
Oblivious String Embeddings and Edit Distance Approximations

Tuğkan Batu∗ Funda Ergun∗ Cenk Sahinalp∗

Abstract

We introduce an oblivious embedding that maps strings
of length n under edit distance to strings of length at
most n/r under edit distance for any value of parameter
r. For any given r, our embedding provides a distortion
of Õ(r1+µ) for some µ = o(1), which we prove to be
(almost) optimal. The embedding can be computed in
Õ(21/µn) time.

We also show how to use the main ideas behind
the construction of our embedding to obtain an ef-
ficient algorithm for approximating the edit distance
between two strings. More specifically, for any 1 >
ε ≥ 0, we describe an algorithm to compute the
edit distance D(S, R) between two strings S and R
of length n in time Õ(n1+ε), within an approxima-

tion factor of min{n 1−ε

3 +o(1), (D(S, R)/nε)
1
2+o(1)}. For

the case of ε = 0, we get a Õ(n)-time algorithm
that approximates the edit distance within a factor of
min{n 1

3+o(1),D(S, R)
1
2+o(1)}, improving the recent re-

sult of Bar-Yossef et al. [2].

1 Introduction

Let S and R be two strings over an alphabet σ. The
edit distance, denoted here by D(S, R), between S and
R is defined as the minimum number of insertions, dele-
tions, and substitutions required to transform S into R,
or vice versa. This measure of string similarity (along
with its variants) is widely used in areas such as compu-
tational biology, text processing, and web searching. It
is known that the edit distance between two strings can
be computed in quadratic time for general alphabets
and slightly under quadratic time for a constant-size al-
phabet [8]. However, until recently, no faster algorithm
for computing D(S, R), even approximately, was known.
On the other hand, the task of efficiently computing
the edit distance, even if approximately, has gained a
lot of attention, especially in the computational biology
community, where the data is very large and thus fast
algorithms are highly desired.

Another interesting class of string problems con-
cerns (metric) embeddings of strings into strings under

∗School of Computing Science, Simon Fraser University.
{batu,funda,cenk}@cs.sfu.ca.

the edit distance. An embedding as a mapping of strings
into shorter strings provides a mechanism to “summa-
rize” the input string, thus reducing its dimensionality.
The shorter string obtained from the original can later
be used to make inferences about the original string. For
example, if an embedding has low distortion under edit
distance, then the embeddings of any two given strings
can be compared to infer the similarity of the original
strings under edit distance. We can measure the quality
of such a mapping under edit distance by the tradeoff it
offers between the reduction in the dimensionality and
the “precision” of the mapping and desire one that will
map a string S to as short a string S ′ as possible while
maintaining a reasonable amount of correspondence be-
tween S and S′.

1.1 Our Results We introduce an oblivious embed-
ding (which indeed is a dimensionality-reduction tech-
nique) that maps any string S of length n to a string
of length at most n/r for any value of the reduction pa-
rameter r. The embedding is oblivious in the sense that
it is applied to any string independently of any other
string the embedding may be applied to. For any value
of the reduction parameter r, our embedding provides
a distortion of Õ(r1+µ) for µ = O(1/ log log log n) un-
der edit distance. The embedding can be computed in
time Õ(21/µn), which is (almost) optimal. We prove
that no oblivious string to string embedding under edit
distance can have a distortion better than Ω(r) thus our
distortion is (almost) optimal for any value of r.

Note that an embedding with the above properties
provides a straightforward approximation algorithm for
the edit distance between two strings: namely, apply-
ing the embedding with an appropriate reduction pa-
rameter and computing the edit distance between the
embeddings exactly. Unfortunately, for any non-trivial
approximation factor d = õ(

√
n), this straightforward

approach requires a running time of ω̃(n), because the
reduction parameter has to be O(d) and the lengths
of the embeddings will be Ω(n/d). In this paper we
show how to use the ideas behind the construction of
our embedding to obtain a more efficient algorithm for
approximating the edit distance.

In particular, for any 0 ≤ ε < 1, we describe an
algorithm to compute the edit distance between two

strings S and R in time Õ(n1+ε), within an approx-

imation factor of min{n 1−ε

3 +o(1), (D(S, R)/nε)
1
2+o(1)}.

For the case of ε = 0, we get a Õ(n)-time algorithm
that approximates the edit distance within a factor of
min{n 1

3+o(1),D(S, R)
1
2+o(1)}. Note that for D(S, R) ≤

n2/3, the approximation factor depends only on the dis-
tance D(S, R) and not on the string length n.

1.2 Our Techniques Our oblivious string embed-
ding partitions an input string S over some alphabet
σ into non-overlapping blocks and labels them in a con-
sistent manner (i.e., identical blocks get identical la-
bels). Clearly, a content-independent partitioning (one
that does not depend on the specific composition of S)
cannot have small distortion: a single character inser-
tion to the beginning of S would change the contents
of the blocks substantially. A content-dependent par-
titioning called the Locally Consistent Parsing (LCP)
was introduced for addressing this problem in [12]. A
variant of LCP [11] partitions a given string S into non-
overlapping blocks of length 2 or 3. LCP guarantees
that a single edit operation on S can change the con-
tent of only O(log∗ |σ|) blocks. Thus, LCP leads to a
string embedding with reduction parameter 2 ≤ r ≤ 3
with distortion of O(log∗ |σ|).

It is possible to obtain a larger reduction parameter
r by iteratively applying the above embedding O(log2 r)
times. Unfortunately, each iteration magnifies the
distortion by a factor of 3, resulting in an distortion
of O(log∗ |σ| · 3log2 r) = O(log∗ |σ| · rlog 3). This is much
larger than r, which, as we later show, is a lower bound
on the distortion of a string embedding with reduction
parameter r.

The first part of our paper is devoted to improving
LCP to partition any input string into non-overlapping
blocks of length c to 2c − 1 for any value of c. This
poses significant technical difficulties in handling vari-
ous types of periodicities in S and developing appro-
priate block partition rules. Through a number of
combinatorial lemmas that generalize the Determinis-
tic Coin Tossing technique of Cole and Vishkin [4]1

and methods to handle various types of local period-
icities in S, we obtain a string embedding φ, that, for
c = (log log n)/ log log log n, and any reduction param-

eter r, guarantees a distortion of Õ(r1+ 2
log log log n). The

embedding can be computed for S in time Õ(n).
Given the above embedding of two strings S,

R, one can approximate D(S, R) within a factor of

Õ(r1+ 2
log log log n) by computing D(φ(S), φ(R)) in time

1This could be of independent interest in the context of
distributed computing where deterministically partitioning a ring
in a balanced manner could be useful.

Θ(n
r ·D(φ(S), φ(R))) trivially by dynamic programming.

Since D(φ(S), φ(R)) could be larger than D(S, R), the
running time of this approach is Ω(n

r · D(S, R)). In the
second part of the paper we show how to annotate the
block labels implied by our string embedding φ to com-
pute the edit distance between φ(S) and φ(R) in time

O(n
r · D(S,R)

r).

1.3 Related Work The most relevant work to ours
is that of Bar-Yossef et al., which presents two types
of algorithms to approximate the edit distance between
two strings of length n [2]. The first is a sketching
algorithm, where a sketch of each given string is pro-
duced independently. The sketches for the two strings
are then used to distinguish between close and far pairs
of strings. In particular, using O(1)-size sketches and
Õ(n) time, they distinguish between string pairs that
have edit distance at most k and pairs that have edit dis-
tance Ω((kn)2/3) for any k ≤ √

n. The second algorithm
they present also runs in Õ(n) time and directly com-
putes D(S, R) within an approximation factor of n3/7.
Our methods give a Õ(n)-time sketching algorithm that
uses sketches of size O(n2/3) to obtain an approximation

to edit distance within a factor of n
1
3+o(1).

A sublinear algorithm that provides a weak approx-
imation to edit distance is proposed by Batu et al. [3].
For a given parameter α < 1, this algorithm runs in
time Õ(nα/2 + n2α−1) and distinguishes between pairs
of strings that have edit distance at most nα and pairs
of strings that have edit distance Ω(n). This algorithm
can also be viewed as a sketching algorithm with sketch
size Õ(nα/2 + n2α−1). However, it cannot provide any
multiplicative-factor approximation to the edit distance.

Embedding strings into other metric spaces, in par-
ticular into normed spaces such as `1, with low dis-
tortion has also attracted much attention. Andoni et
al. [1] give a lower bound of 3/2 for the distortion
of any embedding of strings under edit distance to
vectors (of arbitrary dimension) under the `1 metric.
Khot and Naor [6] recently obtained a lower bound of
Ω(

√

(log n)/ log log n) for the distortion when embed-
ding strings of length n into `1. Krauthgamer [7] later
improved this result to Ω(log n). A recent result by Os-
trovsky and Rabani [10] obtains an embedding of strings
of length n into vectors under `1 with distortion at most

2O(
√

(log n) log log n), which is better than nε for any con-
stant ε > 0. The dimension of these vectors, however, is
at least quadratic in n, making the embedding imprac-
tical for approximating edit distance in subquadratic
time.

1.4 Organization of the Paper The rest of the pa-
per is organized as follows. In Section 2, we provide

some notation and describe in detail the problem of
edit distance approximation. In Section 3, we describe
the problem of embedding/dimensionality reduction for
strings under edit distance and provide a lower bound
on the distortion. In Section 4, we describe our gen-
eralized Locally Consistent Parsing (LCP(c)) method
for any value of minimum block length c. Using this
method iteratively, we obtain our string embedding re-
sult in Section 5. Finally, in Section 6, we present our
approximation algorithm to the edit distance, which is
based on our embedding techniques.

2 Preliminaries

Let S, R be two strings over some alphabet σ. We let
D(S, R) denote the edit distance between S and R, i.e.,
the minimum number of character insertions, deletions,
and substitutions needed to obtain R from S. We use
S[i] to denote the ith character of the string S and S[i, j]
to denote the substring of S between positions i and
j (inclusive). |S| denotes the length of S and Sr[i, j]
denotes the reverse of S[i, j].

An alignment f : {1, . . . , |S|} → {1, . . . , |R|} ∪
{ε} between S and R associates each character of S
(respectively, R) with at most one character from R
(respectively, S) such that given i < j, if f(i) = i′ (i.e.,
S[i] is aligned with R[i′]) and f(j) = j′ (i.e., S[j] is
aligned with R[j′]), then i′ < j′. An optimal alignment
f between S and R minimizes the sum of the number of
unaligned characters (i.e., {i|f(i) = ε} ∪ {j|¬∃i f(i) =
j}) and misalignments (i.e., {i|f(i) = j and S[i] 6=
R[j]}). The sum of the number of unaligned characters
and misalignments in an optimal alignment between S
and R is equal to D(S, R).

In this paper we build efficient algorithms to ap-
proximate the edit distance between two strings. Since
the edit distance problem is a minimization problem, we
seek a one-sided approximation as follows.

Definition 2.1. For γ > 1, a γ-approximation algo-
rithm for the edit distance takes two strings S and R as
inputs and outputs a value d such that D(S, R) ≤ d ≤
γ · D(S, R).

We particularly investigate what approximation
factor is obtainable in nearly linear (more precisely, in
quasi-linear2) time for the edit distance. The approx-
imation factors we obtain are functions of either the
string length or D(S, R).

2f(n) is in quasi-linear time, denoted Õ(n), if f(n) = O(n ·
(log n)c) for some constant c.

3 Dimensionality Reduction in Strings Under
Edit Distance

Given two metric spaces M1 = (X1, D1) and M2 =
(X2, D2), where Xi is the universe and Di is the distance
measure for metric Mi, φ : X1 → X2 is an embedding
with distortion d = d1 · d2 for d1, d2 ≥ 0, if, for any
y, z ∈ X1,

D1(y, z)/d1 ≤ D2(φ(y), φ(z)) ≤ d2 · D1(y, z).

Embedding φ : σ∗
1 → σ∗

2 , where σ∗
1 and σ∗

2 are string
spaces under edit distance D(·, ·), is a dimensionality
reduction if φ maps each string to a shorter string.

A string embedding with reduction r > 1 is an
embedding from strings of length at most n over an
alphabet σ1 under edit distance, to strings of length at
most n/r over another alphabet σ2, again under edit
distance, that reduces the length of the string to be
embedded by a factor of at least r. Thus, such an
embedding is a dimensionality reduction. The following
basic lemma will demonstrate that for any reduction
parameter r, our string embedding has (almost) optimal
distortion.

Lemma 3.1. A string embedding with reduction r > 1
cannot have a distortion d less than r.

Proof. Let φ : σ∗
1 → σ∗

2 be a string embedding with
reduction r > 1. Let S, R ∈ σ∗

1 be two strings such that
D(S, R) = 1. Clearly D(φ(S), φ(R)) > 0; otherwise d1

would be unbounded. Because the edit distance between
two distinct strings is always a positive integer, d2 is at
least 1.

Now let Z = an and W = bn where a, b ∈
σ1. Observe that D(Z, W) = n. Because φ has
reduction r, we have that both |φ(Z)| ≤ n/r and
|φ(W)| ≤ n/r; thus, by the definition of edit distance,
D(φ(Z), φ(W)) ≤ n/r. This implies that d1 ≥ r.
Therefore d = d1 · d2 ≥ r. �

We note that Lemma 3.1 still holds true
when the normalized edit distance, that is,
D(S, R)/ max(|S|, |R|), is used. In that case, a
single edit operation on the original string of length n
creates a normalized edit distance of 1/n, whereas after
the embedding, the normalized edit distance will be at
least r/n.

4 Generalized Locally Consistent Parsing

In this section we develop a consistent way of partition-
ing any string S into non-overlapping blocks such that
the minimum block length is c and the maximum block
length is 2c − 1. In order to partition every string, the
maximum block length cannot be less than 2c−1; for in-
stance, if |S| = 2c−1, then S cannot be partitioned into

blocks with length in the range [c, 2c − 2]. The blocks
obtained will be consistent in the following sense: if two
identical substrings S[i, i + b] and S[j, j + b] appear in
long enough identical “contexts” S[i−γ(c), i+b+γ ′(c)]
and S[j − γ(c), j + b + γ ′(c)] for increasing functions
γ(c), γ′(c), and if S[i, i + b] is identified as a block then
S[j, j + b] must be identified as a block. Note that
c ≤ b + 1 ≤ 2c − 1.

Observe that a single edit operation on S will only
have a local effect on such a partitioning of S. A single
edit can change 1) the block in which it lies, and 2) the
blocks whose neighborhoods as defined by γ() and γ ′()
contain the edit operation. Hence the number of blocks
that can change as a result of a single edit operation is
O((γ(c) + γ′(c))/c).

A procedure that achieves consistent block parti-
tioning as defined above, called Locally Consistent Pars-
ing (LCP), was described in [12] for c = 2. LCP is based
on the Deterministic Coin Tossing (DCT) procedure of
Cole and Vishkin [4]. The block partitioning procedure
we describe here generalizes DCT, and, as a result, LCP,
for any value of c. We call the generalized procedure
LCP(c).

The appropriate choice of c turns out to be crucial
for our purposes. The reader may notice that the
original LCP procedure, followed by labeling of the
blocks, can be used recursively to ultimately partition
the input string into blocks of size at least c (for any
value of c). However, this approach would yield a ratio
of clog2 3/2 between the sizes of the longest and shortest
blocks. By our generalized LCP, we improve this ratio
to 2 for any c, thus obtaining more precise control over
the partitioning of S.

While partitioning S, LCP(c) treats repetitive and
nonrepetitive substrings of S differently. Repetitive
substrings are partitioned in a straightforward way;
for partitioning non-repetitive substrings we develop a
novel algorithm that generalizes the Deterministic Coin
Tossing technique and guarantees block sizes of c to
2c − 1. In this section we describe this new algorithm
for small alphabets and in Section 4.1 we generalize it to
integer alphabets. The importance of this generalization
to our embedding will be seen in Section 5.

We start off by describing how to identify the
repetitive substrings of the input string.

Definition 4.1. A string R is called r-repetitive if it
is of the form Q` where ` ≥ 2 and Q, the repetition,
is a string of length r. Given a string S, a substring
R of S is called maximally r-repetitive if (1) it is r-
repetitive with repetition T , where T is the substring
that is the lexicographically greatest substring among all
length-r substrings of R, and (2) the length-r substring
following or preceding R (in S) is not T .

For example, for S = ababa, as well as S ′ = babab,
the only substring that is maximally 2-repetitive is
baba. This information is helpful since it implies that
S and S′ have a long common substring. Note that
every maximally repetitive string is periodic but not
all periodic strings are maximally repetitive, e.g., abab
and ababa are both periodic with period 2 but are not
maximally repetitive since ab, a substring of both, is
lexicographically smaller than ba.

LCP(c) performs the partitioning of S in two
phases. Phase 1 partitions S into substrings that are
maximally `-repetitive for every ` < c and maximally
non-repetitive as follows. For r = c − 1, . . . , 1, LCP(c)
extracts all maximally r-repetitive substrings of S of
length at least c that so far remain unextracted. All the
remaining substrings (of maximal length) are identified
as maximally non-repetitive substrings.

For example, if S = aababaabd and c = 3, then
LCP(c) will first identify S[3, 6] = baba as a maximally
2-repetitive substring; it will identify no maximally 1-
repetitive substring and then will identify S[1, 2] = aa
and S[7, 9] = abd as non-repetitive substrings (since
c = 3, aa will not be identified as 1-repetitive).

Phase 2 further partitions the substrings extracted
in Phase 1 to obtain blocks of length c to 2c − 1.

For partitioning repetitive substrings, each maxi-
mally r-repetitive substring is partitioned into blocks of
length t where t is the smallest multiple of r greater
than c. If the substring length is not divisible by t, the
two leftmost blocks can be arranged so that the leftmost
one is of size c. (This choice is arbitrary.)

For partitioning maximally non-repetitive sub-
strings, first, any non-repetitive substring Q of length
less than c is merged with the (necessarily repetitive)
block to its left. If Q is a prefix of S, it is merged with
the (again necessarily repetitive) block to its right. If
the resulting block is of length greater than 2c, it is par-
titioned (arbitrarily) into two blocks such that the left
one is of length c. For non-repetitive substrings of length
at least c, we perform a more sophisticated partitioning
scheme that will ensure partition consistency as stated
earlier. To achieve this, whether a character is selected
to be a block boundary depends on the character’s im-
mediate neighborhood. The operations below facilitate
the comparison of a character to other characters in its
neigborhood.

Definition 4.2. Given two distinct binary words w
and y of length k each, let fy(w) be a binary word of
length k′ = dlog ke + 1, defined as the concatenation
of (i) the position of the rightmost bit b of w where w
differs from y, represented as a binary number (counted
starting from 1 at the right end), and (ii) the value of
w at bit b.

We define fw(w) = 0k′

.

For example, f1111(1101) = 0100 as the position of
the rightmost bit of 1101 that differs from 1111 is 2 (010
in binary) and its value is 0.

Definition 4.3. For a character S[i] and positive in-
tegers c and `, we define

gc,`(S[i])
def
= fS[i−c−`+2,i+c−`−2](S[i − c + 2, i + c − 2]).

If S[i] is represented by a k-bit word, then gc,`(S[i]) is
a k′-bit word where k′ = dlog((2c − 3)k)e + 2.

Intuitively, gc,`(S[i]) relates the substring of size
2c− 3 around S[i] to that of size 2c− 3 around S[i− `].

Given a maximally non-repetitive substring Q, we
generate an auxiliary substring Q′ to help identify some
of the block boundaries. Let dlog2 |σ|e = k, where σ
is the alphabet. For each Q[i] (represented as a k-bit
word), let

Q′[i]
def
= gc,c−1(Q[i]) ◦ gc,c−2(Q[i]) ◦ . . . ◦ gc,1(Q[i]).

The characters of Q′ are represented as words of length
k′ = (c − 1) · (dlog((2c − 3)k)e + 2) = O(c log(ck)) bits.
Thus the construction of Q′ from Q constitutes an al-
phabet reduction. Since Q′ will only be used to deter-
mine block boundaries, the information loss resulting
from this alphabet reduction is not problematic.

We now prove that if Q is non-repetitive then Q′

satisfies Q′[i] 6= Q′[i − t] for i = 4c − 6, . . . , |Q′| − c + 2
and t = 1, . . . , c − 1, and is also non-repetitive.

Lemma 4.1. Let Q be a non-repetitive substring and
let Q′[3c − 5, |Q| − c + 2] be the string obtained from
Q[3c−5, |Q|− c+2] after the alphabet reduction. Then,
we have Q′[i] 6= Q′[i − `] for ` = 1, . . . , c − 1.

Proof. Observe that given binary words x, y, z, such
that x 6= y and y 6= z, if the position of the rightmost bit
b of x that differs from y is identical to the position of
the rightmost bit b′ of y that differs from z, then the bit
values of b and b′ must be different; i.e., fx(y) 6= fy(z).

Fix i ∈ [4c−6, |Q|−c+2] and ` ∈ [1, c−1]. Consider

gc,`(Q[i]) = fQ[i−c−`+2,i+c−`−2](Q[i − c + 2, i + c − 2])

and

gc,`(Q[i − `]) =

fQ[i−c−2`+2,i+c−2`−2](Q[i − c − ` + 2, i + c − ` − 2]).

Now, let x = Q[i − c − 2` + 2, i + c − 2` − 2], y =
Q[i−c−`+2, i+c−`−2], and z = Q[i−c+2, i+c−2].

Note that x 6= y; otherwise Q[i−c−2`+2, i+c−`−2]
includes an `-repetitive substring of length more than
c (which is impossible for a non-repetitive substring
extracted by the algorithm). Similarly, y 6= z. Using the
opening observation of the proof, we have gc,`(Q[i−`]) =
fx(y) 6= fy(z) = gc,`(Q[i]). Hence, Q′[i − `] 6= Q′[i]. �

Now we are ready to identify our block boundaries
on the nonrepetitive substring Q, using information
from Q′. A character Q[i] is set to be a primary marker
if Q′[i] is lexicographically greater than each character
in its immediate neighborhood of length 2c−1, namely,
in Q′[i− c+1, i+ c−1]. Note that primary markers are
set in Q; Q′ is solely used in helping determine their
locations. The next lemma states that the distance
between two consecutive primary markers is at least c
and at most 2k′+2 = O((kc)c) due to the construction
of Q′.

Lemma 4.2. Let Q[i] and Q[j] be two consecutive pri-
mary markers in Q such that i < j. Then, c ≤ j − i ≤
4(2k′

) = O((kc)c).

Proof. We first prove the lower bound. Assume for
contradiction that both Q[i] and Q[i + `] are primary
markers for ` < c. Let Q′ be the string obtained from
Q by the alphabet reduction. Then, by definition of a
primary marker, Q′[i] must be lexicographically greater
than Q′[i + `] and Q′[i + `] must be lexicographically
greater than Q′[i], a contradiction. Thus, both Q[i] and
Q[i + `] cannot be primary markers for ` < c. .

We now prove the upper bound by induction on the
size t of the alphabet for Q′. The bound holds for t = 3.
By Lemma 4.1, we know that Q′[i] 6∈ {Q′[i−c+1], Q′[i−
1], Q′[i+1], Q′[i+c−1]}. Also, recall that the characters
of Q′ are represented by binary strings of length k′

(i.e., t = 2k′

). Without loss of generality, assume that
both Q′[i] and Q′[j] are the lexicographically maximal
alphabet character in σ′ (this is the worst case). Then,
since there are no primary markers between i and j,
no character in Q′[i + 1, j − 1] is the lexicographically
maximal character. Moreover, in Q′[i, j], the character
just below the lexicographically maximal character can
only be in positions i + 1, i + 2, j − 2, j − 1; otherwise,
another primary marker would have been set. Without
loss of generality, assume Q′[i + 2] and Q′[j − 2] are
at most this lexicographically second largest character.
Then, by the induction hypothesis, j − 2 − (i + 2) ≤
4(t − 1). Thus, we get j − i ≤ 4t. �

Having established the primary markers, LCP(c)
now partitions Q into blocks as follows. Q is partitioned
into the substrings that are between two consecutive
primary markers (inclusive of the left primary marker),

to the left of the leftmost primary marker, or to the
right of the rightmost primary marker. Each of these
substrings is further partitioned into blocks of length c;
if the substring length is not divisible by c, the leftmost
block will be of length between c + 1 and 2c − 1. The
next lemma then follows.

Lemma 4.3. If S[i, j] is a block obtained by LCP(c)
then c ≤ j − i + 1 ≤ 2c − 1.

Proof. By the rule that we use to place the secondary
markers between two consecutive primary markers Q[`1]
and Q[`2] (`1 < `2), markers are c positions apart,
except the last secondary marker before the primary
marker Q[`2], which might be on Q[`2 − 2c + 1], Q[`2 −
2c + 2], . . . , or Q[`2 − c] depending on the value of
(`2 − `1) mod c. �

We now prove the consistency property of the above
partitioning. We show that, if S[i, j] and S[i′, j′] are
two identical non-repetitive substrings of S of sufficient
length, then the blocks within S[i, j] and S[i′, j′], except
at the left and right ends, are identical, regardless of the
locations of S[i, j] and S[i′, j′] in S.

Lemma 4.4. Suppose that for some b ∈ [c − 1, 2c − 2],
S[i−2k′+2−4c+7, i+b+4c−3] = S[i′−2k′+2−4c+7, i′+
b + 4c − 3], and furthermore, both substrings are parts
of substrings identified as being maximally nonrepetitive
in S. Then, if S[i, i + b] is set as a block by LCP(c),
then so is S[i′, i′ + b].

Proof. By definition of primary markers and LCP(c),
whether a character S[`] (within a non-repetitive sub-
string) is set as a marker depends only on S[` − 4c +
7, ` + 2c − 3]. Since the decision to set S[i, i + b] as a
block depends only on the primary marker immediately
to the left of S[i] and whether there is a primary maker
before S[i + 2c], we can conclude that this decision de-
pends only on S[i − 2k′+2 − 4c + 7, i + b + 4c − 3] by
Lemma 4.2. As a result, S[i, i+ b] is set as a block only
if S[i′, i′ + b] is set as a block as well. �

In the preceding discussion, we described how to
partition a nonrepetitive string Q, where Q is over al-
phabet σ such that dlog |σ|e = k, into blocks of size
between c and 2c − 1 while maintaining a consistency
property formalized in Lemma 4.4. This lemma guaran-
tees that identical substrings are partitioned identically
except in the margins. This implies thus that a sin-
gle edit operation cannot change the partitioning of a
string by “too much.” More specifically, the number of
blocks that can change as a result of an edit operation is
O((ck)c) in a non-repetitive substring (by Lemma 4.4)
and is only a constant in a repetitive substring.

4.1 Iterative Reduction of the Alphabet Size If
c·k = O(1), by the above discussion, each edit operation
results in only O(1) changes in the partitioning of the
input string and, thus, one application of the alphabet
reduction suffices to obtain the desired partition. For
ck = ω(1), there is a need to reduce the alphabet size
further before setting the primary markers in order to
guarantee that an edit operation will have limited effect
on the partitioning. In this case, LCP(c) performs
the alphabet reduction on each non-repetitive substring
S[i, j] of S, for log∗ kc + O(1) iterations before setting
the primary markers. Let S∗[i, j] be the output of
this process. Due to Lemma 4.1, since S∗[i, j] is non-
repetitive, so is S∗[i, j]. In the first iteration the
alphabet size will be reduced to O((ck)c); in the second
it will be O((c2 log ck)c) and so on. After log∗ kc+O(1)
iterations, the alphabet size will be O((3c2 log c)c),
which is independent of k. The primary markers of
S[i, j] are then chosen as the local maxima in S∗[i, j];
this will assure that the maximum distance between
two primary markers will be O((3c2 log c)c) as well.
(Recall that the alphabet reduction is only for the
purpose of obtaining primary markers. Afterwards, the
partitioning is performed on the original string.)

Now we prove that the blocks on S obtained by
LCP(c) have the property that h edit operations can
change only O(h · [(log∗ kc) + (3c2 log c)c/c]) blocks.

Theorem 4.1. A sequence of h edit operations to a
string S can change at most O(h · [(3c2 log c)c/c +
log∗ kc]) and at least h/(2c − 1) blocks obtained by
LCP(c).

Proof. The lower bound follows from the fact that the
maximum block size is 2c − 1 and, thus, the minimum
possible number of blocks that can contain all h edit
operations is h/(2c − 1).

The upper bound follows from repeated application
of the next lemma.

Lemma 4.5. An edit operation on S can change only
O((3c2 log c)c/c + log∗ kc) blocks obtained by LCP(c).

Proof. LCP(c) initially partitions S into non-repetitive
and r-repetitive substrings for 1 ≤ r < c.

Suppose the edit operation is performed on a non-
repetitive substring, which remains non-repetitive after
the operation. The first alphabet reduction on any S[i]
depends only on S[i−3c+6, i+c−2]. In general, the jth

application of the alphabet reduction on S[i] depends on
the substring S[i− (3c− 6)j, i+(c− 2)j]. Thus, for j =
log∗ kc+O(1), the output of the jth alphabet reduction
on S[i] will be of size O((3c2 log c)c) and depend only
on a substring of size 4c(log∗ kc + O(1)) that contains

S[i]. This further implies that the decision of whether
to choose S[i] as a primary marker also depends only
on a size 4c(log∗ kc + O(1)) + O((3c2 log c)c) substring
that contains S[i]. All blocks within this substring
can change as a result of an edit operation on S[i],
implying a change of 4(log∗ kc+O(1))+O((3c2 log c)c/c)
blocks. As the distance between the first changed
primary marker and its preceding primary marker is
O((3c2 log c)c), a further O((3c2 log c)c/c) blocks can
change as a result.

If the edit operation is performed on a non-
repetitive substring that becomes repetitive then the
same argument applies: The new repetitive substring
splits the non-repetitive substring into two. This can
change 4(log∗ kc + O(1)) + O((3c2 log c)c/c) blocks on
the two sides of the new repetitive substring.

If the edit operation is performed on a repetitive
substring then the exact locations of the blocks may
change; however only O(1) of these blocks will change
content. That is, one has to edit only O(1) blocks in
the original string in order to obtain the partitioning of
the modified string. �

This completes the proof of Theorem 4.1. �

The next lemma states the running time of the
LCP(c) procedure.

Lemma 4.6. LCP(c) runs in time O(n[c log c + (k +
c) log∗ kc]).

Proof. Clearly the partitioning of a repetitive substring
into blocks can be done in linear time in the size of
the substring. We now show that the partitioning of all
non-repetitive substrings of S takes O(n[c log c + (k +
c) log∗ kc]) time.

We first focus on the time for the first application
of the alphabet reduction on a given S[i] to obtain S ′[i].
Consider the compact trie TS that comprises the bitwise
representations of Sr[j−c+2, j+c−2] for all j. TS can be
obtained in O(nk) time using any linear time suffix tree
construction algorithm (e.g. [9]). After preprocessing
TS in O(n) time, the lowest common ancestor (LCA)
of two leaves representing Sr[i − c + 2, i + c − 2] and
Sr[i′−c+2, i′+c−2] for any i−c+1 ≤ i′ < i can be found
in O(1) time (c.f., [5, 13]). The LCA of these leaves gives
gc,i−i′(S[i]). To obtain S′[i] one only needs to compute
gc,i−i′(S[i]) for all i′ such that i−c+1 ≤ i′ < i; this can
be done in time O(c). Thus the overall running time for
performing the alphabet reduction for all characters of
S is O(nk + nc).

Subsequent O(log∗ kc) applications of the alphabet
reduction work on smaller size alphabets; thus the
overall running time is O(n(k + c) log∗ kc).

After the alphabet reduction, determining whether
each S[i] is a primary marker can be done as fol-
lows. The number of bits needed to represent S∗[i]
is O(c log c); because c ≤ n this requires O(c) ma-
chine words. One can use a priority queue that in-
cludes each one of the O(c) characters in the substring
S∗[i − c + 2, i + c − 2] to determine whether S∗[i] is
the local maxima. This can be done, for all i, in time
O(nc log c).

Once the primary markers are obtained, the final
partitioning can be obtained in O(n) time. �

5 String Embeddings via Iterative Applications
of LCP(c)

LCP(c) partitions a string S into blocks of size c to
2c − 1. These blocks can be labeled consistently; i.e.,
identical blocks get identical labels. (The label of
a block could either be set to the block’s contents,
implying a large alphabet, or be computed via a hash
function, introducing a small probability of error.) We
denote the string of the labels obtained from S by
S1. This gives an oblivious embedding of strings that
reduces their size by a factor of at least c and at most
2c − 1.

Theorem 4.1 implies that given input strings S and
R, the corresponding strings S1 and R1 satisfy

D(S, R)/(2c − 1) ≤ D(S1, R1)

= D(S, R) · O((3c2 log c)c/c + log∗ kc).

For constant alphabet size k, D(S1, R1) provides a
Θ((3c2 log c)c) factor approximation to D(S, R). The
tradeoff between the approximation factor and the
running time is far from ideal. Because S1 and R1 are a
factor c smaller than S and R, when one uses dynamic
programming to compute D(S1, R1), as c grows, the
time for the dynamic program decreases with 1/c2. On
the other hand, the time for computing the embedding
increases with c, and the approximation factor increases
exponentially with c. In what follows we maintain a
running time of Õ(n) for computing the embedding,
while improving the tradeoff between the approximation
factor and the running time of the dynamic program
by iteratively applying LCP(c) followed by a consistent
labeling of blocks.

Define S1 as above; let S` denote the string obtained
by applying LCP(c) on S`−1 followed by consistent
block labeling. Each label in S` corresponds to a
substring of S with size in the range [c`, (2c − 1)`].

Lemma 5.1. A single edit operation on S results in
O((3c2 log c)c/c + log∗ kc) labels to change in S`.

Proof. By Lemma 4.5, the number of labels that can
change in S1 as a result of a single edit operation on S

is at most λ · ((3c2 log c)c/c + log∗ kc) for some constant
λ. The number of labels that can similarly change in S2

is at most

λ·((3c2 log c)c

c
+log∗(2c−1)kc)+

λ

c
·((3c2 log c)c

c
+log∗ kc).

This is due to the fact that the λ·((3c2 log c)c/c+log∗ kc)
labels in S1 that have changed as a result of the
original edit operation on S will be grouped in at most
1
cλ · ((3c2 log c)c/c+log∗ kc) blocks, and, thus, will have
an effect on an equal number of labels in S2. As these
labels are consecutive, there will only be an additional
λ · ((3c2 log c)c/c + log∗(2c− 1)kc) label changes on S2.
Note that

λ · ((3c2 log c)c

c
+ log∗(2c − 1)kc)

+
λ

c
· ((3c2 log c)c

c
+ log∗ kc)

≤ 3

2
λ · ((3c2 log c)c/c + log∗ kc)

for c ≥ 3. Thus at most 2λ · ((3c2 log c)c/c + log∗ kc)
labels can change in S` for any ` ≥ 2. �

Thus, we reach the following corollary that is crucial
to our edit distance approximation.

Corollary 5.1. D(S, R)/(2c − 1)` ≤ D(S`, R`) ≤
D(S, R) · O((3c2 log c)c/c + log∗ kc).

Lemma 5.2. We can compute S`, for all 1 ≤ ` ≤ logc n,
in time O(n[c log c + (k + c) log∗ kc]).

Proof. By Lemma 4.6, we can compute S1 from S in
O(n[c log c + (k + c) log∗ kc]) time. Since |S1| ≤ |S|/c
and the alphabet of S1 is at most 4c times that of
S, we can compute S2 from S1 in O(n

c [c log c + (k +
c) log∗(2c − 1)kc]) = 1

c · O(n[c log c + (k + c) log∗ kc])
time. The running time for computing S` drops by at
least a constant fraction from that of S`−1 . Summing
over all `, the lemma follows. �

The above observations result in a better tradeoff
between the approximation factor and the running time
of approximating D(S, R) via D(S`, R`). As ` increases,
the approximation factor increases proportionally with
(2c−1)` due to Corollary 5.1. However, as S` is of length
at most n/c`, the running time decreases proportionally
with 1/c2`.

Theorem 5.1. There is a string embedding φ with
reduction r and distortion Õ(r1+µ) for µ >
2/ log log log n. For any string S, its embedding φ(S)
can be computed in time Õ(21/µ · n).

Proof. We set c = 21/µ ≤ (log log n)/ log log log n. Let
φ(S) = Sdlog

c
re for this value of c. The distortion

follows from Corollary 5.1 and the running time follows
from Lemma 5.2 as O(c log c + (k + c) log∗ kc) is, by
choice of c, easily bounded by polylog(n). �

The gain from using LCP(c) instead of LCP(2) in
our embedding arises when we use LCP(c) recursively.
The `th-level recursive partitioning produced by LCP(2)
yields block sizes between 2` and 3`, whereas LCP(c)
yields block sizes between c` and (2c − 1)`. While
using LCP(c) in order to reduce the string length to
n/r, we have to choose ` ≥ logc r. This, however, only
guarantees a distortion of (2c − 1)` = (2c − 1)logc r ∼
r1+logc 2. Hence, for a fixed r, a larger value for c yields
a smaller distortion.

6 Edit Distance Approximation Using our
String Embedding

In this section we describe our edit distance approxima-
tion algorithm. Let S` and R` be strings obtained by
the application of the oblivious embedding φ (from the
previous section) on the input strings S and R.

By Corollary 5.1, D(S`, R`) provides an approx-
imation to D(S, R) within a factor of O((2c − 1)` ·
[(3c2 log c)c/c + log∗ kc]). Because |S`|, |R`| ≤ n/c`, one
can trivially compute D(S`, R`) in time O((n/c`)2) by
dynamic programming. Hence, for ε ≥ 0, one can get

an (n
1−ε

2 +o(1))-approximation to edit distance in time
Õ(n1+ε) by setting (n/c`)2 = n1+ε. Below we improve
this by using observations about the embedding φ.

Given an upper bound t on D(S, R), one can
determine the actual value of D(S, R) in O(nt) time
by computing the dynamic programming table along a
band of width 2t around the main diagonal, since any
entries corresponding to positions in S and R that are
more than t locations apart do not need to be filled
in. This technique can be tailored to compute, given a
parameter t, an approximation Dt(S`, R`) to D(S`, R`)
in time O(nt/c2`) with the property that, if D(S, R) ≤ t,
then Dt(S`, R`) will be close to D(S`, R`). The cost-
cutting measure in the computation of Dt(S`, R`) is that
entries for label pairs corresponding to substrings of S
and R whose starting locations (in S and R respectively)
are more than t positions apart are not filled in in
the dynamic programming table. Consequently, only
O(nt/c2`) entries are filled in since each of the n/c`

labels in S` is compared to at most O(t/c`) labels in
R`.

The next lemma shows an analog of Corollary 5.1
for Dt(S`, R`).

Lemma 6.1. If D(S, R) ≤ t, then D(S, R)/(2c − 1)` ≤
Dt(S`, R`) ≤ D(S, R) · O((3c2 log c)c/c + log∗ kc).

Proof. The left-hand side holds since at most (2c − 1)`

edits to S can be grouped into one block and, thus,
appear as a single edit to S`. To prove the upper bound,
consider the optimal alignment between S and R, and
the corresponding alignment between S` and R`. That
is, the latter alignment matches a label in S` to one
in R` only if all the characters represented by these
labels are matched to each other between R and S in
the former (optimal) alignment. Consider a sequence of
edit operations on S to obtain R (respecting the optimal
alignment between S and R). Applying Lemma 5.1
for each such edit shows that the edit distance implied
by the alignment between S` and R` mentioned above
satisfies the bounds mentioned in Corollary 5.1. Since
this alignment clearly never matches two labels which
represent substrings of S and T whose starting points
are more than t locations apart, it will be considered by
the dynamic program computing Dt(S`, R`), and, thus,
Dt(S`, R`), will respect the upper bound. �

We now state our main theorem regarding the edit
distance approximation.

Theorem 6.1. For any ε ≥ 0, it is possible to approxi-
mate D(S, R) in time Õ(n1+ε) within an approximation
factor

Õ(min{n
1−ε+(1−ε)δ

3+δ , (D(S, R)/nε)
1
2 (1+δ)}),

where δ = 2
log log log n .

Proof. We produce O(log n) estimates for D(S, R). In
iteration h, we set t = 2h and ` = 1

2 logc
t

nε . We then
estimate D(S, R) to be Dt(S`, R`) · (2c − 1)`. Note
that the estimate of any iteration provides an upper
bound to D(S, R). By the preceding discussion, the
running time of iteration h is O(nt/c2`) = O(n1+ε). If
D(S, R) ≤ t, then the estimate of iteration h provides
an approximation factor of

O((2c − 1)` · [(3c2 log c)c/c + log∗ kc])

= O((t/nε)
1
2 (1+logc 2) · [(3c2 log c)c/c + log∗ kc]).

Let c be set to (log log n)/ log log log n. The mini-
mum of all estimates guarantees an approximation fac-
tor of Õ((D(S, R)/nε)

1
2 (1+δ)), where δ = 2/ log log log n.

If this estimate exceeds n, then the algorithm estimates
D(S, R) to be n.

Now we bound the above approximation factor as a
function of n. If

D(S, R) ·
(D(S, R)

nε

)(1+δ)/2

> n,

that is,

D(S, R) > n
2+ε(1+δ)

3+δ ,

then the algorithm’s estimate, which is at most n, will
provide an approximation to D(S, R) within a factor of

n/n
2+ε(1+δ)

3+δ = n
1+(1−ε)δ−ε

3+δ .

On the other hand, if D(S, R) ≤ n
2+ε(1+δ)

3+δ , then the
algorithm’s approximation factor becomes

Õ((D(S, R)/nε)
1
2 (1+δ)) = Õ(n

1+(1−ε)δ−ε

3+δ).

Thus, the overall approximation factor of the algo-
rithm is

Õ(min{n
1−ε+(1−ε)δ

3+δ , (D(S, R)/nε)
1
2 (1+δ)}).

�

Setting ε to be 0, we obtain the following corollary.

Corollary 6.1. There is an algorithm that computes
D(S, R) for two strings S and R of length n within an
approximation factor of

min{n 1
3 +o(1),D(S, R)

1
2+o(1)}

in time Õ(n).

References

[1] A. Andoni, M. Deza, A. Gupta, P. Indyk, and
S. Raskhodnikova. Lower bounds for embedding edit
distance into normed spaces. In ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2003.

[2] Z. Bar-Yossef, T. Jayram, R. Krauthgamer, and R. Ku-
mar. Approximating edit distance efficiently. In
IEEE Symposium on Foundations of Computer Science
(FOCS), 2004.

[3] T. Batu, F. Ergün, J. Kilian, A. Magen, S. Raskhod-
nikova, R. Rubinfeld, and R. Sami. A sublinear algo-
rithm for weakly approximating edit distance. In ACM
Symposium on Theory of Computing, (STOC), 2003.

[4] R. Cole and U. Vishkin. Deterministic coin tossing and
accelerating cascades: Micro and macro techniques for
designing parallel algorithms. In ACM Symposium on
Theory of Computing (STOC), 1986.

[5] D. Harel and R. E. Tarjan. Fast algorithms for
finding nearest common ancestors. SIAM Journal on
Computing, 13(2):338–355, May 1984.

[6] S. Khot and A. Naor. Nonembeddability theorems via
Fourier analysis. In IEEE Symposium on Foundations
of Computer Science (FOCS), 2005.

[7] R. Krauthgamer. On L1-embeddings of the edit dis-
tance. Unpublished manuscript, 2005.

[8] W. J. Masek and M. S. Paterson. A faster algorithm
computing string edit distances. Journal of Computer
and System Sciences, 20(1):18–31, February 1980.

[9] E. M. McCreight. A space-economical suffix tree
construction algorithm. J. ACM, 23(2):262–272, 1976.

[10] R. Ostrovsky and Y. Rabani. Low distortion embed-
dings for edit distance. In ACM Symposium on Theory
of Computing (STOC), 2005.

[11] S. C. Sahinalp and U. Vishkin. Data compression using
locally consistent parsing. UMIACS Technical Report,
1995.

[12] S. C. Sahinalp and U. Vishkin. Efficient approximate
and dynamic matching of patterns using a labeling
paradigm. In IEEE Symposium on Foundations of
Computer Science (FOCS), 1996.

[13] B. Schieber and U. Vishkin. On finding lowest common
ancestors: Simplification and parallelization. SIAM
Journal on Computing, 17(6):1253–1262, December
1988.

