
Locally Consistent Parsing and Applications to

Approximate String Comparisons

Tuğkan Batu and S. Cenk Sahinalp

School of Computing Science, Simon Fraser University
{batu,cenk}@cs.sfu.ca

Abstract. Locally consistent parsing (LCP) is a context sensitive par-
titioning method which achieves partition consistency in (almost) linear
time. When iteratively applied, LCP followed by consistent block labeling
provides a powerful tool for processing strings for a multitude of prob-
lems. In this paper we summarize applications of LCP in approximating
well known distance measures between pairs of strings in (almost) linear
time.

1 Introduction

Locally consistent parsing (LCP) is a method to partition a string S from an
alphabet σ to short substrings in a “consistent” fashion. Consistency is achieved
in the following manner: identical substrings are partitioned identically with
the possible exception of their margins. We give a more precise definition of
consistency later in the paper.

LCP has been introduced more than 10 years ago. Since then, it has been
applied to a multitude of problems involving strings such as data structures
problems, pattern matching applications, data compression, and string embed-
dings. Below, we give a brief history of the development of LCP and some of its
key applications.

LCP is based on the Deterministic Coin Tossing (DCT) procedure of Cole
and Vishkin [5], which was introduced to deterministically partition a ring of
n processors, each with a unique ID, to blocks of size 2 or 3 in a distributed
fashion. The procedure was iteratively applied to the representative processors
(say, the leftmost one) in each block to obtain a hierarchical partitioning. This
was in turn used to perform list ranking of the processors in O(log n) rounds
and a total of O(n) operations.

Two surprising applications of the DCT appeared (almost simultaneously)
in 1994, which generalized DCT to strings with character repetitions [13, 15, 16].
LCP is this generalization of DCT to string partitioning. In [13], an efficient data
structure for maintaining a dynamic collection of strings that allow equality tests,
concatenation and split operations is described. In [15, 16], a novel algorithm for
building the suffix tree of a given string in polylogarithmic parallel time while
performing a total of O(n) operations is given. Both applications are based
iterative application of LCP followed by a consistent labeling of these blocks or
their extensions.

Later in [17], a single-pass data compression algorithm based on LCP is intro-
duced. The number of codewords output by this algorithm is at least as many as
that output by the ever popular Lempel-Ziv’77 algorithm and at most O(log n)
factor higher. However, the size of the dictionary and, thus, the size of each code-
word can be substantially smaller for low entropy texts, potentially resulting in
a better compression. A recent paper [7] presents (among other results) an ex-
tension of this algorithm that achieves the following: after preprocessing a given
string in time O(n log2 n) compute the Lempel-Ziv’77 compressibility of any of
its substrings in O(1) time within an approximation factor of O(log n log∗ n).

In [18], LCP is applied to pattern matching under edit distance; here, the goal
is to find all substrings of a given text string T whose edit distance to a pattern
string P is no more than k. The algorithm presented here is the first one achieving
o(|P | · |T |) time for small values of k. This result was later improved in [4] by
the use of other techniques. Also in [18], an efficient data structure for dynamic
text indexing based on LCP is described. Here the goal is to maintain a dynamic
string, subject to single character insertions, deletions and replacements, so that
substring membership queries can be answered efficiently. An improvement of
this data structure, which is again based on LCP, was later described in [1].
Finally, [18] shows how to maintain a dictionary data structure under insertion
and deletion of dictionary entries so that given a text string, all occurrences of
each dictionary entry can be efficiently computed.

In this paper we review applications of LCP to approximately computing sev-
eral variants of the edit distance between a pair of strings in almost linear time.
The standard (character) edit distance between two strings can be computed ex-
actly in quadratic time for general alphabets and slightly under quadratic time
for a constant-size alphabet [11]. On the other hand, the block edit distance and
edit distance with (block) moves are known to be NP-hard to compute. The
task of efficiently computing these edit distance variants, even approximately, is
of significance, especially in computational biology, where the data is very large
and thus fast algorithms are highly desired. LCP has been successfully used to
achieve this task for all three measures of string similarity.

One fast method for quickly approximating certain variants of edit distance
is based on embedding strings to metric spaces with simpler-to-compute distance
measures. The first such embedding is described in [14] for strings under block
edit distance (the minimum number of character edits and block moves, copies
and “uncopies” to transform one string into the other) into the Hamming space.
The embedding, which results in a distortion of O(log n(log∗ n)2), is computed
in almost linear time, implying a fast approximation algorithm for the block edit
distance. A followup result [6] gives a similar embedding of strings under edit
distance with (block) moves into L1 space with distortion O(log n(log∗ n)2).

All the results described so far are obtained by a specific version of LCP
which partitions an input string into blocks of size 2 or 3. A generalization of
LCP so that the input strings are partitioned into blocks of size at least c and
at most 2c− 1 for any user defined c is recently described in [3]. This particular
version of LCP is applied to obtain a dimensionality reduction technique on

strings. More specifically [3] shows how to embed any string S of length n into
a string of length at most n/r for any value of the contraction parameter r. The
embedding preserves the edit distance between two strings within a factor of
Õ(r1+µ) for some small µ. This embedding together with some annotations are
later used to compute the edit distance D(S, R) between two strings S and R

within an approximation factor of min{n
1

3
+o(1),D(S, R)

1

2
+o(1)} in almost linear

time.

Overview of the paper. We start in Section 2, by giving some definitions and
notation. In Section 3, we describe the (generalized) Locally Consistent Parsing
method for any value of (minimum block length) c. We summarize applications
of LCP to approximately computing edit distances in Section 4.1.

2 Preliminaries

Let S, R be two strings over some alphabet σ. We use S[i] to denote the ith

character of the string S and S[i, j] to denote the substring of S between po-
sitions i and j (inclusive). |S| denotes the length of S and Sr[i, j] denotes the
reverse of S[i, j]. For two strings S and R, S ◦R denotes the string obtained by
concatenating S and R. We denote by D(S, R) the edit distance between S and
R, i.e., the minimum number of character insertions, deletions, and substitutions
needed to obtain R from S.

An alignment between S and R associates each character of S (and R) with
at most one character from R (correspondingly S) such that given i < j, if S[i]
is aligned with R[i′] and S[j] with R[j′] then i′ < j′. An optimal alignment
between S and R minimizes the sum of the number of unaligned characters
and misalignments (alignments between non-identical characters) in S (and R).
The sum of the number of unaligned characters in S and R and misalignments
between S and R in an optimal alignment is equal to D(S, R).

Another measure of similarity between the strings S and R is the block edit
distance, denoted BED(S, R), which is defined to be the minimum number of
character edits and block edits to transform one string into the other. Character
edits are insertion, deletion and replacement of a single character. Block (sub-
string) edits are relocating an entire substring, copying a substring from one
location to another and “uncopying” a block; i.e. deleting one of the two copies
of a substring.1

One final measure of similarity between strings S and R is edit distance with
moves, denoted by MV(S, R). Here, all single character edit operations as well
as substring relocation operation is allowed.

Metric Embeddings. Many of the applications of LCP to “approximately” com-
pare strings are based on embedding strings under various edit distances to other

1 Other versions of block edit distance that allow substring reversals and linear trans-
formations on substrings have also been described. Here we only focus on the
“vanilla” block edit distance.

metric spaces. Given two metric spaces M1 = (X1, D1) and M2 = (X2, D2),
where Xi is the universe and Di is the distance measure for metric Mi, φ :
X1 → X2 is an embedding with distortion d = d1 · d2 for d1, d2 ≥ 0, if, for any
y, z ∈ X1,

D1(y, z)/d1 ≤ D2(φ(y), φ(z)) ≤ d2 · D1(y, z).

3 A Generalized Description of Locally Consistent

Parsing

Locally Consistent Parsing is a consistent way of partitioning any string S into
(non-overlapping) blocks such that the minimum block length is c and the max-
imum block length is 2c − 1. For full generality, the maximum block length
cannot be less than 2c− 1; for instance, if |S| = 2c− 1, then S cannot be parti-
tioned into blocks with length in the range [c, 2c − 2]. The blocks obtained will
be consistent in the following sense: if two identical substrings S[i, i + b] and
S[j, j + b] appear in long enough identical “contexts” S[i − γ(c), i + b + γ ′(c)]
and S[j − γ(c), j + b + γ ′(c)] for increasing functions γ(c), γ ′(c), and if S[i, i + b]
is identified as a block then S[j, j + b] must be identified as a block. Note that
c ≤ b + 1 ≤ 2c − 1.

Observe that a single edit operation on S will only have a local effect on such
a partitioning of S. A single edit can change (1) the block in which it lies, and
(2) the blocks whose neighborhoods, as defined by γ() and γ ′(), contain the edit
operation. Hence the number of blocks that can change as a result of a single
edit operation is O((γ(c) + γ ′(c))/c).

LCP was originally described for c = 2. This basic case, which we denote
by LCP(2), relies on the Deterministic Coin Tossing technique [5]; it is quite
simple but is sufficiently powerful to achieve the desired performance in many
applications, some of which are described here. The more general LCP(c)was
introduced in [3] to solve a number of problems where the choice of c turns out to
be of crucial importance. Here we describe the general version while illustrating
the main ideas through examples based on LCP(2).

3.1 Description of LCP(c) for Small Alphabets

Given input string S, LCP(c) treats repetitive and nonrepetitive substrings of
S differently. Repetitive substrings are partitioned in a straightforward way; for
partitioning non-repetitive substrings, a generalized version of the Deterministic
Coin Tossing technique is used to guarantee block sizes of c to 2c − 1.

Here we describe LCP(c) for small alphabets; in Section 3.2, we show how to
generalize it to integer alphabets. We start off by describing how to identify the
repetitive substrings of the input string.

Definition 1. A string R is called r-repetitive if it is of the form Q` where
` ≥ 2 and Q, the repetition, is a string of length r. Given a string S, a substring
R of S is called maximally r-repetitive if (1) it is r-repetitive with repetition T ,

where T is the substring that is the lexicographically greatest substring among all
length-r substrings of R, and (2) the length-r substring following or preceding R
(in S) is not T .

For example, for T = ababa, as well as T ′ = babab, the only substring that is
maximally 2-repetitive is baba. This information is helpful since it implies that
T and T ′ have a long common substring. Note that every maximally repetitive
string is periodic but not all periodic strings are maximally repetitive, e.g., abab
and ababa are both periodic with period 2 but are not maximally repetitive since
ab, a substring of both, is lexicographically smaller than ba.

LCP(c) performs the partitioning of S in two phases. Phase 1 partitions S
into substrings that are maximally `-repetitive for ` < c and maximally non-
repetitive as follows. For r = c − 1, . . . , 1, LCP(c) extracts all maximally r-
repetitive substrings of S of length at least c that so far remain unextracted.
All the remaining substrings (of maximal length) are identified as maximally
non-repetitive substrings.

For example, if S = aabaaaababa and c = 2, then LCP(c) will first identify
S[1, 2] = aa and S[4, 7] = aaaa as maximally 1-repetitive substrings.

Phase 2 further partitions the substrings extracted in Phase 1 to obtain
blocks of length c to 2c − 1.

For partitioning repetitive substrings, each maximally r-repetitive substring
is partitioned into blocks of length t where t is the smallest multiple of r greater
than c. If the substring length is not divisible by t, the two leftmost blocks can
be arranged so that the leftmost one is of size c. (This choice is arbitrary.)

For partitioning maximally non-repetitive substrings, first, any non-repetitive
substring Q of length less than c is merged with the (necessarily repetitive)
block to its left. If Q is a prefix of S, it is merged with the (again necessarily
repetitive) block to its right. If the resulting block is of length greater than 2c,
it is partitioned (arbitrarily) into two blocks such that the left one is of length
c.

In the above example, S[1, 2] = aa will be identified as a single block of size
2 and S[4, 7] = aaaa will be partitioned into two blocks S[4, 5] and S[6, 7]. The
non-repetitive block S[3, 3] = b is then merged to the block to its right to form
the block S[3, 5] = baa.

For non-repetitive substrings of length at least c LCP(c) performs a more
sophisticated partitioning scheme that ensures partition consistency as stated
earlier. To achieve this, whether a character is selected to be a block boundary
depends on the character’s immediate neighborhood. The operations defined
below facilitate the comparison of a character to other characters in its neigh-
borhood.

Definition 2. Given two distinct binary words w and y of length k each, let
fy(w) be a binary word of length k′ = dlog ke + 1, defined as the concatenation
of (i) the position of the rightmost bit b of w where w differs from y, represented
as a binary number (counted starting from 1 at the right end), and (ii) the value
of w at bit b. We define fw(w) = 0k′

.

For example, f1111(1101) = 0100 as the position of the rightmost bit of 1101
that differs from 1111 is 2 (010 in binary) and its value is 0.

Definition 3. For a character S[i] and positive integers c and `, we define

gc,`(S[i])
def
= fS[i−c−`+2,i+c−`−2](S[i − c + 2, i + c − 2]).

If S[i] is represented by a k-bit word, then gc,`(S[i]) is a k′-bit word where k′ =
dlog((2c − 3)k)e + 2.

Intuitively, gc,`(S[i]) relates the substring of size 2c − 3 around S[i] to that
of size 2c − 3 around S[i + `].

Given a maximally non-repetitive substring Q, LCP(c) generates an auxiliary
substring Q′ to help identify some of the block boundaries. Let dlog2 |σ|e = k,
where σ is the alphabet. For each Q[i] (represented as a k-bit word), let

Q′[i]
def
= gc,c−1(Q[i]) ◦ gc,c−2(Q[i]) ◦ . . . ◦ gc,1(Q[i]).

The characters of Q′ are represented as words of length k′ = (c− 1) · (dlog((2c−
3)k)e + 2) = O(c log(ck)) bits. Thus the construction of Q′ from Q constitutes
an alphabet reduction as long as k′ < k. Since Q′ will only be used to determine
block boundaries, the information loss resulting from this alphabet reduction is
not problematic.

Lemma 1. Let Q be a non-repetitive substring and let Q′[3c− 5, |Q| − c + 2] be
the string obtained from Q[3c− 5, |Q| − c + 2] after the alphabet reduction. Then
Q′[3c − 5, |Q| − c + 2] is non-repetitive.

Proof. Observe that given binary words x, y, z, such that x 6= y and y 6= z, if the
position of the rightmost bit b of x that differs from y is identical to the position
of the rightmost bit b′ of y that differs from z, then the bit values of b and b′

must be different; i.e., fx(y) 6= fy(z).
Fix i ∈ [4c − 6, |Q| − c + 2] and ` ∈ [1, c − 1]. Consider

gc,`(Q[i]) = fQ[i−c−`+2,i+c−`−2](Q[i − c + 2, i + c − 2])

and

gc,`(Q[i − `]) = fQ[i−c−2`+2,i+c−2`−2](Q[i − c − ` + 2, i + c − ` − 2]).

Now, let x = Q[i − c − 2` + 2, i + c − 2` − 2], y = Q[i − c − ` + 2, i + c − ` − 2],
and z = Q[i − c + 2, i + c − 2].

Note that x 6= y; otherwise Q[i − c − 2` + 2, i + c − ` − 2] includes an
`-repetitive substring of length more than c (which is impossible for a non-
repetitive substring extracted by the algorithm). Similarly, y 6= z. Using the
opening observation of the proof, we have gc,`(Q[i − `]) = fx(y) 6= fy(z) =
gc,`(Q[i]). Hence, Q′[i − `] 6= Q′[i]. ut

Now we are ready to identify the block boundaries on the nonrepetitive sub-
string Q, using information from Q′. A character Q[i] is set to be a primary
marker if Q′[i] is lexicographically greater than each character in its immediate
neighborhood of length 2c−1, namely, in Q′[i−c+1, i+c−1]. Note that primary
markers are set in Q; Q′ is solely used in helping determine their locations.

Lemma 2. Let Q[i] and Q[j] be two consecutive primary markers in Q such
that i < j. Then, c ≤ j − i ≤ 4(2k′

) = O((kc)c).

Proof. We first give the proof for the lower bound. Assume for contradiction
that both Q[i] and Q[i + `] are primary markers for ` < c. Let Q′ be the string
obtained from Q by the alphabet reduction. Then, by definition of a primary
marker, Q′[i] must be lexicographically greater than Q′[i + `] and Q′[i + `] must
be lexicographically greater than Q′[i], a contradiction. Thus, both Q[i] and
Q[i + `] cannot be primary markers for ` < c.

We now give the proof for the upper bound. It is by induction on the size t
of the alphabet for Q′. The bound holds for t = 3. By Lemma 1, we know that
Q′[i] 6∈ {Q′[i−c+1], Q′[i−1], Q′[i+1], Q′[i+c−1]}. Also, recall that the characters
of Q′ are represented by binary strings of length k′ (i.e., t = 2k′

). Without
loss of generality, assume that both Q′[i] and Q′[j] are the lexicographically
maximal alphabet character in σ′ (this is the worst case). Then, since there
are no primary markers between i and j, no character in Q′[i + 1, j − 1] is
the lexicographically maximal character. Moreover, in Q′[i, j], the character just
below the lexicographically maximal character can only be in positions i+1, i+
2, j − 2, j − 1; otherwise, another primary marker would have been set. Without
loss of generality, assume Q′[i+2] and Q′[j−2] are at most this lexicographically
second largest character. Then, by the induction hypothesis, j − 2 − (i + 2) ≤
4(t − 1). Thus, we get j − i ≤ 4t. ut

Having established the primary markers, LCP(c) now partitions Q into blocks
as follows. Q is partitioned into the substrings that are between two consecutive
primary markers (inclusive of the left primary marker), the one to the left of
the leftmost primary marker, and the one to the right of the rightmost primary
marker. Each of these substrings is further partitioned into blocks of length c;
if the substring length is not divisible by c, the leftmost block will be of length
between c + 1 and 2c − 1. The next claim then follows.

Claim. If S[i, j] is a block obtained by LCP(c) then c ≤ j − i + 1 ≤ 2c − 1.

The consistency of the above partitioning is established in the following man-
ner. If S[i, j] and S[i′, j′] are two identical non-repetitive substrings of S of suf-
ficient length, then the blocks within S[i, j] and S[i′, j′], except at the left and
right ends, are identical, regardless of the locations of S[i, j] and S[i′, j′] in S.

Lemma 3. Suppose that for some b ∈ [c− 1, 2c− 2], S[i− 2k′+2 − 4c+7, i+ b+
4c− 3] = S[i′ − 2k′+2 − 4c + 7, i′ + b + 4c− 3], and furthermore, both substrings
are parts of substrings identified as being maximally nonrepetitive in S. Then, if
S[i, i + b] is set as a block by LCP(c), then so is S[i′, i′ + b].

Proof. By definition of primary markers and LCP(c), whether a character S[`]
(within a non-repetitive substring) is set as a marker depends only on S[` −
4c + 7, ` + 2c − 3]. Since the decision to set S[i, i + b] as a block depends only
on the primary marker immediately to the left of S[i] and whether there is a
primary maker before S[i+2c], we can conclude that this decision depends only
on S[i− 2k′+2 − 4c + 7, i + b + 4c− 3] by Lemma 2. As a result, S[i, i + b] is set
as a block only if S[i′, i′ + b] is set as a block as well. ut

In the preceding discussion, we described how to partition a nonrepetitive
string Q, where Q is over alphabet σ such that dlog |σ|e = k, into blocks of
size between c and 2c − 1 while maintaining a consistency property formalized
in Lemma 3. This lemma guarantees that identical substrings are partitioned
identically except in the margins. This implies thus that a single edit operation
cannot change the partitioning of a string by “too much.” More specifically, the
number of blocks that can change as a result of an edit operation is O((ck)c) in
a non-repetitive substring (by Lemma 3) and is only a constant in a repetitive
substring.

3.2 Iterative Reduction of the Alphabet Size

If c · k = O(1), by the above discussion, each edit operation results in only
O(1) changes in the partitioning of the input string and thus one application of
the alphabet reduction suffices to obtain the desired partition. For ck = ω(1),
there is a need to reduce the alphabet size further before setting the primary
markers in order to guarantee that an edit operation will have limited effect on
the partitioning. In this case, LCP(c) performs the alphabet reduction on each
non-repetitive substring S[i, j] of S, for log∗ kc + O(1) iterations before setting
the primary markers. Let S∗[i, j] be the output of this process. Due to Lemma 1,
since S∗[i, j] is non-repetitive, so is S∗[i, j]. In the first iteration the alphabet
size will be reduced to O((ck)c); in the second it will be O((c2 log ck)c) and
so on. After log∗ kc + O(1) iterations, the alphabet size will be O((3c2 log c)c),
which is independent of k. The primary markers of S[i, j] are then chosen as the
local maxima in S∗[i, j]; this will assure that the maximum distance between
two primary markers will be O((3c2 log c)c) as well. (Recall that the alphabet
reduction is only for the purpose of obtaining primary markers. Afterwards, the
partitioning is performed on the original string.)

Theorem 1. A sequence of h single character edit operations to a string S can
change at most O(h · [(3c2 log c)c/c + log∗ kc]) and at least h/(2c − 1) blocks in
the sequence of blocks obtained by LCP(c).

Proof. The lower bound follows from the fact that the maximum block size is
2c − 1 and thus the minimum possible number of blocks that can contain all h
edit operations is h/(2c− 1).

The upper bound follows from repeated application of the next lemma.

Claim. An edit operation on S can change only O((3c2 log c)c/c+log∗ kc) blocks
obtained by LCP(c).

Proof. LCP(c) initially partitions S into non-repetitive and r-repetitive sub-
strings for 1 ≤ r < c.

Suppose the edit operation is performed on a non-repetitive substring, which
remains non-repetitive after the operation. The first alphabet reduction on any
S[i] depends only on S[i − 3c + 6, i + c − 2]. In general, the jth application of
the alphabet reduction on S[i] depends on the substring S[i − (3c − 6)j, i +
(c − 2)j]. Thus, for j = log∗ kc + O(1), the output of the jth alphabet reduc-
tion on S[i] will be of size O((3c2 log c)c) and depend only on a substring of
size 4c(log∗ kc + O(1)) that contains S[i]. This further implies that the deci-
sion of whether to choose S[i] as a primary marker also depends only on a
size 4c(log∗ kc + O(1)) + O((3c2 log c)c) substring that contains S[i]. All blocks
within this substring can change as a result of an edit operation on S[i], im-
plying a change of 4(log∗ kc + O(1)) + O((3c2 log c)c/c) blocks. As the distance
between the first changed primary marker and its preceding primary marker is
O((3c2 log c)c), a further O((3c2 log c)c/c) blocks can change as a result.

If the edit operation is performed on a non-repetitive substring that be-
comes repetitive then the same argument applies: The new repetitive substring
splits the non-repetitive substring into two. This can change 4(log∗ kc+O(1))+
O((3c2 log c)c/c) blocks on the two sides of the new repetitive substring.

If the edit operation is performed on a repetitive substring then the exact
locations of the blocks may change; however only O(1) of these blocks will change
content. That is, one has to edit only O(1) blocks in the original string in order
to obtain the partitioning of the modified string. ut

This completes the proof of Theorem 1. ut

Lemma 4. LCP(c) runs in time O(n[c log c + (k + c) log∗ kc]).

Proof. Clearly the partitioning of a repetitive substring into blocks can be done
in linear time in the size of the substring. We now show that the partitioning of
all non-repetitive substrings of S takes O(n[c log c + (k + c) log∗ kc]) time.

We first focus on the time for the first application of the alphabet reduction
on a given S[i] to obtain S ′[i]. Consider the compact trie TS that comprises the
bitwise representations of Sr[j − c + 2, j + c− 2] for all j. TS can be obtained in
O(nk) time using any linear-time suffix-tree construction algorithm (e.g., [12]).
After preprocessing TS in O(n) time, the lowest common ancestor (LCA) of two
leaves representing Sr[i − c + 2, i + c − 2] and Sr[i′ − c + 2, i′ + c − 2] for any
i − c + 1 ≤ i′ < i can be found in O(1) time (c.f., [8, 19]). The LCA of these
leaves gives gc,i−i′(S[i]). To obtain S′[i] one only needs to compute gc,i−i′(S[i])
for all i′ such that i − c + 1 ≤ i′ < i; this can be done in time O(c). Thus the
overall running time for performing the alphabet reduction for all characters of
S is O(nk + nc).

Subsequent O(log∗ kc) applications of the alphabet reduction work on smaller
size alphabets; thus the overall running time is O(n(k + c) log∗ kc).

After the alphabet reduction, determining whether each S[i] is a primary
marker can be done as follows. The number of bits needed to represent S∗[i]
is O(c log c); because c ≤ n, this requires O(c) machine words. One can use a

priority queue that includes each one of the O(c) characters in the substring
S∗[i− c + 2, i + c− 2] to determine whether S∗[i] is the local maxima. This can
be done, for all i, in time O(nc log c).

Once the primary markers are obtained, the final partitioning can be obtained
in O(n) time. ut

4 Applications of LCP to Approximate String

Comparisons

Among the applications of LCP our focus will be embeddings of strings under
character and block edit distances to other metric spaces such as the Hamming
Space or L1, as well as to “shorter” strings (such an embedding is called a di-
mensionality reduction). These embeddings (sometimes together with additional
information) give fast algorithms to approximately compute the edit distance
variants of interest. Here we give a brief description of the techniques underlying
each application as well as theorem statements without proofs.

4.1 Dimensionality Reduction in Strings Under Edit Distance

An embedding φ from M1 = (X1, D1) to M2 = (X2, D2), is a dimensionality
reduction if D1 = D2 and each element in X1 is mapped to an element with
shorter representation in X2. A string embedding with contraction r > 1 is an
embedding from strings of length at most n over an alphabet σ1 under edit
distance, to strings of length at most n/r over another alphabet σ2, again under
edit distance, which contracts the length of the string to be embedded by a factor
of at least r. Thus, such an embedding is a dimensionality reduction. A proof
for the following basic lemma can be found in [3].

Lemma 5. A string embedding with contraction r > 1 cannot have a distortion
d less than r.

Here we present a dimensionality reduction technique for strings which fol-
lows from an iterative application of LCP(c) followed by consistent labeling of
blocks [3].2 The number of iterations, `, is determined by the contraction pa-
rameter r as follows.

Given input strings S and R and |σ| = 2k, denote by S1 and R1 the strings
that are obtained after a single application of LCP(c), respectively. Now, denote
by S` the string obtained by applying LCP(c) on S`−1 followed by consistent
block labeling. Each label in S` corresponds to a substring of S with size in the
range [c`, (2c − 1)`].

Theorem 1 implies the following lemma.

2 The label of a block could either be set to the block’s contents, implying a large
alphabet, or be computed via a hash function, introducing a small probability of
error.

Lemma 6. A single edit operation on S results in O((3c2 log c)c/c + log∗ kc)
labels to change in S`. Thus,

D(S, R)/(2c − 1)` ≤ D(S`, R`) ≤ D(S, R) · O((3c2 log c)c/c + log∗ kc).

Now let c = O((log log n)/ log log log n); then, φ(S) = Sdlog
c

re provides a
string embedding with distortion (roughly) r, which is almost optimal.

Theorem 2. Given string S and r > 1, the embedding φ(S) = Sdlog
c

re has con-

traction r and distortion Õ(r1+µ), where µ = Ω(2/ log log log n). The embedding
can be computed in time Õ(21/µ · n).

4.2 Embedding Strings into L1 and Hamming Space

In this section we describe two very similar results: (i) embedding strings under
block edit distance to the Hamming space [14] and (ii) embedding strings under
edit distance with moves to L1 [6].

The embedding of a string S of length n under block edit distance to a
Hamming vector is based on iterative application of LCP(2). The consistent
labeling following LCP(2), however, is not performed on blocks obtained by
LCP(2). Rather, it is applied to “extended blocks” that are called core blocks,
which are defined as follows. For each block divider between S[i − 1] and S[i],
there is a corresponding core block, which is, for some b = O(log∗ n), the string
S[i − b, i + b].3 Accordingly, let S′

1 be the sequence of labels of the core blocks
implied by LCP(2) applied on S. One can define, for ` > 1, the string S ′

` as the
sequence of labels of the core blocks implied by LCP(2) applied on S ′

`−1. Notice
that each core block at level ` corresponds to a substring of S; this substring
is called a core substring of S. Appropriate choice of b ensures the following
property of the core substrings [14].

Lemma 7. If Q is a non-repetitive core substring of S and Q′ is another sub-
string of S identical to Q, then Q′ must be a core substring of S as well.

We now describe the embedding of S into a binary vector; without loss of
generality, we assume that σ = {0, 1}.

Definition 4. Given string S, its level-i binary histogram, denoted Ti(S), is
the binary vector of size ci where c = O(log∗ n); the jth entry of Ti(S), denoted
Ti(S)[j], is 1 if the binary representation of j is a core substring of S whose
corresponding core block is in S ′

i. If j is not a core of S then Ti(S)[j] = 0. The
embedding φ′(S) is then the concatenation of all Ti(S) for i = 0, . . . , log n.

The embedding φ′(S) is an O(2|S|) dimensional binary vector whose jth entry
is set to 1 if the corresponding core is present in S. Although the number of
dimensions in φ′(S) is very large, it is possible to represent it in O(n) space by

3 The LCP(2) description in [14] is a slightly different from the one provided here for
the purpose of tolerating substring reversal as a block edit operation.

simply listing the O(n) core strings of S by the use of pointers. This alternative
representation can be computed in time O(n · log∗ n).

The following lemma is implied by the proof of Theorem 1.

Lemma 8. Let C(S) denote the set of core blocks obtained by LCP(2) on a
string S. A sequence of h single character edits, block copy, block move and block
uncopy operations to S can add or remove most O(h log∗ n) and at least Ω(h)
core blocks from C(S).

As a result, given two strings S and R s.t. |S|, |R| ≤ n, their embeddings
φ′(S) and φ′(R) satisfy the following.

Theorem 3. Ω(BED(S, R))/ log∗(n) = h(φ′(S), φ′(R)) = O(BED(S, R) log n log∗ n);
here h(,) denotes the Hamming distance.

The embedding of strings under block edit distance to Hamming vectors, to-
gether with efficient data structures for (1+ε)-factor approximate nearest neigh-
bor search in the Hamming space [10, 9], can be used to obtain an O(log n log∗ n)
factor approximate nearest neighbor search data structure for strings under
block edit distance. The preprocessing time and space for the data structure is
O((nm)O(1)) where m is the number of strings in the data structure; the query
time is O(n ·polylog(nm)). This is the first and yet the only known approximate
nearest neighbor search data structure for strings under non-trivial edit oper-
ations that achieves almost optimal preprocessing time, space and query time,
while guaranteeing an approximation factor polylogarithmic in the query size.

A very similar embedding φ′′(S) from strings under edit distance with moves
to L1 space is described in [6]. Without loss of generality, we describe this em-
bedding for σ = {0, 1}.

Definition 5. Given string S, its level-i histogram, denoted Hi(S), is the in-
teger vector of size ci (c = O(log∗ n)) where the jth entry of Hi(S), denoted
Hi(S)[j], is the number of occurrences of the binary representation of j as a
core substring in S, whose corresponding core block is in S ′′

i . The embedding
φ′′(S) is the concatenation of all Hi(S) for i = 0, . . . , log n.

The embedding φ′′ can be shown to satisfy the following property based on
a variation of Lemma 8.

Theorem 4. Ω(MV(S, R)) = ||φ′(S) − φ′(R)||1 = O(MV(S, R) log n log∗ n).

4.3 Approximately Computing the Edit Distance in (Near) Linear
Time

Given γ > 1, a γ-factor approximation algorithm for D(S, R) outputs a value
d such that D(S, R) ≤ d ≤ γ · D(S, R). Recently Bar-Yossef et al. developed
an algorithm that computes D(S, R) within an approximation factor of n3/7 in
Õ(n) time [2]. It was recently shown in [3] a method to apply LCP to compute

the edit distance between two strings within an approximation factor of n
1

3
+o(1)

again in Õ(n) time. Here we summarize this result.
Let S` and R` be as described in Section 4.1 for c = (log n)/ log log n. We

have already demonstrated that D(S`, R`) approximates D(S, R) within a factor
of Õ((2c−1)`). By the use of standard dynamic programming, D(S`, R`) can be
computed in time O((n/c`)2). However, if an upper bound t on D(S, R) is given,
it is possible to approximate D(S, R) by computing D(S`, R`) only along a band
of width 2t/c` around the main diagonal of the dynamic programming table.

By applying this strategy for potential upper bounds on D(S, R), t = 2i, for
i = 1, . . . , O(log n), followed by checking t indeed provides an upper bound, it is
possible to obtain an approximation to D(S, R) as per [3].

Theorem 5. One can compute D(S, R) within an approximation factor of

min{n
1

3
+o(1),D(S, R)

1

2
+o(1)}

in time Õ(n).

References

1. Stephen Alstrup, Gerth Stølting Brodal, and Theis Rauhe. Pattern matching
in dynamic texts. In SODA ’00: Proceedings of the eleventh annual ACM-SIAM
symposium on Discrete algorithms, pages 819–828, 2000.

2. Ziv Bar-Yossef, T.S. Jayram, Robert Krauthgamer, and Ravi Kumar. Approxi-
mating edit distance efficiently. In IEEE Symposium on Foundations of Computer
Science (FOCS), 2004.

3. Tugkan Batu, Funda Ergun, and S. Cenk Sahinalp. Oblivious string embeddings
and edit distance approximations. Technical Report TR2005-11, School of Com-
puting Science, Simon Fraser University, 2005.

4. Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler
faster algorithm. In SODA, pages 463–472, 1998.

5. Richard Cole and Uzi Vishkin. Deterministic coin tossing and accelerating cas-
cades: Micro and macro techniques for designing parallel algorithms. In ACM
Symposium on Theory of Computing (STOC), 1986.

6. Graham Cormode and S. Muthukrishnan. The string edit distance matching prob-
lem with moves. In SODA, pages 667–676, 2002.

7. Graham Cormode and S. Muthukrishnan. Substring compression problems. In
SODA, 2005.

8. Dov Harel and Robert E. Tarjan. Fast algorithms for finding nearest common
ancestors. SIAM Journal on Computing, 13(2):338–355, May 1984.

9. Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards re-
moving the curse of dimensionality. In STOC, pages 604–613, 1998.

10. Eyal Kushilevitz, Rafail Ostrovsky, and Yuval Rabani. Efficient search for ap-
proximate nearest neighbor in high dimensional spaces. In STOC, pages 614–623,
1998.

11. William J. Masek and Michael S. Paterson. A faster algorithm computing string
edit distances. Journal of Computer and System Sciences, 20(1):18–31, February
1980.

12. Edward M. McCreight. A space-economical suffix tree construction algorithm. J.
ACM, 23(2):262–272, 1976.

13. Kurt Mehlhorn, R. Sundar, and Christian Uhrig. Maintaining dynamic sequences
under equality-tests in polylogarithmic time. In SODA, pages 213–222, 1994.

14. S. Muthukrishnan and S. Cenk Sahinalp. Approximate nearest neighbors and
sequence comparison with block operations. In STOC, pages 416–424, 2000.

15. S. Cenk Sahinalp and Uzi Vishkin. On a parallel-algorithms method for string
matching problems. In CIAC, pages 22–32, 1994.

16. S. Cenk Sahinalp and Uzi Vishkin. Symmetry breaking for suffix tree construction.
In STOC, pages 300–309, 1994.

17. S. Cenk Sahinalp and Uzi Vishkin. Data compression using locally consistent
parsing. UMIACS Technical Report, 1995.

18. S. Cenk Sahinalp and Uzi Vishkin. Efficient approximate and dynamic matching
of patterns using a labeling paradigm. In IEEE Symposium on Foundations of
Computer Science (FOCS), 1996.

19. Baruch Schieber and Uzi Vishkin. On finding lowest common ancestors: Simplifica-
tion and parallelization. SIAM Journal on Computing, 17(6):1253–1262, December
1988.

