(y) = limt→tw Z
Y h

t , which correspond to the description given in part (b).
With reference to (4.18)–(4.20), we have that

ZY h

t = h(y)− y −
∫ t

tw

λZY h

u du+ h−1(ZY h

t )

= h(y)−
∫ t

tw

λZY h

u du+ Y h
t − Y h

0 ,

for t ≥ tw. Since Y h
t = y = h−1

(
h(y)

)
and ZY h

is given by (5.8) for 0 ≤ t < tw, it follows
that

ZY h

t = z −
∫ t

0

λZY h

u du+ Y h
t − Y h

0 ,

for t ≥ 0, which verifies that ZY h
satisfies (2.8), and Y h

t = h−1
(
ZY h

t

)
, for all t ≥ tw. We

conclude that Y h is the unique decreasing càdlàg process as described in part (b). �

Proof. (of Lemma 4.2.) Let th1
w and th2

w be given by (4.17), corresponding to h1 and h2,
respectively. If z < h1(y) then Y h1

t = Y h2
t for 0 ≤ t ≤ th1

w and Y h1
t ≤ Y h2

t for th1
w ≤ t ≤ th2

w .
If h1(y) ≤ z < h2(y) then Y h1

t ≤ Y h2
t for 0 = th1

w ≤ t ≤ th2
w . Also, if z ≥ h2(y), then

th1
w = th2

w = 0 and Y h1
0 ≤ Y h2

0 . We want to show that {t ≥ 0 : Y h1
t > Y h2

t } = ∅. In order
to get a contradiction, suppose that

t1 = inf
{
t ≥ 0 : Y h1

t > Y h2
t

}
<∞ and define t2 = inf

{
t ∧∞ ≥ t1 : Y h1

t ≤ Y h2
t

}
.

By the previous observations t1 > tw, and by continuity of Y h1
t and Y h2

t , for t > 0, it
follows that t1 < t2. The monotonicity of h1 and h2 imply that if Y h1

t > Y h2
t then

ZY h1

t ≤ h1(Y h1
t −) < h1(Y h2

t ) ≤ h2(Y h2
t ) ≤ ZY h2

t ,(5.9)
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and if ZY h1

t < ZY h2

t then

Y h1
t = h−1

1

(
ZY h1

t

)
> h−1

1

(
ZY h2

t

)
≥ h−1

2

(
ZY h2

t

)
= Y h2

t .(5.10)

With reference to (4.18) and (4.19), we have that for t1 < t < t2,

ZY h1

t = ZY h1

t1
− Y h1

t1 −
∫ t

t1

λZY h1

u du+ h−1
1 (ZY h1

t )

≥ ZY h1

t1
− Y h1

t1 −
∫ t

t1

λZY h1

u du+ h−1
2 (ZY h1

t )

> ZY h1

t1
− Y h1

t1 −
∫ t

t1

λZY h2

u du+ h−1
2 (ZY h2

t )

≥ ZY h2

t1
− Y h2

t1 −
∫ t

t1

λZY h2

u du+ h−1
2 (ZY h2

t )

= ZY h2

t ,(5.11)

where the last equality is due to Y h1
t1 = Y h2

t1 , (5.9) and (5.10), which imply that ZY h1

t1
≥

ZY h2

t1
. However, in view of (5.9) and (5.10), the inequality (5.11) contradicts the definition

of t1. Thus we conclude that Y h1 ≤ Y h2 .
Let h̄ : R+ → R− be given by h̄(y) = −Cy, for C > 0, and let Y h̄ denote the corre-

sponding strategy given by (4.18)–(4.20) in Lemma 4.1. Then (4.19) takes the form

ZY h̄

t = ZY h̄

tw +
1

C
ZY h̄

tw −
∫ t

tw

λZY h̄

u du− 1

C
ZY h̄

t ,

which has a unique solution

ZY h̄

t = ZY h̄

tw exp

(
−t λC

1 + C

)
, for t ≥ tw.

Also, (4.20) takes the form

ZY h̄

tw = −Cy, if z < −Cy and ZY h̄

tw = (z − y)
C

1 + C
, if z ≥ −Cy.

Therefore the strategy Y h̄ is given by

Y h̄
t = − z − y

1 + C
exp

(
−t λC

1 + C

)
, for t ≥ 0, if z ≥ −Cy,(5.12)

and

Y h̄
t = y exp

(
−(t− tw)

λC

1 + C

)
, for t ≥ tw, if z < −Cy,(5.13)

where tw = λ−1
{

ln(−z)− ln(Cy)
}

, if z < −Cy. Since tw <∞, for all (y, z) ∈ R+×R− and

the right-hand side of (5.12) and (5.13) are square integrable, it follows that Y h̄ ∈ A−D(y),

for all initial positions Y h̄
0− = y.
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Assume that there exist C > 0 and ε > 0 such that h(y) ≤ −Cy, for 0 ≤ y < ε. Then
for every y0 ∈ R+, there exist Cy0 > 0 such that h(y) ≤ −Cy0y, for all 0 ≤ y ≤ y0. Also
observe that the strategy Y h given by (4.18)–(4.20) in Lemma 4.1, with initial position
Y h

0− = y0 ∈ R+, is completely determined by the values of h(y) for 0 ≤ y ≤ y0. Therefore,
if h1 and h2 are two functions satisfying h1(y) = h2(y), for 0 ≤ y ≤ y0, then Y h1 = Y h2

if the initial position Y h1
0− = Y h2

0− = y is less than or equal to y0. With reference to the
previous parts of the proof, we therefore conclude that Y h ∈ A−D(y) for all initial positions
Y h

0− = y. �

Proof. (of Proposition 4.3.) First note that for y > 0, the properties of ψ given in (2.4)–
(2.6) imply that

lim
x→−∞

Γ(x; y) = −∞ and lim
x→0

Γ(x; y) = −∞.

Moreover, Γ(x; y) is continuously differentiable in x and y, for all x < 0 and y > 0. We
conclude that h = h(y) defined as the smallest solution to (4.24) is well defined and that h
must satisfy (4.25). Moreover, ψ is strictly increasing and Γ(x; 0) = ψ(x), which imply that
h(0) = 0. Let h̄ = h̄(y) denote the largest solution to (4.25), and define L : R+×R− → R+

by L(h, y) = ay2− 2ayh and H : R− → R+ by H(h) = ψ′(h)h2. Since H is continuous and
limy→∞ L(h, y) = ∞, for all h ∈ R−, it follows that limy→∞ h̄(y) = −∞. Since h ≤ h̄, we
conclude that limy→∞ h(y) = −∞.

For 4 > 0, y ∈ R+ and x ∈ R−, we calculate that

Γ(x; y +4)− Γ(x; y) =

∫ y+4

y

2a

{
u

x
+ ln(−x)

}
du,

and

d

dx

[
Γ(x; y +4)− Γ(x; y)

]
=

∫ y+4

y

2a

{
1

x
− u

x2

}
du < 0.(5.14)

We want to show that h(y) is strictly decreasing as a function of y. In order to get a
contradiction, suppose that there exists y ∈ R+ and 4 > 0 such that h(y +4) ≥ h(y).
With reference to (5.14), this implies that

Γ
(
h(y +4); y +4

)
− Γ

(
h(y +4); y

)
< Γ

(
h(y); y +4

)
− Γ

(
h(y); y

)
.

However, this contradicts the definition of h, which implies that

Γ
(
h(y +4); y +4

)
≥ Γ

(
h(y); y +4

)
and Γ

(
h(y); y

)
≥ Γ

(
h(y +4); y

)
.

We conclude that h is strictly decreasing. The definition of h = h(y) as the smallest
solution to (4.24) implies that h is càdlàg.

Introduce the function Q : R+ × R− → R given by

Q(y, z) =

∫ z−y

0

(
a
(
γ−1
h (s)

)2

ρ−1
h (s)

+ ψ
(
ρ−1
h (s)

)
− ψ(s)

)
ds

−
{
ay2 ln

(
−z
)

+

∫ z

z−y
ψ(s) ds−

∫ y

0

(
as2

h(s)
+ ψ

(
h(s)

)
+ 2as ln

(
−h(s)

))
ds

}
,
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which is the difference between the expression for v given by (4.26) and the expression for
v given by (4.27). We calculate that

Qz(y, z) =
a
(
γ−1
h (z − y)

)2

ρ−1
h (z − y)

+ ψ
(
ρ−1
h (z − y)

)
− ψ(z − y)−

{
ay2

z
+ ψ(z)− ψ(z − y)

}
,

which we observe is a continuous function of (y, z). Moreover, in view of the observation

γ−1
h

(
z − h−1(z)

)
= sup

{
y ≥ 0 : γh(y) ≥ z − h−1(z)

}
= h−1(z),

it follows that Qz

(
h−1(z), z

)
= 0, for all z ∈ R−. We further calculate that

D+
y Q(y, z) = −

a
(
γ−1
h (z − y)

)2

ρ−1
h (z − y)

− ψ
(
ρ−1
h (z − y)

)
+ ψ(z − y)

−
{
− ay2

h(y)
+ ψ(z − y)− ψ

(
h(y)

)
+ 2ay

{
ln
(
−z
)
− ln

(
−h(y)

)}}
,

and observe that the function D+
y Q(y, z) is continuous in z and càdlàg in y. Since

ρ−1
h

(
h(y) − y

)
= h(y), it follows that D+

y Q
(
y, h(y)

)
= 0, for all y ∈ R+. Moreover,

Q(0, 0) = 0 and hence

Q
(
y, h(y)

)
=

∫ y

0

Qz

(
u, h(u)

)
dh(u) +

∫ y

0

D+
y Q
(
u, h(u)

)
du = 0, for all y ∈ R+,

and we conclude that

Q
(
h−1(z), z

)
= 0, for all z ∈ R−,

since Qz

(
h−1(z), z

)
= 0, for all z ∈ R− implies that Qz

(
y, h(y)

)
= 0, for all y ∈ R+. From

the properties of the function Q given above, We conclude that v ∈ C0,1(R+ × R−) and
that D+

y v(y, z) is continuous in z and càdlàg in y. Moreover, straightforward calculations
show that v is continuously differentiable with respect to y for z ≥ h(y).

Standard calculations show that v satisfy (4.8) and (4.10). In order to verify that v
satisfies (4.9), we calculate that

zvz(y, z)− ay2 − z
{
ψ(z)− ψ(z − y)

}
= −ay2 + z

{
a
(
γ−1
h (z − y)

)2

ρ−1
h (z − y)

) + ψ
(
ρ−1
h (z − y)

)
− ψ(z)

}
,(5.15)

for z ≥ h(y). Set s = ρ−1
h (z−y), which is equivalent to z−y = ρh(s). As ρ−1

h is an increasing
function and y ≥ h−1(z) is equivalent to z − y ≤ ρh(z), it follows that y ≥ h−1(z) if and
only if s ≤ z. Since γ−1

h (z − y) = γ−1
h

(
ρh(s)

)
= h−1(s), it follows from (5.15) that

sup
y≥h−1(z)

{
zvz(y, z)− ay2 − z

{
ψ(z)− ψ(z − y)

}}
= z inf

s≤z
G(s; z),(5.16)

where

G(s; z) =
a
(
h−1(s)

)2

s
−
a
(
z − ρh(s)

)2

z
+ ψ(s)− ψ(z).
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In particular, observe that G(z; z) = 0. We calculate that

0 = G(s; z) +

∫ z

s

−
a
(
h−1(u)

)2

u2
du+

∫ z

s

2ah−1(u)

u
dh−1(u)

−
∫ z

s

2a

z

{
z − u+ h−1(u)

}
d
(
h−1(u)− u

)
−
∫ z

s

ψ′(u) du

= G(s; z)−
∫ z

s

(
ψ′(u) +

a
(
h−1(u)

)2

u2
− 2ah−1(u)

u

)
du

+

∫ z

s

2a

{
h−1(u)

(
1

u
− 1

z

)
+

(
u

z
− 1

)}
d
(
h−1(u)− u

)
= G(s; z)−

∫ h(h−1(s)−)

s

(
ψ′(u) +

a
(
h−1(s)

)2

u2
− 2ah−1(s)

u

)
du

−
∫ z

h(h−1(z))

(
ψ′(u) +

a
(
h−1(z)

)2

u2
− 2ah−1(z)

u

)
du

+

∫ z

s

2a

{
h−1(u)

(
1

u
− 1

z

)
+

(
u

z
− 1

)}
d
(
h−1(u)− u

)
,(5.17)

since h−1(u) is constant for h(h−1(ξ)) ≤ u ≤ h(h−1(ξ)−), for any ξ ∈ R− and∫ h(h−1(z))

h(h−1(s)−)

(
ψ′(u) +

a
(
h−1(s)

)2

u2
− 2ah−1(s)

u

)
du = 0,

for any s ≤ z ≤ 0, by the definition of h and the continuity of Γ, which implies that
Γ
(
h(h−1(s)−);h−1(s)

)
= Γ

(
h(h−1(s));h−1(s)

)
, for every s ∈ R−. Also observe that

−
∫ h(h−1(s)−)

s

(
ψ′(u) +

a
(
h−1(s)

)2

u2
− 2ah−1(s)

u

)
du = Γ

(
s;h−1(s)

)
− Γ

(
h(h−1(s));h−1(s)

)
,

which is negative by the optimality of h. Since s ≤ z and u 7→ h−1(u) − u is strictly
decreasing, it follows from (5.17) that

0 ≤ G(s; z)−
∫ z

h(h−1(z))

(
ψ′(u) +

a
(
h−1(z)

)2

u2
− 2ah−1(z)

u

)
du

+

∫ z

h(h−1(z))

2a

{
h−1(u)

(
1

u
− 1

z

)
+

(
u

z
− 1

)}
d
(
h−1(u)− u

)
= G(s; z) + ψ

(
h(h−1(z))

)
− ψ(z)

+

∫ z

h(h−1(z))

{
2a

(
h−1(z)

z
+ 1

)
−
a
(
h−1(z)

)2

u2
− 2au

z

}
du

≤ G(s; z),(5.18)
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since ψ is strictly increasing, h
(
h−1(z)

)
≤ z and

2a

(
h−1(z)

z
+ 1

)
−
a
(
h−1(z)

)2

u2
− 2au

z
≤ 2ah−1(z)

z
< 0, for u ≤ z.

With reference to (5.16) and (5.18), we conclude that v satisfies (4.9). Finally, we need to
show that v satisfies (4.11). We calculate that

D+
y v(y, z) + vz(y, z) = ay2

(
1

z
− 1

h(y)

)
+ ψ(z)− ψ

(
h(y)

)
+ 2ay ln

(
z

h(y)

)
= Γ(z; y)− Γ

(
h(y); y

)
≤ 0,(5.19)

by the definition of h. �

Proof. (of Theorem 4.4.) Let δ be a non-negative C∞(R) function with support in [0, 1]

satisfying
∫ 1

0
δ(x) dx = 1, and define a sequence of functions {δn}∞n=1 by

δn(s) = n δ(ns), s ≥ 0.

We mollify v to obtain a sequence of function {v(n)}∞n=1, given by

v(n)(y, z) =

∫ 1

0

v(y + s, z) δn(s) ds

Then v(n) ∈ C1,1(R+ × R−), for all n ∈ N, and

v(y, z) = lim
n→∞

v(n)(y, z),

vz(y, z) = lim
n→∞

v(n)
z (y, z),

D+
y v(y, z) = lim

n→∞
v(n)
y (y, z),

where the last equality is due to D+
y v(y, z) being càdlàg in y. Moreover, for every (y0, z0) ∈

R+ × R− there exists a K > 0 such thatv(n)(y, z)
 ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N,(5.20) v(n)

z (y, z)
 ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N,(5.21) v(n)

y (y, z)
 ≤ K, 0 ≤ y ≤ y0, z0 − y0 ≤ z ≤ 0 and n ∈ N.(5.22)

Then

v(n)
(
YT , Z

Y
T

)
+

∫ T

0

{
λaY 2

t− + λZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}}
dt

= v(n)(y, z) +

∫ T

0

{
v(n)
y (Yt−, Z

Y
t−) + v(n)

z (Yt−, Z
Y
t−)

}
dY c

t

+
∑

0≤t≤T

{
v(n)
(
Yt− +4Yt, ZY

t− +4Yt
)
− v(n)

(
Yt−, Z

Y
t−
)}
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− λ
∫ T

0

{
ZY
t−v

(n)
z (Yt−, Z

Y
t−)− aY 2

t− − ZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}}
dt,(5.23)

for all Y ∈ A−D(y). For every ε > 0 and Y ∈ A−D(y) there exists t0 ∈ R+ such that Yt ≤ ε,
for all t ≥ t0. Therefore

|ZY
t | ≤

ZY
t0

e−λ(t−t0)
+

∫ t

t0

e−λ(t−s) dYs

 ≤ |ZY
t0
| e−λ(t−t0) + ε,

from which it follows that ZY
t tends to 0 as t→∞. With reference to (2.8), we therefore

conclude that ∫ ∞
0

|ZY
t | dt =

|z − y|
λ

.(5.24)

With reference to (5.21), (5.22) and (5.24), we calculate that∫ ∞
0

sup
n∈N

ZY
t−

(
v(n)
z (Yt−, Z

Y
t−)−

{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}) dt ≤ K + C1

λ
|z − y|,

for some constant C1 > 0 which may depend on the initial conditions y and z. Similarly,∫ ∞
0

sup
n∈N

v(n)
y

(
Yt−, Z

Y
t−
)

+ v(n)
z

(
Yt−, Z

Y
t−
) d(−Y c

t ) ≤ 2Ky

and ∑
0≤t≤∞

sup
n∈N

v(n)
(
Yt− +4Yt, ZY

t− +4Yt
)
− v(n)

(
Yt−, Z

Y
t−
) ≤ 2Ky.

Hence, by (5.23) and the dominated convergence theorem, we obtain that∫ ∞
0

{
λaY 2

t− + λZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}}
dt

= v(y, z) +

∫ ∞
0

{
D+
y v
(
Yt−, Z

Y
t−
)

+ vz
(
Yt−, Z

Y
t−
)}

dY c
t

+
∑
t≥0

{
v
(
Yt− +4Yt, ZY

t− +4Yt
)
− v
(
Yt−, Z

Y
t−
)}

− λ
∫ ∞

0

{
ZY
t−vz

(
Yt−, Z

Y
t−
)
− aY 2

t− − ZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}}
dt,(5.25)

for any Y ∈ A−D(y), by taking the limits as n→∞ and T →∞, and noting that v(YT , Z
Y
T )

tends to 0 as T → ∞ due to the boundary condition v(0, z) = 0. Since according to
Proposition 4.3, v satisfy (4.8)–(4.11), it follows that∫ ∞

0

{
λaY 2

t− + λZY
t−
{
ψ
(
ZY
t−
)
− ψ

(
ZY
t− − Yt−

)}}
dt ≥ v(y, z),(5.26)

and thus V ≥ v.
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With reference to Assumption 2.3 and (2.6), it follows that there exists C > 0 and ε > 0
such that h(y) ≥ −Cy, for −ε ≤ y ≤ 0, where h denotes the smallest solution to (4.24).
According to Lemma 4.2, we therefore have Y ∗ = Y h ∈ A−D(y), for all initial positions
Y ∗0− = y. We want to show that (5.26) holds with equality for Y ∗. Observe that 4Y ∗t < 0
only if t = 0 and z > h(y), in which case 4Y ∗0 is such that after the jump, Y ∗0 = h−1(ZY ∗

0 ).
With reference to (4.8) and Proposition 4.3, we have that vy(y, z) + vz(y, z) = 0, for
z ≥ h(y). Therefore∑

t≥0

{
v
(
Y ∗t− +4Y ∗t , ZY ∗

t− +4Y ∗t
)
− v
(
Y ∗t−, Z

Y ∗

t−
)}

= 0.(5.27)

If z < h(y) then Y ∗t = y, for 0 ≤ t ≤ tw, where tw is as defined in Lemma 4.1. Also

ZY ∗

t = ze−λt, for 0 ≤ t ≤ tw.

Moreover ZY ∗
t < h(y), for t < tw, and ZY ∗

tw = h(y). With reference to (4.10) and Proposition
4.3, it follows that∫ tw

0

{
ZY ∗

t− vz
(
Y ∗t−, Z

Y ∗

t−
)
− a(Y ∗t−)2 − ZY ∗

t−
{
ψ
(
ZY ∗

t−
)
− ψ

(
ZY ∗

t− − Y ∗t−
)}}

dt = 0.

By definition Y ∗t = h−1(ZY ∗
t ), for t ≥ tw. According to Proposition 4.3, v satisfies (4.8),

and therefore ∫ ∞
tw

{
D+
y v
(
Y ∗t−, Z

Y ∗

t−
)

+ vz
(
Y ∗t−, Z

Y ∗

t−
)}

d(Y ∗t )c = 0.

Moreover, since v satisfies (4.10), and therefore∫ ∞
tw

{
ZY ∗

t− vz
(
Y ∗t−, Z

Y ∗

t−
)
− a(Y ∗t−)2 − ZY ∗

t−
{
ψ
(
ZY ∗

t−
)
− ψ

(
ZY ∗

t− − Y ∗t−
)}}

dt = 0.

With reference to (5.25), we therefore conclude that v = V and that Y ∗ = Y h ∈ A−D(y) is
an admissible optimal liquidation strategy for the optimization problem (3.10). The result
then follows from (3.9). �

References

[1] I. Aldridge (2010), High-Frequency Trading, John Wiley & Sons.
[2] R.Almgren and N.Chriss (1999), Value under liquidation, Risk 12(12), 61–63.
[3] R.Almgren and N.Chriss (2001), Optimal execution of portfolio transactions, J. Risk 3(2), 5–39.
[4] R.F.Almgren (2003), Optimal execution with nonlinear impact functions and trading-enhanced

risk, Applied Mathematical Finance 10, 1–18.
[5] A.Alfonsi, A. Fruth and A. Schied (2010), Optimal execution strategies in limit order books

with general shape functions, Quantitative Finance 10, 143–157.
[6] A.Alfonsi and A. Schied (2010), Optimal trade execution and absence of price manipulations in

limit order book models, SIAM J. Financial Math. 1, 490–522.
[7] A.Alfonsi, A. Schied and A. Slynko (2011), Order book resilience, price manipulation, and the

positive portfolio problem, Preprint.
[8] P.Bank and D.Baum (2004), Hedging and portfolio optimization in financial markets with a large

trader, Mathematical Finance 14 (1), 1–18.



32 LØKKA

[9] D.Bertsimas and A.W.Lo (1998), Optimal control of execution costs, Journal of Financial Mar-
kets 1, 1–50.

[10] U.Cetin, R.A. Jarrow and P.Protter (2004), Liquidity risk and arbitrage pricing theory, Fi-
nance and Stochast. 8, 1–31.

[11] W.H.Fleming and H.M. Soner (1993), Controlled Markov Processes and Viscosity Solutions,
Springer-Verlag.

[12] G.B. Folland (1984), Real Analysis, John Wiley & Sons.
[13] J.Gatheral (2010), No-dynamic-arbitrage and market impact, Quantitative Finance 10(7), 749–

759.
[14] J.Gatheral, A. Schied and A. Slynko (2011), Exponential resilience and decay of market impact,

In: Econophysics of Order-driven Markets, F.Abergel, B.K.Chakrabarti, A.Chakraborti, M.Mitra
(Eds.), 225–236, Springer.

[15] G.Huberman and W. Stanzl (2004), Price manipulation and quasi-arbitrage, Econometrica 72
(4), 1247–1275.

[16] R.Kissell and R.Malamut (2005), Understanding the profit and loss distribution of trading al-
gorithms, Institutional Investor, Guide to Algorithmic Trading, Spring 2005.

[17] A.Obizhaeva and J.Wang (2005), Optimal trading strategy and supply/demand dynamics, Work-
ing paper.

[18] S. Predoiu, G. Shaikhet and S. Shreve (2011), Optimal execution in a general one-sided limit-
order book, SIAM J. Finan. Math. 2, 183–212.

[19] P.Protter (1990), Stochastic Integration and Differential Equations, Springer.
[20] W.Rudin (1991), Functional Analysis, McGraw-Hill.
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Figure 1. Illustration of the strategy Y h corresponding to h.


