
Fast Approximate PCPs for Multidimensional

Bin-Packing Problems ?

Tuğkan Batu 1

School of Computing Science, Simon Fraser University, Burnaby, BC, Canada

V5A 1S6

Ronitt Rubinfeld 2

CSAIL, MIT, Cambridge, MA 02139, USA

Patrick White

Computer Science Department, Cornell University, Ithaca, NY 14853, USA

Abstract

We consider approximate PCPs for multidimensional bin-packing problems. In par-
ticular, we show how a verifier can be quickly convinced that a set of multidi-
mensional blocks can be packed into a small number of bins. The running time of
the verifier is bounded by O(logd

n) where n is the number of blocks and d is the
dimension.

Key words: Proof-assisted property testing; Probabilistically checkable proofs;
Multidimensional bin-packing problems; Sublinear-time algorithms

? Preliminary version appeared in the 3rd International Workshop on Randomiza-
tion and Approximations Techniques in Computer Science, Random ’99. This work
was partially supported by ONR N00014-97-1-0505, MURI, NSF Career grant CCR-
9624552, and an Alfred P. Sloan Research Award. The third author was supported
in part by an ASSERT grant.

Email addresses: batu@cs.sfu.ca (Tuğkan Batu), ronitt@csail.mit.edu
(Ronitt Rubinfeld), white@cs.cornell.edu (Patrick White).
1 This research was done while the first author was a graduate student in the
Department of Computer Science at Cornell University.
2 Part of this research was done while the second author was visiting at IBM Al-
maden Research Center.

Preprint submitted to Elsevier Science 24 October 2004

1 Introduction

Consider a scenario in which a user needs the optimal solution to a very large
combinatorial optimization problem. The user asks another computational
entity that has more resources to find a solution. The user then would like
to trust that the value of the solution is feasible by only inspecting a very
small portion of the solution. For example, suppose the services of a trucking
company are needed by a mail-order company to handle all shipping orders.
The mail-order company wants to ensure that the trucking company has the
capacity to handle the orders. In this case, large amounts of typical data on
the shipping loads might be presented to a computational entity to determine
whether or not the load can be handled.

The probabilistically checkable proof (PCP) techniques (c.f., [1–3]) yield ways
of formatting proofs so that their correctness can be verified quickly, even
by inspecting only a constant number of bits of the proof. We note that the
verifiers in the PCP results all require linear time in the size of the statement
being proved. Approximate PCPs were introduced in [4] to allow a verifier to
ensure that a solution to the optimization problem is at least almost correct
when the input data is very large, and even linear time is prohibitive for the
verifier. Approximate PCPs running in logarithmic or even constant time have
been presented in [4] for several combinatorial problems. For example, a proof
can be written in such a way as to convince a constant-time verifier that there
exists a bin packing which packs a given set of objects into a small number of
bins. Other examples include proofs which show the existence of a large flow,
a large matching, or a large cut in a graph to a verifier that runs in sublinear
time.

Our Results. We consider approximate PCPs for multidimensional bin-
packing problems. In particular, we show how a verifier can be quickly con-
vinced that a set of multidimensional objects can be packed into a small num-
ber of bins. Our results generalize the one-dimensional bin-packing results
of [4].

The approximate PCP protocols for the bin-packing problem are more intri-
cate in higher dimensions; for example, the placements and orientations of the
blocks within the bin must be considered more carefully. In order to ensure that
the placements of the blocks are nonoverlapping, we make use of properties
that are related to monotonicity properties of functions defined on partially
ordered sets. For now, in order to describe our results, we will not elaborate
on the precise relationship, but we later give a careful description in the body
of the paper. In the one-dimensional case, the approximate PCP protocol of
[4] makes use of a property called heaviness of an element in a list, introduced

2

by [5]: View a list as a function f , such that the ith element in a list is f(i).
Then, essentially, the heaviness of index i with respect to function f is defined
so that testing if i is heavy can be done very efficiently (in logarithmic time
in the size of the list) and such that the function values of all heavy indices in
the list are necessarily in monotone increasing order. There is a natural gen-
eralization of monotonicity to functions over higher dimensions: for x, y ∈ [n]d

such that x ≺ y (i.e., xi ≤ yi for all i ∈ {1, . . . , d}), x and y are in monotone
order if f(x) ≤ f(y). To ensure that the blocks are nonoverlapping in the
multidimensional case, we generalize the notion of heaviness, giving heaviness
properties and corresponding tests which determine the heaviness of a point
x ∈ [1, . . . , n]d in time O(2d logd n). Then, given a heaviness tester which runs
in time T (n), we show how to construct an approximate PCP protocol for bin
packing in which the running time of the verifier is O(T (n)).

By definition, the heaviness of all domain elements with respect to a function
f is equivalent to the monotonicity of function f . One can show that testing
heaviness of randomly selected domain elements gives a test for the overall
monotonicity of a function. Given function f from [1, . . . , n]d to [1, . . . , r], a
multidimensional monotonicity tester passes functions f that are monotone
and fails functions f if no way of changing the value of f at less than ε frac-
tion of the inputs will turn f into a monotone function. In [6], a monotonicity
tester with query complexity Õ(d2n2r) is given. Our multidimensional heav-
iness tester can also be used to construct a multidimensional monotonicity
tester with the same asymptotic running time as the heaviness tester, that
is, O(2d logd n). However, Dodis et al. [7] independently give monotonicity
testers that are as efficient as ours for two dimensions and greatly improve on
our running times for dimensions greater than two. The query complexity of
their algorithm is O(d log(n) log(r)). More recently, the problem of testing the
monotonicity of functions defined over general poset domains is studied in [8].

Halevy and Kushilevitz [9] have proposed a distribution-free property testing
model, where the distance between functions is defined with respect to an
arbitrary distribution over the domain from which the tester can take samples
(as opposed to the uniform distribution). They have shown that a constant
number of repetitions of one of our heaviness testers yields a monotonicity
tester in the distribution-free property testing model. To our knowledge, there
is no such analysis relying on any of the other known monotonicity testers.

2 Preliminaries

Notation. We use the notation x ∈R S to indicate x is chosen uniformly at
random from the set S. The notation [n] indicates the interval [1, . . . , n].

3

We define a partial ordering relation ≺ over integer lattices such that if x and
y are d-tuples then x ≺ y if and only if xi ≤ yi for all i ∈ {1, . . . , d}. We
use the notation [x, y] to denote the set of all points z such that x ≺ z ≺ y.
Consider a function f : [n]d → R, where range R is a totally ordered set
(order relation denoted by ≤). For x, y ∈ [n]d such that x ≺ y, we say that x
and y are in monotone order if f(x) ≤ f(y). We say f is monotone if for all
x, y ∈ [n]d such that x ≺ y, x and y are in monotone order.

Approximate PCP. The approximate PCP model is introduced in [4]. In
this model, a verifier has query access to a theorem and a possibly-valid proof
Π. It can make queries to Π in order to determine whether the theorem is
close to a true theorem. More specifically, if on input x, a proof claiming that
f(x) = y is provided, the verifier wants to know if y is at least close to f(x). As
we will construct an approximate PCP protocol for a maximization problem,
the following variant of the model will be used.

Definition 1 ([4]) A function f is said to have a t(ε, n)-time, s(ε, n)-space,
ε-approximate lower bound Probabilistically Checkable Proof system if there
is a randomized verifier V with oracle access to the words of a proof Π such
that for all inputs ε and x of size n, the following holds. Let y be the contents
of the output tape, then:

(1) If y = f(x), then there is a proof Π of size O(s(ε, n)) such that V Π outputs
PASS with probability at least 3/4 (over the internal coin tosses of V);

(2) If (1−ε)y > f(x), then for all proofs Π′, V Π′

outputs FAIL with probability
at least 3/4 (over the internal coin tosses of V); and

(3) V runs in O(t(ε, n)) time.

The verifier is a RAM machine which can read a word in one step. The prob-
abilistically checkable proof protocol can be repeated O(log 1/δ) times to get
confidence at least 1 − δ. The analysis of our bin-packing protocol will show
that if a proof claims to be able to pack all of the n input objects, the verifier
can trust that at least (1− ε)n of the objects can be packed.

It also follows from considerations in [4] that the protocols we give can be
employed to prove the existence of suboptimal solutions. In particular, for a
solution of value v, a proof for the existence of a solution of value at least
(1 − ε)v can be written down. Since v is not necessarily the value of the
optimal solution, these protocols can be used to trust the computation of
approximation algorithms to the NP-complete problems we treat. This is a
useful observation since the provider of the proof may not have computational
powers outside of deterministic polynomial time, but might employ very good
heuristics to get surprisingly good, yet not necessarily optimal, solutions.

4

Heaviness Testing. Our methods rely on the ability to define an appro-
priate heaviness property H on the domain elements of a function f . The
heaviness property must be defined so that testing if a domain element is
heavy with respect to H and f can be done very efficiently in the size of the
domain, and such that all pairs of heavy elements in the domain that are com-
parable according to ≺ are in monotone order. Once the above is satisfied, our
PCP protocols do not rely on the particular details of the heaviness property.
Thus, we separate the discussion of the particulars of the heaviness properties
and their associated tests (Section 4) from the way they are used in the PCPs
(Section 3). As was mentioned earlier, heaviness properties are interesting in
their own right, as their testers can be easily turned into distribution free
monotonicity testers [9]. In the following, we describe the requirements of a
heaviness property in more detail.

Before giving the precise requirements, let us begin by giving an example of
a one-dimensional heaviness property and its corresponding test from [5]. We
note that there were two such properties given in that work, both used to
test if a list L = (x1, x2, . . . , xn) is mostly sorted. Here we assume that the
list contains distinct elements (a similar test covers the nondistinct case). The
heaviness property is as follows: a list element xi is heavy if a binary search on
L for the value of xi finds xi at location i, without encountering any ordering
inconsistencies along the search path. It is not hard to see that if two list
elements xi and xj are heavy according to this definition, then they are in
correct sorted order (since they are each comparable to their least common
ancestor in the search tree). Furthermore, a test for whether i is heavy can be
implemented in O(log n) time.

The definition of a heaviness property is generalized in this paper. We call a
property a heaviness property if it implies that points with that property are
in monotone order.

Definition 2 Given a domain D = [1, . . . , n]d, a function f : D → R and a
property H over D, we say that H is a heaviness property with respect to f if

(1) ∀x ≺ y, H(x) ∧H(y) implies f(x) ≤ f(y); and
(2) In a monotone function all points have property H.

If a point has a heaviness property H then we say that point is heavy (and
omit referring to H when it is clear from the context). There may be many
properties of points of a domain that are valid heaviness properties with re-
spect to a given function. A challenge of designing good heaviness properties
is to find properties which can be tested efficiently. A heaviness test is a prob-
abilistic procedure which decides the heaviness property with high probability.
If a point is not heavy, it should fail this test with high probability, and if a
function is perfectly monotone, then every point should pass. Yet it is possible

5

that a function is not monotone, but a tested point is actually heavy. In this
case the test may either pass or fail.

Definition 3 Let f : D → R be a function on the domain D = [1, . . . , n]d,
and H be a heaviness property with respect to f . Let S(·, ·) be a randomized
decision procedure on D with oracle access to function f . Given security pa-
rameter δ, we say S is a heaviness test for a heaviness property H if for all
x, we have

(1) If for all z ≺ y, f(z) ≤ f(y), then Sf(x, δ) = PASS; and
(2) If H(x) ≡ FALSE (i.e., x is not heavy with respect to f), then

Pr[Sf (x, δ) = FAIL] ≥ 1− δ.

We will use heaviness tests to build an approximate PCP verifier for the bin-
packing problem. In particular, the verifier will use heaviness tests to enforce,
among other properties, local multidimensional monotonicity of certain func-
tions provided by the proof. It turns out that multidimensional heaviness
testing is more involved than the one-dimensional version considered in ear-
lier works, and raises a number of interesting questions. Our results on testing
bin-packing solutions are valid for any heaviness property, and require only a
constant number of applications of a heaviness test. We give sample heaviness
properties and their corresponding tests in Section 4, yet it is an open question
whether heaviness properties with more efficient tests exist. Such tests would
immediately improve the efficiency of our approximate PCP verifier for bin
packing.

Permutation Enforcement. Our protocols will require us to verify whether
a given list y1, . . . , yn is a permutation of [n], namely, yi = f(i) for some per-
mutation f . In [4], the following method is suggested: The prover writes an
array A of length n. A(j) should contain i when f(i) = j (its preimage ac-
cording to f). We say that i is honest if A(f(i)) = i (and, in particular,
0 ≤ f(i) ≤ n). Note that the number of honest elements in [n] lower bounds
the number of distinct elements in y1, . . . , yn (even if A is written incorrectly).
Thus, sampling O(1/ε) elements and determining that all of them are honest
suffices to convince the verifier that there are at least (1− ε)n distinct yi’s in
O(1/ε) time. We refer to array A as the permutation enforcer.

3 Multidimensional Bin Packing

We consider the d-dimensional bin-packing problem. We assume that the ob-
jects to be packed are d-dimensional rectangular prisms, which we will here-

6

after refer to as blocks. The blocks are given as d-tuples (in N
d) of their dimen-

sions. Similarly, the bin size is given as a d-tuple, with entries corresponding
to the integer width of the bin in each dimension. When we say a block with
dimensions w = (w1, . . . , wd) ∈ N

d is located at position x = (x1, . . . , xd), we
mean that all the locations y such that x ≺ y ≺ x + w − ~1, where ~1 denotes
all-ones vector, are occupied by this block. The problem of multidimensional
bin packing is to try to find a packing of n blocks which uses the least number
of bins of given dimension D = (N1, . . . , Nd).

It turns out to be convenient to cast our problem as a maximization problem.
We define the d-dimensional bin-packing problem as follows:

Input: n blocks, the dimensions of a bin, and an integer k
Output: a packing that packs the largest fraction of the blocks into k bins

It follows that if 1− ε fraction of the blocks can be packed in k bins, then at
most k + εn bins are sufficient to pack all of the blocks, by placing each of the
remaining blocks in separate bins.

We give an approximate lower bound PCP protocol for the maximization
version of the d-dimensional bin-packing problem in which the verifier runs
in O((1/ε)T (N, d)) time where T (N, d) is the running time for a heaviness
tester on D = [N1] × · · · × [Nd], and N = maxi Ni. In all of these protocols,
we assume that the block and bin dimensions fit in a word.

In this protocol, we assume that the verifier is provided with a proof that
all the blocks can be packed in k bins. We require that the proof provides
an encoding of a feasible packing of the input blocks in a previously-agreed
format. This format is such that if all the input blocks can be packed in as
few bins as claimed, the verifier accepts. If only less than 1− ε fraction of the
input blocks can be simultaneously packed, the verifier rejects the proof with
some constant probability. In the intermediate case, the verifier provides no
guarantees.

3.1 A First Representation of a Packing

We represent a bin as a d-dimensional grid with the corresponding length in
each dimension. The proof will label the packed blocks with unique integers
and then label the grid elements with the label of the block occupying it in
the packing. In Figure 1, we illustrate one such encoding.

The key to this encoding is that we give requirements by which the proof can
define a monotone function on the grid using these labels only if there is a
feasible packing. To show such a reduction exists, we first define a relation on

7

1

1

1

1

1

1

11

4 4 4 4 4 4

2

2

2

2

3 3 3

3 3 3

3 3 3

1 2 3 4 5 6 7

1

 2

3

 4

 5

6

7

Fig. 1. A 2D Encoding

blocks.

Definition 4 For a block b, the highest corner of b, denoted h(b), is the corner
with the largest coordinates in the bin it is packed with respect to the ≺ relation.
Similarly, the lowest corner of b, denoted l(b), is the corner with the smallest
coordinates.

In our figure, l(1) = (1, 1) and h(1) = (2, 4). We can order blocks by only
considering the relative placement of these two corners.

Definition 5 Let b1 and b2 be two blocks packed in the same bin. Block b1

precedes block b2 in a packing if l(b1) ≺ h(b2).

Note that for a pair of blocks in dimension higher than one it may be the case
that neither of the two blocks precedes the other. This fact along with the
following observation makes this definition interesting.

Observation 6 For two blocks, b1 and b2, such that b1 precedes b2, b1 and b2

overlap if and only if b2 precedes b1.

Surely if b1 precedes b2 and this pair overlaps it must be the case that l(b2) ≺
h(b1). It follows that the precedence relation on blocks is a reflexive antisym-
metric ordering precisely when the packing of the blocks is feasible. Given
such an ordering, it is easy to construct a monotone function.

Lemma 7 Given a feasible packing of a bin with blocks, we can label the blocks
with distinct integers such that when we assign each occupied grid element in
the d-dimensional grid (of the bin) with the label of the block occupying it,
we get a monotone partial function, which can be extended to monotone total
function, on this grid.

PROOF. The relation from Definition 5 gives a relation on the blocks that
is reflexive and antisymmetric. Therefore we can label the blocks according
to this relation such that a block gets a label larger than those of all its
predecessors. This labeling gives us a monotone partial function on the grid. To

8

extend this partial function to a total function, each unoccupied grid element
can be assigned the smallest possible value that precedes it. 2

Now we can describe the proof. The proof will consist of three parts:

(1) A table that will have an entry for each block containing:
(i) the label assigned to the block;
(ii) a pointer to the bin to which the block is assigned; and
(iii) the locations of the two (the lowest and the highest) corners of the

block in this bin.
(2) A permutation enforcer on the blocks and the labels of the blocks.
(3) A d-dimensional grid with dimensions of size N1 × . . .×Nd for each bin

used that labels each grid element with the label of the block occupying
it.

3.2 Testing Multidimensional Bin-Packing Solutions Using Heaviness

We present a verifier protocol for testing the previously described proof format.
We assume a particular heaviness property H and its associated tester. Our
tester will be based on showing that if all the defining corners of a pair of
blocks are heavy, then they cannot overlap.

Protocol. We will define “good” blocks such that all good blocks can be
packed together feasibly. Our notion of good will have the properties that
(i) a good block is actually packed inside a bin such that it is not overlapping
any other good block; and (ii) we can efficiently test a block for being good.
Then, the verifier uses sampling to ensure that at least 1 − ε fraction of the
blocks are good.

Definition 8 The block i with dimensions w = (w1, . . . , wd) is good with
respect to an encoding of a packing and a heaviness property H if it has the
following properties:

• The two corners defining the block in the proof have values inside the bin,
i.e., ~1 ≺ l(i) ≺ h(i) ≺ ~N , where ~N stands for the highest corner of the bin.

• The distance between these corners exactly fits the dimensions of the block,
i.e., w = h(i) − l(i) +~1.

• The grid elements at l(i) and h(i) are heavy according to property H with
respect to the labeling of the grid elements.

• The block is assigned a unique label among the good blocks, that is, it is
honest with respect to the permutation enforcer.

9

Given this definition, we can prove that two good blocks cannot overlap.

Lemma 9 If two blocks overlap in a packing, then both of the blocks cannot
be good with respect to this packing.

PROOF. Note that when two blocks overlap, according to Definition 5, they
must both precede each other, that is, l(b1) ≺ h(b2) and l(b2) ≺ h(b1). We know,
by the definition of a heaviness property, that two comparable heavy points
on the grid do not violate monotonicity. Since both defining corners of a good
block must have the same label, either l(b1) and h(b2), or l(b2) and h(b1) violates
monotonicity. 2

Corollary 10 There is a feasible packing of all the good blocks in an encoding
using k bins.

The verifier’s protocol can be given as follows:

Repeat O(1
ε
) times:

Choose a block b uniformly at random
Test if block b is good by

checking ~1 ≺ l(b) ≺ h(b) ≺ ~N and wb = h(b) − l(b) +~1,
where wb is the dimension of b,

checking unique labeling for b using permutation enforcer, and
performing heaviness tests for l(b) and h(b).

The verifier, by testing O(1/ε) randomly chosen blocks, ensures that at least
(1− ε) fraction of the blocks are good. Hence, we get the following theorem.

Theorem 11 There is an O((1/ε)T (N, d))-time, O(nN d)-space, ε-approximate
lower bound PCP for the d-dimensional bin packing problem where T (N, d) is
the running time for a heaviness tester on D = [N1]×· · ·× [Nd], N = maxi Ni,
and n is the number of blocks in the input.

3.3 A Compressed Representation of a Packing

The previous protocol requires a proof such that the size of the proof depends
on the dimensions Ni of the bins to be filled. We show here how to write a
proof such that the size of the proof depends only on the number of blocks
to be packed. In the protocol from the previous section the verifier calls the
heaviness tester only on grid elements that correspond to the lowest or the
highest corners of the blocks. We use this observation to get a compressed
proof.

10

The proof uses a set of distinguished coordinate values Sk for each dimension
k = 1, . . . , d. Here is how the Sk’s are constructed. Each set Sk is initially
empty. For each block i and for the lowest corner, l(i) = (c1, . . . , cd), and the
highest corner, h(i) = (e1, . . . , ed), of block i, Sk ← Sk ∪ {ck} ∪ {ek}. After all
the blocks are processed, |Sk| ≤ 2n. The compressed grid will be a sublattice
of D with each dimension restricted to these distinguished coordinates, that
is the set {〈x1, . . . , xd〉|xk ∈ Sk}. This grid will contain in particular all the
corners of all the blocks and the size of the grid will be at most O((2n)d).
The fact that this new compressed encoding is still easily testable does not
trivially follow from the previous section. In particular, we must additionally
verify that the compression is valid.

The proof consists of four parts. First the proof from the previous section,
which we refer to as the original grid, is implicitly defined. The new proof
consists of a table containing the compressed grid. In each axis, the coordinates
are labeled by [1, . . . , 2n] and a lookup-table (of length 2n) is provided for each
axis which maps compressed grid coordinates to original grid coordinates.
Finally a list of blocks with pointers to the compressed grid, and a permutation
enforcer as before is provided. In Figure 2 , we give the compressed encoding
of the packing from Figure 1.

1

1

1

1

1

1

11 2

2

2

2

3

3

3

3

4 4 4 4

1 2 3 4 5

1

 2

3

 4

5

 6

Fig. 2. A Compressed Encoding

Protocol. By enabling the compressed proof to contain only a portion of
the proof from the first protocol, we provide more opportunities for a cheat-
ing proof. For example, even if the compressed proof uses the correct set of
hyperplanes for the compression, it may reorder them in the compressed grid
to hide overlapping blocks. The conversion tables we introduced to our proof
will allow the verifier to detect such cheating.

The definition of a good block is extended to incorporate the lookup tables. In
a valid proof, the lookup tables would each define a monotone function on [2n].
We will check that the entries in the lookup tables which are used in locating
a particular block are heavy in their respective lookup tables. Additionally we
test a that a block is good with respect to Definition 8 in the compressed

11

grid. 3 A block which passes both phases is a good block.

Our new protocol is then exactly as before. The verifier selects O(1/ε) blocks
and tests that each is good, and if so, concludes that at least 1− ε fraction of
the blocks are good.

Correctness. Any two good blocks do not overlap in the compressed grid,
by applying Lemma 9. Furthermore, since the labels of good blocks in the
lookup table are heavy, it follows that two good blocks do not overlap in the
original grid either. Certainly, since the corresponding values in the lookup
table form a monotone sequence, the proof could not have re-ordered the
columns during compression to untangle an overlap of blocks. It also follows
from the earlier protocol that good blocks are the right size and are uniquely
presented.

Theorem 12 There is an O((1/ε)T (n, d))-time, O((2n)d+1)-space,
ε-approximate lower bound PCP for the d-dimensional bin-packing problem,
where T (n, d) is the running time for a heaviness tester on D = [2n]d and n
is the number of blocks in the input.

3.4 An Extension to Recursive Bin Packing

At the simplest level the recursive bin-packing problem takes as input a set
of blocks, a list of container sizes (of unlimited quantity), and a set of bins.
Instead of placing the blocks directly in the bins, a block must first be fit
into a container (along with other blocks) and the containers then packed in
the bin. The goal is to minimize the total number of bins required for the
packing. We can give a protocol by which a proof can convince a verifier that
a good solution exists by applying an extension of our multidimensional bin-
packing tester. In particular, we define a block as good if it passes the goodness
test (with respect to its container) given in Section 3 and furthermore if the
container it is in passes the same goodness test (with respect to the bin).
After O(1/ε) tests we can conclude that most blocks are good and hence that
(1− ε) fraction of the blocks can be feasibly packed. For a k-level instance of
recursive bin packing, therefore, the proof will have k compressed proofs and
O(k/ε) goodness tests will be needed.

3 Except when we test the size of the block, for which we refer to the original
coordinates via the lookup table.

12

3.5 Can Monotonicity Testing Help?

Given the apparent similarities between heaviness testing and monotonicity
testing, it may seem that a monotonicity test could be used to easily implement
our multidimensional bin-packing protocol. The obvious approach, though,
does not seem to work. The complications arise because we are embedding n
blocks in a (2n)d sized domain. If a monotonicity tester can determine that
the domain of our compressed proof has (1 − ε′) of its points in a monotone
subset, we can only conclude that at least n− ε′ · (2n)d boxes are “good”, by
distributing the bad points among the corners of the remaining boxes. Thus
a direct application of monotonicity testing on this domain seems to need an
error parameter of O(ε/(nd)). If the running time of the monotonicity tester
is linear in ε then this approach requires at least O((2n)d−1) time.

4 Tests for Two Heaviness Properties

In this section, we define two separate heaviness properties and provide their
corresponding tests for functions over a domain isomorphic to an integer lat-
tice. Both of these heaviness properties and their tests are generalizations of
the results from [5] in a one-dimensional domain. We denote the domain of
the functions as D = [1, . . . , n]d. The range R of the functions can be any
partial order. Both tests which follow can determine that a point is heavy in
O((2 logn)d) time. These running times yield efficient bin packing tests for
small values of d as described in Section 3.

4.1 The First Heaviness Property

In order to define our first heaviness property, we consider a set of logd n care-
fully chosen neighborhoods around a point x. At a high level, the point x has
this property if for a large fraction of points y in each of these neighborhoods,
x and y are in monotone order. We are able to show from this that for any two
points x ≺ x′ such that x, x′ both have the property, two neighborhoods can
be found, one around each point, whose intersection contains a point z with
the property that x ≺ z ≺ x′ and f(x) ≤ f(z) ≤ f(x′). Hence this defines a
valid heaviness property.

We consider the following graph induced by a function f over a partially or-
dered domain: The vertices in the graph correspond to points of the domain,
while edges are inserted between points that are monotonically ordered ac-
cording to f .

13

Definition 13 The graph Gf induced by a function f : D → R is a directed
graph where V (Gf) = D and E(Gf) = {(x, y)|x ≺ y and f(x) ≤ f(y)}.

Given this graph Gf , a point x, and a deviation h, we are interested in the
number of points in the intervals [x, x + h] and [x− h, x] which are monoton-
ically ordered with x according to f . In terms of Gf we want to know how
many of the out-edges originating at x terminate in the subgraph of points
[x, x+h] and how many of the in-edges to x originate in the subgraph of points
[x− h, x]. We define these points as functions of x and h.

Definition 14 Γ+
h1,...,hn

(x) is the set of points y in the domain such that x ≺ y,
y ≺ x + h, and (x, y) ∈ E(Gf). Similarly, Γ−

h1,...,hn
(x) is the set of points y in

the domain such that y ≺ x, x ≺ y + h, and (y, x) ∈ E(Gf).

Using these definitions, we can formalize the notion of a heavy point. Intu-
itively, these heavy points have lots of incoming and outgoing arcs from and
to every neighborhood around them.

Definition 15 A point x in the graph Gf (or, equivalently, in D) is η-good

if for all i, all integers ki, 0 ≤ ki ≤ log xi, |Γ
−

2k1 ,...,2kd
(x)| ≥ η2

∑
i
ki, and for all

integers ki, 0 ≤ ki ≤ log(n− xi), |Γ
+
2k1 ,...,2kd

(x)| ≥ η2
∑

i
ki.

Note that our definition of η-good requires that x satisfy requirements over
O(logd n) subsets of D. Now, we will instantiate η in the definition above to
obtain a heaviness property H1 over D.

Definition 16 A point x ∈ D has property H1 if x is η-good for η = 1−2−d−1.

The following lemma states that H1 is indeed a heaviness property.

Lemma 17 Property H1 is a heaviness property, that is, if x ≺ y and x and
y have property H1, then (x, y) ∈ E(Gf).

PROOF. Fix x ≺ y. Consider the d-dimensional rectangular hyperprism of
which x and y are the opposite endpoints, i.e., all points z such that xi ≤
zi ≤ yi for all i. Let I denote the space of points in D within this closed
hyperprism. Let ∆i = yi − xi denote the lengths of each of the axes of this
hyperprism. Define mi so that ∆i ≤ mi < 2∆i and mi = 2ki for some integer
ki. Now extend I to a new hyperprism S such that the lengths of the axes of
S are given by the set of mi’s defined above, that is, intuitively “round up”
each side length to the next power of two. By the definitions of H1 and of S,
we can now lower bound the number of edges from x into I in terms of |S|.
Fix η = 1− 2−d−1. We can bound |Γ+

m1,...,md
(x) ∩ I| such that

|Γ+
m1,...,md

(x) ∩ I| ≥ η|S| − |S \ I| = η|S| − |S|+ |I| = |I| − (1− η)|S|,

14

and similarly,

|Γ−

m1,...,md
(y) ∩ I| ≥ |I| − (1− η)|S|.

If we can show that |Γ+
m1,...,md

(x)∩ I|+ |Γ−

m1,...,md
(y)∩ I| > |I| then the pigeon-

hole principle can be applied to find some vertex z with (x, z) ∈ E(Gf) and
(z, y) ∈ E(Gf). By transitivity, we would have shown that (x, y) ∈ E(Gf).
We solve the equation given above to get

2 (|I| − (1− η)|S|) > |I|

if and only if

|I| > 2(1− η)|S| = 2(2−(d+1))|S| = 2−d|S|.

This last line is true since |I| and |S| are d-dimensional and every side of S is
less than twice the length of the corresponding side in I. 2

Now we can present the corresponding heaviness test. On input x, our test
compares x to several random elements y selected from carefully chosen neigh-
borhoods around x. It is tested that x is in order with a large fraction of points
in each of these neighborhoods. The test is shown in Figure 3.

HeavyTest(f, x, δ)
for k1 ← 0 . . . log x1,

...
kd ← 0 . . . log xd do

repeat t = O(2d log(1/δ)) times
choose hi ∈R [1, 2ki] 1 ≤ i ≤ d
h← (h1, . . . , hd)
if (f(x) < f(x− h)) return FAIL

for kd ← 0 . . . log(n− x1),
...
kd ← 0 . . . log(n− xd) do

repeat t times
choose hi ∈R [1, 2ki] 1 ≤ i ≤ d
h← (h1, . . . , hd)
if (f(x) > f(x + h)) return FAIL

return PASS

Fig. 3. Algorithm HeavyTest

Theorem 18 Algorithm HeavyTest is a heaviness tester for property H1 with
query complexity O(log(1/δ)2d logd n) and error probability δ.

15

PROOF. Given a function f over D and a point x, this algorithm con-
structs O(logd n) neighborhoods around x and explicitly checks (by sampling
O(2d log(1/δ)) times) that x have property H1. For a monotone function f ,
it is clear that the algorithm always outputs PASS. For a point x that does
not have property H1, there must be a neighborhood of x that violates the
heaviness condition. When the algorithm tests this neighborhood of x, it will
sample a point y such that x and y are not in monotone order with probability
at least 1− δ. 2

4.2 The Second Heaviness Property

In this section, we present a recursively-defined heaviness property. Namely,
a point x is heavy in dimension d if a certain set of projections of x onto
hyperplanes are each heavy in dimension d−1. We are able to use the heaviness
of these projection points to conclude that d-dimensional heavy points are
appropriately ordered.

Given a d-dimensional hypercube C, consider a subdividing operation φ which
maps C into 2d congruent subcubes. This operation passes d hyperplanes
parallel to each of the axes of the hypercube through the center. We call each
of these dividing hyperplanes a bisector. We also define Φx(C) as the unique
S ∈ φ(C) that contains x. This function is also a notational convenience which
identifies the subcube a point lies in after such a division. For nonnegative
integer r, we recursively define Φr

x(C) = Φx(Φ
r−1
x (C)) where Φ1

x = Φx.

Now consider any two distinct points in the hypercube, x and y. We wish to
apply φ to the cube repeatedly until x and y are no longer in the same cube.
To quantify this we define a new function % : C2 → Z such that %(x, y) = r
only when Φr

x(C) = Φr
y(C) and Φr+1

x (C) 6= Φr+1
y (C). That is, the (r + 1)st

composition of Φ on C separates x from y.

Definition 19 A point x has property H2 in a domain D = [n]d if the d
perpendicular projections of x onto each bisector of each cube in the series
Φx(D), . . . , Φlog n

x (D) of shrinking cubes all have property H2 in dimension d−
1. The domains for these recursive tests are the respective bisectors of the
cubes. When d = 1, point x have property H2 if it is 3

4
-good (according to

Definition 15, Section 4.1).

We can now present the corresponding heaviness test for a point. Let C be a
d-dimensional integer hypercube with side length n. Let x be some point in
C. Construct the sequence {S1, . . . , Sk} = {Φx(C), Φ2

x(C), . . . , Φk
x(C)} where

k = dlog(n)e. Note that Sk = x. At each cube Sj, perform the following test: (i)
Compute the d perpendicular projections {p1, . . . , pd} of x onto the d bisectors
of Sj−1; (ii) Verify that f is consistent with a monotone function on each of

16

the d pairs (x, pi); (iii) If d > 1, then recursively test that each of the points
pi have property H2 over the reduced domain of its corresponding bisector in
Sj−1. If d = 1, we use the heaviness test of Section 4.1. The algorithm is shown
in Figure 4.

RecursiveHeavyTest(C, f, x, δ)
let d = dimension of C
if d = 1

return HeavyTest(f, x, δ)
else

S0 = C, Si = Φi
x(C) for i = 1, . . . , log n

for i = 1, . . . , log n
{p1, . . . , pd} = projections of x onto the bisectors of Si−1

for k = 1, . . . , d
Verify that x and pk are in monotone order
C ′ ← the bisector of Si−1 containing pk

RecursiveHeavyTest(C ′ , f, pk, δ)
return PASS

Fig. 4. Algorithm RecursiveHeavyTest

Lemma 20 Property H2 is a heaviness property.

PROOF (by induction on d). Let r = %(x, y). Let S = Φr
x(C). Let Sx =

Φr+1
x (C) and Sy = Φr+1

y (C). There is at least one bisector of S which separates
x and y. This plane also defines a face of Sx and of Sy. By induction, we
know the projections of x and y onto these faces have property H2. Since y
dominates x in every coordinate, we know that px ≺ py. Inductively, we can
conclude from the heaviness of the projection points that f(px) ≤ f(py) . Since
we have previously tested that f(x) ≤ f(px) and f(py) ≤ f(y), we conclude
f(x) ≤ f(y). 2

Running Time Analysis Let Rd(n) be the number of times that Recur-
siveHeavyTest calls HeavyTest algorithm when testing that a point of the
function f : D → R have property H2, then we can show

Lemma 21 For all d ≥ 1, for sufficiently large n, Rd(n) ≤ d logd−1(n).

PROOF. We use proof by induction. For the case d = 1, we call HeavyTest
algorithm directly. So, clearly, R1(n) = 1. We now assume Rd(n) ≤ d logd−1(n),
and prove Rd+1(n) is as claimed. By expanding Rd+1(n) recursively and using∑m

i=1 ik ≤ (m + 1)k+1/(k + 1), we get

17

Rd+1(n) = (d + 1)(Rd(n) + Rd(n/2) + · · ·+ Rd(2) + Rd(1))

≤ (d + 1)
log n∑

i=1

d logd−1(2i)

= d(d + 1)
log n∑

i=1

id−1

≤ d(log(n) + 1)d

≤ (d + 1) logd(n)

for log n ≥ d2. 2

Theorem 22 Algorithm RecursiveHeavyTest is a heaviness tester for the heav-
iness property in Definition 19 with query complexity O(d logd(n) log(1/δ)) and
error probability δ.

PROOF. It is clear from the properties of HeavyTest that RecursiveHeavyTest
always outputs PASS when the input function f is monotone. For a point x
that does not have property H2, there must exist a projection x′ of x that
does not have property H2 in one dimension. Since HeavyTest will be called
on x′, RecursiveHeavyTest outputs FAIL with probability at least 1− δ. Since
the query complexity of HeavyTest in one dimension is O(log(1/δ) log(n)), the
query complexity of RecursiveHeavyTest is O(d logd(n) log(1/δ)) by Lemma 21. 2

Acknowledgements

We thank the anonymous referees for their helpful suggestions on improving
the presentation of the paper.

References

[1] L. Babai, L. Fortnow, C. Lund, Non-deterministic exponential time has two-
prover interactive protocols, Computational Complexity 1 (1991) 3–40.

[2] L. Babai, L. Fortnow, L. A. Levin, M. Szegedy, Checking computations in
polylogarithmic time, in: Proceedings of the 23rd Annual ACM Symposium on
Theory of Computing, New Orleans, Louisiana, 1991, pp. 21–31.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, M. Szegedy, Proof verification and the
hardness of approximation problems, Journal of the ACM 45 (3) (1998) 501–555.

[4] F. Ergun, R. Kumar, R. Rubinfeld, Fast approximate probabilistically checkable
proofs, Information and Computation 189 (2) (2004) 135–159.

18

[5] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, M. Viswanathan, Spot-checkers,
Journal of Computer and System Sciences 60 (3) (2000) 717–752.

[6] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron, Testing monotonicity, in:
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer
Science, Los Alamitos, CA, 1998, pp. 426–435.

[7] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhodnikova, A. Samorodnitsky,
Improved testing algorithms for monotonicity, in: D. Hochbaum, K. Jensen, J. D.
Rolim, A. Sinclair (Eds.), Randomization, Approximation, and Combinatorial
Optimization, Vol. 1671, LNCS, Berkeley, California, 1999, pp. 96–108.

[8] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld,
A. Samorodnitsky, Monotonicity testing over general poset domains, in:
Proceedings of the 34th Annual ACM Symposium on Theory of Computing,
Montréal, Québec, Canada, 2002, pp. 474–483.

[9] S. Halevy, E. Kushilevitz, Distribution-free property testing, in: RANDOM:
International Workshop on Randomization and Approximation Techniques in
Computer Science, Vol. 1671, LNCS, Princeton, NJ, 2003, pp. 302–317.

19

