
Testing that distributions are close∗

Tuğkan Batu† Lance Fortnow‡ Ronitt Rubinfeld§ Warren D. Smith¶

Patrick White‖

October 12, 2005

Abstract

Given two distributions over an n element set, we wish to check whether these distri-
butions are statistically close by only sampling. We give a sublinear algorithm which uses
O(n2/3ε−4 log n) independent samples from each distribution, runs in time linear in the sample
size, makes no assumptions about the structure of the distributions, and distinguishes the cases

when the distance between the distributions is small (less than max(ε2

32 3
√

n
, ε

4
√

n
)) or large (more

than ε) in L1-distance. We also give an Ω(n2/3ε−2/3) lower bound.
Our algorithm has applications to the problem of checking whether a given Markov process

is rapidly mixing. We develop sublinear algorithms for this problem as well.

∗A preliminary version of this paper appeared in the 41st Symposium on Foundations of Computer Science, 2000,
Redondo Beach, CA.

†Department of Computer and Information Science, University of Pennsylvania, PA, 19104.
batu@saul.cis.upenn.edu. This work was partially supported by ONR N00014-97-1-0505, MURI, NSF Career
grant CCR-9624552, and an Alfred P. Sloan Research Award.

‡NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. fortnow@research.nj.nec.com
§NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. ronitt@research.nj.nec.com
¶NEC Research Institute, 4 Independence Way, Princeton, NJ 08540. wds@research.nj.nec.com
‖Department of Computer Science, Cornell University, Ithaca, NY 14853. white@cs.cornell.edu.This work was

partially supported by ONR N00014-97-1-0505, MURI, NSF Career grant CCR-9624552, and an Alfred P. Sloan
Research Award.

1 Introduction

Suppose we have two distributions over the same n element set, and we want to know whether they
are close to each other in L1-norm. We assume that we know nothing about the structure of the
distributions and that the only allowed operation is independent sampling. The naive approach
would, for each distribution, sample enough elements to approximate the distribution and then
compare these approximations. Theorem 25 in Section 3.4 shows that the naive approach requires
at least a linear number of samples.

In this paper, we develop a method of testing that the distance between two distributions
is at most ε using considerably fewer samples. If the distributions have L1-distance at most
max(ε2

32 3
√

n
, ε

4
√

n
) then the algorithm will accept with probability at least 1 − δ. If the distribu-

tions have L1-distance more than ε then the algorithm will accept with probability at most δ. The
number of samples used is O(n2/3ε−4 log n log 1

δ). We give an Ω(n2/3ε−2/3) lower bound for testing
L1-distance.

Our test relies on a test for the L2-distance, which is considerably easier to test: we give an
algorithm that uses a number of samples which is independent of n. However, the L2-distance
does not in general give a good measure of the closeness of two distributions. For example, two
distributions can have disjoint support and still have small L2-distance. Still, we can get a very
good estimate of the L2-distance and then we use the fact that the L1-distance is at most

√
n times

the L2-distance. Unfortunately, the number of queries required by this approach is too large in
general. Because of this, our L1-test is forced to distinguish two cases.

For distributions with small L2-norm, we show how to use the L2-distance to get a good ap-
proximation of the L1-distance. For distributions with larger L2-norm, we use the fact that such
distributions must have elements which occur with relatively high probability. We create a filtering
test that estimates the L1-distance due to these high probability elements, and then approximates
the L1-distance due to the low probability elements using the test for L2-distance. Optimizing the
notion of “high probability” yields our O(n2/3ε−4 log n log 1

δ) algorithm. The L2-distance test uses
O(ε−4 log(1/δ)) samples.

Applying our techniques to Markov chains, we use the above algorithm as a basis for construct-
ing tests for determining whether a Markov chain is rapidly mixing. We show how to test whether
iterating a Markov chain for t steps causes it to reach a distribution close to the stationary distri-
bution. Our testing algorithm works by following Õ(tn5/3) edges in the chain. When the Markov
chain is represented in a convenient way (such a representation can be computed in linear time
and we give an example representation in Section 4), this test remains sublinear in the size of a
dense enough Markov chain for small t. We then investigate two notions of being close to a rapidly
mixing Markov chain that fall within the framework of property testing, and show how to test that
a Markov chain is close to a Markov chain that mixes in t steps by following only Õ(tn2/3) edges.
In the case of Markov chains that come from directed graphs and pass our test, our theorems show
the existence of a directed graph that is close to the original one and rapidly mixing.

Related Work Our results fall within the various frameworks of property testing [26, 16, 17, 9,
25]. A related work of Kannan and Yao [21] outlines a program checking framework for certifying
the randomness of a program’s output. In their model, one does not assume that samples from the
input distribution are independent.

There is much work on the problem estimating the distance between distributions in data
streaming models where space is limited rather than time (cf. [14, 2, 10, 12]). Another line of work
[5] estimates the distance in frequency count distributions on words between various documents,

1

where again space is limited.
In an interactive setting, Sahai and Vadhan [27] show that given distributions p and q, generated

by polynomial-size circuits, the problem of distinguishing whether p and q are close or far in L1-
norm, is complete for statistical zero-knowledge.

There is a vast literature on testing statistical hypotheses. In these works, one is given examples
chosen from the same distribution out of two possible choices, say p and q. The goal is to decide
which of two distributions the examples are coming from. More generally, the goal can be stated
as deciding which of two known classes of distributions contains the distribution generating the
examples. This can be seen to be a generalization of our model as follows: Let the first class of
distributions be the set of distributions of the form q × q. Let the second class of distributions be
the set of distributions of the form q1 × q2 where the L1 difference of q1 and q2 is at least ε. Then,
given examples from two distributions p1, p2, create a set of example pairs (x, y) where x is chosen
according to p1 and y according to p2. Bounds and an optimal algorithm for the general problem
for various distance measures are given in [6, 23, 7, 8, 22]. None of these give sublinear bounds in
the domain size for our problem. The specific model of singleton hypothesis classes is studied by
Yamanishi [31].

Goldreich and Ron [18] give methods allowing testing that the L2-distance between a given
distribution and the uniform distribution is small in time O(

√
n). Their “collision” idea underlies

the present paper. Based on this, they give a test which they conjecture can be used for testing
whether a regular graph is close to being an expander, where by close they mean that by changing
a small fraction of the edges they can turn it into an expander. Their test is based on picking a
random node and testing that random walks from this node reach a distribution that is close to
uniform. Our tests are based on similar principles, but we do not prove their conjecture. Mixing
and expansion are known to be related [28], but our techniques only apply to the mixing properties
of random walks on directed graphs, since the notion of closeness we use does not preserve the
symmetry of the adjacency matrix. In another work, Goldreich and Ron [17] show that testing
that a graph is close to an expander requires Ω(n1/2) queries.

The conductance [28] of a graph is known to be closely related to expansion and rapid-mixing
properties of the graph [20][28]. Frieze and Kannan [13] show, given a graph G with n vertices and

α, one can approximate the conductance of G to within additive error α in time O(n2Õ(1/α2)). Their
techniques also yield an O(2poly(1/ε)) time test which determines whether an adjacency matrix of a
graph can be changed in at most ε fraction of the locations to get a graph with high conductance.
However, for the purpose of testing whether an n-vertex, m-edge graph is rapid mixing, we would
need to approximate its conductance to within α = O(m/n2); thus only when m = Θ(n2) would it
run in O(n) time.

It is known that mixing [28, 20] is related to the separation between the two largest eigenvalues
[3]. Standard techniques for approximating the eigenvalues of a dense n × n matrix run in Θ(n3)
flops and consume Θ(n2) words of memory [19]. However, for a sparse n×n symmetric matrix with
m nonzero entries, n ≤ m, “Lanczos algorithms” [24] accomplish the same task in Θ(n[m + log n])
flops, consuming Θ(n+m) storage. Furthermore, it is found in practice that these algorithms can be
run for far fewer, even a constant number, of iterations while still obtaining highly accurate values
for the outer and inner few eigenvalues. Our test for rapid mixing of a Markov chain runs more
slowly than the algorithms that are used in practice except on fairly dense graphs (m � tn5/3 log n).
However, our test is more efficient than algorithms whose behavior is mathematically justified at
every sparsity level. Our faster, but weaker, tests of various altered definitions of “rapid mixing,”
are more efficient than the current algorithms used in practice.

2

2 Preliminaries

We use the following notation. We denote the set {1, . . . , n} as [n]. The notation x ∈R [n] denotes
that x is chosen uniformly at random from the set [n]. The L1-norm of a vector ~v is denoted by

|~v| and is equal to
∑n

i=1 |vi|. Similarly the L2-norm is denoted by ‖~v‖ and is equal to
√∑n

i=1 v2
i ,

and ‖~v‖∞ = maxi |vi|. We assume our distributions are discrete distributions over n elements, and
will represent a distribution as a vector ~p = (p1, . . . , pn) where pi is the probability of outputting
element i.

The collision probability of two distributions ~p and ~q is the probability that a sample from each
of ~p and ~q yields the same element. Note that, for two distributions ~p, ~q, the collision probability is
~p·~q =

∑
i piqi. To avoid ambiguity, we refer to the collision probability of ~p and ~p as the self-collision

probability of ~p, note that the self-collision probability of ~p is ‖~p‖2.

3 Testing closeness of distributions

The main goal of this section is to show how to test that two distributions ~p and ~q are close in
L1-norm in sublinear time in the size of the domain of the distributions. We are given access to
these distributions via black boxes which upon a query respond with an element of [n] generated
according to the respective distribution. Our main theorem is:

Theorem 1 Given parameter δ, and distributions ~p, ~q over a set of n elements, there is a test which
runs in time O(ε−4n2/3 log n log 1

δ) such that if |~p−~q| ≤ max(ε2

32 3
√

n
, ε

4
√

n
), then the test outputs pass

with probability at least 1 − δ and and if |~p − ~q| > ε, then the test outputs fail with probability at
least 1 − δ.

In order to prove this theorem, we give a test which determines whether ~p and ~q are close in
L2-norm. The test is based on estimating the self-collision and collision probabilities of ~p and ~q.
In particular, if ~p and ~q are close, one would expect that the self-collision probabilities of each are
close to the collision probability of the pair. Formalizing this intuition, in Section 3.1, we prove:

Theorem 2 Given parameter δ, and distributions ~p and ~q over a set of n elements, there exists a
test such that if ‖~p − ~q‖ ≤ ε/2 then the test passes with probability at least 1 − δ. If ‖~p − ~q‖ > ε
then the test passes with probability less than δ. The running time of the test is O(ε−4 log 1

δ).

The test used to prove Theorem 2 is given in Figure 1. The number of pairwise self-collisions in
set F is the count of i < j such that the ith sample in F is same as the jth sample in F . Similarly,
the number of collisions between Qp and Qq is the count of (i, j) such that the ith sample in Qp is
same as the jth sample in Qq. We use the parameter m to indicate the number of samples needed
by the test to get constant confidence. In order to bound the L2-distance between ~p and ~q by
ε, setting m = O(1

ε4) suffices. By maintaining arrays which count the number of times that each
element is sampled in Fp, Fq, one can achieve the claimed running time bounds. Thus essentially m2

estimations of the collision probability can be performed in O(m) time. Using hashing techniques,
one can achieve O(m) with an expected running time bound matching Theorem 2.

Since |v| ≤ √
n‖v‖, a simple way to extend the above test to an L1-distance test is by setting

ε′ = ε/
√

n. Unfortunately, due to the order of the dependence on ε in the L2-distance test, the
resulting running time is prohibitive. It is possible, though, to achieve sublinear running times if
the input vectors are known to be reasonably evenly distributed. We make this precise by a closer
analysis of the variance of the test in Lemma 5. In particular, we analyze the dependence of the

3

L2-Distance-Test(p, q, m, ε, δ)
Repeat O(log(1

δ)) times

Let Fp = a set of m samples from ~p
Let Fq = a set of m samples from ~q
Let rp be the number of pairwise

self-collisions in Fp.

Let rq be the number of pairwise

self-collisions in Fq.

Let Qp = a set of m samples from ~p
Let Qq = a set of m samples from ~q
Let spq be the number of collisions

between Qp and Qq.

Let r = 2m
m−1

(rp + rq)

Let s = 2spq

If r − s > m2ε2/2 then reject

Reject if the majority of iterations reject,

accept otherwise

Figure 1: Algorithm L2-Distance-Test

variance of s on the parameter b = max(‖~p‖∞, ‖~q‖∞). There we show that given ~p and ~q such that
b = O(n−α), one can call L2-Distance-Test with an error parameter of ε√

n
and achieve running

time of O(ε−4(n1−α/2 + n2−2α)).
We use the following definition to identify the elements with large weights.

Definition 3 An element i is called big with respect to a distribution ~p if pi > 1
n2/3 .

Our L1-distance tester calls the L2-distance testing algorithm as a subroutine. When both
input distributions have no big elements, the input is passed to the L2-distance test unchanged.
If the input distributions have a large self-collision probability, the distances induced respectively
by the big and non-big elements are measured in two steps. The first step measures the distance
corresponding to the big elements via straightforward sampling, and the second step modifies the
distributions so that the distance attributed to the non-big elements can be measured using the
L2-distance test. The complete test is given in Figure 2. The proof of Theorem 1 is described in
Section 3.2.

In Section 3.4 we prove that Ω(n2/3) samples are required for distinguishing distributions that
are far in L1-distance.

3.1 Closeness in L2-norm

In this section we analyze the test in Figure 1 and prove Theorem 2. The statistics rp, rq and
s in Algorithm L2-Distance-Test are estimators for the self-collision probability of ~p, of ~q, and
of the collision probability between ~p and ~q, respectively. If ~p and ~q are statistically close, we
expect that the self-collision probabilities of each are close to the collision probability of the pair.
These probabilities are exactly the inner products of these vectors. In particular if the set Fp

of samples from ~p is given by {F 1
p , . . . , F m

p } then for any pair i, j ∈ [m], i 6= j we have that

Pr
[
F i

p = F j
p

]
= ~p · ~p = ‖~p‖2. By combining these statistics, we show that r − s is an estimator for

the desired value ‖~p − ~q‖2.

4

L1-Distance-Test(p, q, ε, δ)
Sample ~p and ~q for

M = O(max(ε−2, 4)n2/3 log n) times

Let Sp and Sq be the sample sets obtained

by discarding elements that occur less

than (1 − ε/63)Mn−2/3 times

If Sp and Sq are empty

L2-Distance-Test(p, q, O(n2/3/ε4), ε
2
√

n
, δ/2)

else

`p
i = # times element i appears in Sp

`q
i = # times element i appears in Sq

Fail if
∑

i∈Sp∪Sq
|`p

i − `q
i | > εM/8.

Define ~p′ as follows:

sample an element from ~p
if this sample is not in Sp ∪ Sq output it,

otherwise output an x ∈R [n].
Define ~q′ similarly.

L2-Distance-Test(p
′, q′, O(n2/3/ε4), ε

2
√

n
, δ/2)

Figure 2: Algorithm L1-Distance-Test

Since our algorithm samples from not one but two distinct distributions, we must also bound
the variance of the variable s used in the test. One distinction to make between self-collisions
and ~p, ~q collisions is that for the self-collision we only consider samples for which i 6= j, but this
is not necessary for ~p, ~q collisions. We accommodate this in our algorithm by scaling rp and rq

appropriately. By this scaling and from the above discussion we see that E [s] = 2m2(~p · ~q) and
that E [r − s] = m2(‖~p‖2 + ‖~q‖2 − 2(~p · ~q)) = m2(‖~p − ~q‖2).

A complication which arises from this scheme, though, is that the pairwise samples are not
independent. Thus we use Chebyshev’s inequality. That is, for any random variable A, and ρ > 0,
the probability Pr [|A − E[A]| > ρ] is bounded above by Var[A]

ρ2 . To use this theorem, we require a
bound on the variance, which we give in this section.

Our techniques extend the work of Goldreich and Ron [18], where self-collision probabilities are
used to estimate norm of a vector, and the deviation of a distribution from uniform. In particular,
their work provides an analysis of the statistics rp and rq above through the following lemma.

Lemma 4 ([18]) Let A be one of rp or rq in algorithm L2-Distance-Test. Then E [A] =
(m

2

)
·‖~p‖2

and Var [A] ≤ 2(E [A])3/2

The variance bound is more complicated, and is given in terms of the largest weight in ~p and ~q.

Lemma 5 There is a constant c such that Var [r − s] ≤ c(m3b2+m2b), where b = max(‖~p‖∞, ‖~q‖∞).

Proof: Let F be the set {1, . . . ,m}. For (i, j) ∈ F × F , define the indicator variable Ci,j = 1 if
the ith element of Qp and the jth element of Qq are the same. Then the variable from the algorithm
spq =

∑
i,j Ci,j. Also define the notation C̄i,j = Ci,j − E [Ci,j].

Now Var
[∑

F×F Ci,j
]
= E

[
(
∑

F×F C̄i,j)
2
]
= E

[∑
i,j(C̄i,j)

2 + 2
∑

(i,j)6=(k,l) C̄i,jC̄k,l

]
≤ m2(~p ·~q)+

2E
[∑

(i,j)6=(k,l) C̄i,jC̄k,l

]
.

5

To analyze the last expectation, we use two facts. First, it is easy to see, by the definition of
covariance, that E

[
C̄i,jC̄k,l

]
≤ E [Ci,jCk,l]. Secondly, we note that Ci,j and Ck,l are not independent

only when i = k or j = l. Expanding the sum we get

E

∑

(i,j),(k,l)∈F×F

(i,j)6=(k,l)

C̄i,jC̄k,l

= E

∑

(i,j),(i,l)∈F×F

j 6=l

C̄i,jC̄i,l +
∑

(i,j),(k,j)∈F×F

i6=k

C̄i,jC̄k,j

≤ E

∑

(i,j),(i,l)∈F×F

j 6=l

Ci,jCi,l +
∑

(i,j),(k,j)∈F×F

i6=k

Ci,jCk,j

≤ cm3
∑

`∈[n]

p`q
2
` + p2

`q` ≤ cm3b2
∑

`∈[n]

q` ≤ cm3b2

for some constant c. Next, we bound Var [r] similarly to Var [s] using the argument in the proof
of Lemma 4 from [18]. Consider an analogous calculation to the preceding inequality for Var [rp]
(similarly, for Var [rq]) where Xij = 1 for 1 ≤ i < j ≤ m if the ith and jth samples in Fp are the
same. Similarly to above, define X̄ij = Xij − E [Xij]. Then, we get

Var [r] = E

 ∑

1≤i<j≤m

X̄ij

2

=
∑

1≤i<j≤m

E
[
X̄2

i,j

]
+ 4

∑

1≤i<j<k≤m

E
[
X̄i,jX̄i,k

]

≤
(

m

2

)
·
∑

t∈[n]

p2
t + 4 ·

(
m

3

)
∑

t∈[n]

p3
t

≤ O(m2) · b + O(m3) · b2.

Since variance is additive for independent random variables, we can write Var [r − s] ≤ c(m3b2+
m2b). 2

Now using Chebyshev’s inequality, it follows that if we choose m = O(ε−4), we can achieve an
error probability less than 1/3. It follows from standard techniques that with O(log 1

δ) iterations
we can achieve an error probability at most δ.

Lemma 6 For two distributions ~p and ~q such that b = max(‖~p‖∞, ‖~q‖∞) and m = O((b2 +
ε2
√

b)/ε4), if ‖~p − ~q‖ ≤ ε/2, then L2-Distance-Test(p, q,m, ε, δ) passes with probability at least
1 − δ. If ‖~p − ~q‖ > ε then L2-Distance-Test(p, q,m, ε, δ) passes with probability less than δ. The
running time is O(m log(1

δ)).

Proof: For our statistic A = (r − s) we can say, using Chebyshev’s inequality, that for some
constant k,

Pr [|A − E [A]| > ρ] ≤ k(m3b2 + m2b)

ρ2

6

Then when ‖~p − ~q‖ ≤ ε/2, for one iteration,

Pr [pass] = Pr
[
(r − s) < m2ε2/2

]

≥ Pr
[
|(r − s) − E [r − s] | < m2ε2/4

]

≥ 1 − 4k(m3b2+m2b)
m4ε4

It can be shown that this probability will be at least 2/3 whenever m > c(b2 + ε2
√

b)/ε4 for
some constant c. A similar analysis can be used to show the other direction. 2

3.2 Closeness in L1-norm

The L1-closeness test proceeds in two stages. The first phase of the algorithm filters out big
elements (as defined in Definition 3) while estimating their contribution to the distance |~p−~q|. The
second phase invokes the L2-test on the filtered distribution, with closeness parameter ε

2
√

n
. The

correctness of this subroutine call is given by Lemma 6 with b = n−2/3. With these substitutions,
the number of samples m is O(ε−4n2/3). The choice of threshold n−2/3 for the weight of the big
elements arises from optimizing the running-time trade-off between the two phases of the algorithm.

We need to show that by using a sample of size O(ε−2n2/3 log n), we can estimate the weights
of the big elements to within a multiplicative factor of O(ε).

Lemma 7 Let ε ≤ 1/2. In L1-Distance-Test, after performing M = O(n2/3 log n
ε2) samples from a

distribution ~p, we define p̄i = `p
i /M . Then, with probability at least 1− 1

n , the following hold for all

i: (1) if pi ≥ ε2n−2/3 then |p̄i − pi| < ε
63 max(pi, n

−2/3), (2) if pi < ε2n−2/3, p̄i < (1 − ε/63)n−2/3

and |p̄i − pi| < pi/32.

Proof: We analyze three cases; we use Chernoff bounds to show that for each i, with prob-
ability at least 1 − 1

n2 , the following holds: (1a) If pi > n−2/3 then |p̄i − pi| < εpi/63. (1b) If

ε2n−2/3 < pi ≤ n−2/3 then |p̄i − pi| < εn−2/3/63. (2) If pi < ε2n−2/3 then p̄i < 3ε2n−2/3. Since, for
ε ≤ 1/2, 3ε2 ≤ (1 − ε/63). Another application of Chernoff bounds gives us Pr[|p̄i − pi| > pi/32] ≤
1/n−2. The lemma follows. 2

Once the big elements are identified, we use the following fact to prove the gap in the distances
of accepted and rejected pairs of distributions.

Fact 8 For any vector v, ‖v‖2 ≤ |v| · ‖v‖∞.

Theorem 9 L1-Distance-Test passes distributions ~p, ~q such that |~p − ~q| ≤ max(ε2

32 3√n
, ε

4
√

n
),

and fails when |~p − ~q| > ε. The error probability is δ. The running time of the whole test is
O(ε−4n2/3 log n log(1

δ)).

Proof: Suppose items (1) and (2) from Lemma 7 hold for all i, and for both ~p and ~q. By Lemma 7,
this event happens with probability at least 1 − 2

n .
Let S = Sp ∪ Sq. By our assumption, all the big elements of both ~p and ~q are in S, and no

element with weight less than ε2n−2/3 (in either distribution) is in S.
Let ∆1 be the L1-distance attributed to the elements in S. Let ∆2 = |~p′ − ~q′| (in the case that

S is empty, ∆1 = 0, ~p = ~p′ and ~q = ~q′).
Notice that ∆1 ≤ |~p − ~q|. We can show that ∆2 ≤ |~p − ~q|, and |~p − ~q| ≤ 2∆1 + ∆2.
The algorithm estimates ∆1 in a brute-force manner to within an additive error of ε/9. By

Lemma 7, the error on the ith term of the sum is bounded by ε
63(max(pi, n

−2/3)+max(qi, n
−2/3)) ≤

7

ε
63(pi + qi + 2n−2/3). Consider the sum over i of these error terms. Notice that this sum is over at

most 2n2/3/(1 − ε/63) elements in S. Hence, the total additive error is bounded by

∑

i∈S

ε

63
(pi + qi + 2n−2/3) ≤ ε

63
(2 + 4/(1 − ε/63)) ≤ ε/9.

Note that max(‖~p′‖∞, ‖~q′‖∞) < n−2/3 + n−1. So, we can use the L2-Distance-Test on ~p′ and
~q′ with m = O(ε−4n2/3) as shown by Lemma 6.

If |~p − ~q| < ε2

32 3
√

n
then so are ∆1 and ∆2. The first phase of the algorithm clearly passes. By

Fact 8, ‖~p′ − ~q′‖ ≤ ε
4
√

n
. Therefore, the L2-Distance-Test passes. Similarly, if |~p − ~q| > ε then

either ∆1 > ε/4 or ∆2 > ε/2. Either the first phase of the algorithm or the L2-Distance-Test will
fail.

To get the running time, note that the time for the first phase is O(ε−2n2/3 log n) and that the
time for L2-Distance-Test is O(n2/3ε−4 log 1

δ). It is easy to see that our algorithm makes an error
either when it makes a bad estimation of ∆1 or when L2-Distance-Test makes an error. So, the
probability of error is bounded by δ. 2

We believe we can eliminate the log n term in Theorem 1 (and Theorem 9). Instead of requiring
that we correctly identify the big and small elements, we allow some misclassifications. The filtering
test should not misclassify very many very big and very small elements and a good analysis should
show that our remaining tests will not have significantly different behavior.

The next theorem improves this result by looking at the dependence of the variance calculation
in Section 3.1 on L∞ norms of the distributions separately.

Theorem 10 Given two black-box distributions p,q over [n], with ‖p‖∞ ≤ ‖q‖∞, there is a test

requiring O((n2‖p‖∞‖q‖∞ε−4 +
√

n‖p‖∞ε−2) log(1/δ)) samples that (1) if |p−q| ≤ ε2
3
√

n
, it outputs

PASS with probability at least 1 − δ and (2) if |p− q| > ε, it outputs FAIL with probability at least
1 − δ.

Finally, by similar methods to the proof of Theorem 10 (in conjunction with those of [18]), we
can show the following (proof omitted):

Theorem 11 Given a black-box distribution p over [n], there is a test that takes O(ε−4√n log(n) log (1/δ))
samples, outputs PASS with probability at least 1− δ if p = U[n], and outputs FAIL with probability
at least 1 − δ if |p − U[n]| > ε.

3.3 Characterization of canonical algorithms for testing properties of distribu-

tions

In this section, we characterize canonical algorithms for testing properties of distributions defined
by permutation-invariant functions. The argument hinges on the irrelevance of the labels of the
domain elements for such a function. We obtain this canonical form in two steps, corresponding to
the two lemmas below. The first step makes explicit the intuition that such an algorithm should
be symmetric, that is, the algorithm would not benefit from discriminating among the labels. In
the second step, we remove the use of labels altogether, and show that we can present the sample
to the algorithm in an aggregate fashion.

Characterizations of property testing algorithms have been studied in other settings. For ex-
ample, using similar techniques, Alon et al. [1] show a canonical form for algorithms for testing
graph properties. Later, Goldreich and Trevisan [15] formally prove the result by Alon et al. In

8

a different setting, Bar-Yossef et al. [4] show a canonical form for sampling algorithms that ap-
proximate symmetric functions of the form f : An → B where A and B are arbitrary sets. In the
latter setting, the algorithm is given oracle access to the input vector and takes samples from the
coordinate values of this vector.

Definition 12 (Permutation of a distribution) For a distribution p over [n] and a permuta-
tion π on [n], define π(p) to be the distribution such that for all i, π(p)π(i) = pi.

Definition 13 (Symmetric Algorithm) Let A be an algorithm that takes samples from k dis-
crete black-box distributions over [n] as input. We say that A is symmetric if, once the distributions
are fixed, the output distribution of A is identical for any permutation of the distributions.

Definition 14 (Permutation-invariant function) A k-ary function f on distributions over [n]
is permutation-invariant if for any permutation π on [n], and all distributions (p(1), . . . ,p(k)),

f(p(1), . . . ,p(k)) = f(π(p(1)), . . . , π(p(k))).

Lemma 15 Let A be an arbitrary testing algorithm for a k-ary property P defined by a permutation-
invariant function. Suppose A has sample complexity s(n), where n is the domain size of the dis-
tributions. Then, there exists a symmetric algorithm that tests the same property of distributions
with sample complexity s(n).

Proof: Given the algorithm A, construct a symmetric algorithm A′ as follows: Choose a random
permutation of the domain elements. Upon taking s(n) samples, apply this permutation to each
sample. Pass this (renamed) sample set to A and output according to A.

It is clear that the sample complexity of the algorithm does not change. We need to show that
the new algorithm also maintains the testing features of A. Suppose that the input distributions
(p(1), . . . ,p(k)) have the property P. Since the property is defined by a permutation-invariant
function, any permutation of the distributions maintains this property. Therefore, the permutation
of the distributions should be accepted as well. Then,

Pr
[
A′ accepts (p(1), . . . ,p(k))

]
=

∑

perm. π

1

n!
Pr
[
A accepts (π(p(1)), . . . , π(p(k)))

]
,

which is at least 2/3 by the accepting probability of A.
An analogous argument on the failure probability for the case of the distributions (p(1), . . . ,p(k))

that should be rejected completes the proof. 2

In order to avoid introducing additional randomness in A′, we can try A on all possible permu-
tations and output the majority vote. This change would not affect the sample complexity, and it
can be shown that it maintains correctness.

Definition 16 (Fingerprint of a sample) Let S1 and S2 be multisets of at most s samples taken
from two black-box distributions over [n], p and q, respectively. Let the random variable Cij, for
0 ≤ i, j ≤ s, denote the number of elements that appear exactly i times in S1 and exactly j times
in S2. The collection of values that the random variables {Cij}0≤i,j≤s take is called the fingerprint
of the sample.

For example, let sample sets be S1 = {5, 7, 3, 3, 4} and S2 = {2, 4, 3, 2, 6}. Then, C10 = 2
(elements 5 and 7), C01 = 1 (element 6), C11 = 1 (element 4), C02 = 1 (element 2), C21 = 1
(element 3), and for remaining i, j’s, Cij = 0.

9

Lemma 17 If there exists a symmetric algorithm A for testing a binary property of distributions
defined by a permutation-invariant function, then there exist an algorithm for the same task that
gets as input only the fingerprint of the sample that A takes.

Proof: Fix a canonical order for Cij ’s in the fingerprint of a sample. Let us define the following
transformation on the sample: Relabel the elements such that the elements that appear exactly
the same number of times from each distribution (i.e., the ones that contribute to a single Cij in
the fingerprint) have consecutive labels and the labels are grouped to conform to the canonical
order of Cij ’s. Let us call this transformed sample the standard form of the sample. Since the
algorithm A is symmetric and the property is defined by a permutation-invariant function, such a
transformation does not affect the output of A. So, we can further assume that we always present
the sample to the algorithm in the standard form.

It is clear that given a sample, we can easily write down the fingerprint of the sample. Moreover,
given the fingerprint of a sample, we can always construct a sample (S1, S2) in the standard form
using the following algorithm: (1) Initialize S1 and S2 to be empty, and e = 1, (2) for every Cij

in the canonical order, and for Cij = kij times, include i and j copies of the element e in S1 and
S2, respectively, then increment e. This algorithm shows a one-to-one and onto correspondence
between all possible sample sets in the standard form and all possible {Cij}0≤i,j≤s values.

Consider the algorithm A′ that takes the fingerprint of a sample as input. Next, by using
algorithm from above, algorithm A′ constructs the sample in the standard form. Finally, A′ outputs
what A outputs on this sample. 2

Remark 18 Note that the definition of the fingerprint from Definition 16 can be generalized for
a collection of k sample sets from k distributions for any k. An analogous lemma to Lemma 17
can be proven for testing algorithms for k-ary properties of distributions defined by a permutation-
invariant function. We fixed k = 2 for ease of notation and because we will use this specific case
later.

3.4 A lower bound on sample complexity of testing closeness

In this section, we give a proof of a lower bound on the sample complexity of testing closeness in
L1 distance as a function of the size, denoted by n, of the domain of the distributions.

Theorem 19 Given any algorithm using only o(n2/3) samples from two discrete black-box distri-
butions over [n] for all sufficiently large n, there exist distributions p and q with L1 distance 1 such
that the algorithm will be unable to distinguish the case where one distribution is p and the other
is q from the case where both distributions are p.

Proof: By Lemma 15, we restrict our attention to symmetric algorithms. Fix a testing algorithm
A that uses o(n2/3) samples from each of the input distributions. Next, we define the distributions
p and q from the theorem statement. Note that these distributions do not depend on A.

Let us assume, without loss of generality, that n is a multiple of four and n2/3 is an integer. We
define the distributions p and q as follows: (1) For 1 ≤ i ≤ n2/3, pi = qi = 1

2n2/3 . We call these

elements the heavy elements. (2) For n/2 < i ≤ 3n/4, pi = 2
n and qi = 0. We call these element

the light elements of p. (3) For 3n/4 < i ≤ n, qi = 2
n and pi = 0. We call these elements the light

elements of q. (4) For the remaining i’s, pi = qi = 0.
The L1 distance of p and q is 1. Now, consider the following two cases:

10

Case 1: The algorithm is given access to two black-box distributions: both of which output
samples according to the distribution p.

Case 2: The algorithm is given access to two black-box distributions: the first one out-
puts samples according to the distribution p and the second one outputs samples
according to the distribution q.

We show that a symmetric algorithm with sample complexity o(n2/3) can not distinguish between
these two cases. By Lemma 15, the theorem follows.

When restricted to the heavy elements, both distributions are identical. The only difference
between p and q comes from the light elements, and the crux of the proof will be to show that
this difference will not change the relevant statistics in a statistically significant way. We do this
by showing that the only really relevant statistic is the number of elements that occur exactly
once from each distribution. We then show that this statistic has a very similar distribution when
generated by Case 1 and Case 2, because the expected number of such elements that are light is
much less than the standard deviation of the number of such elements that are heavy.

We would like to have the frequency of each element be independent of the frequencies of the
other elements. To achieve this, we assume that algorithm A first chooses two integers s1 and
s2 independently from a Poisson distribution with the parameter λ = s = o(n2/3). The Poisson
distribution with the positive parameter λ has the probability mass function p(k) = exp(−λ)λk/k!.
Then, after taking s1 samples from the first distribution and s2 samples from the second distribution,
A decides whether to accept or reject the distributions. In the following, we show that A cannot
distinguish between Case 1 and Case 2 with success probability at least 2/3. Since both s1 and s2

will have values larger than s/2 with probability at least 1−o(1) and we will show an upper bound
on the statistical distance of the distributions of two random variables (i.e., the distributions on
the samples), it will follow that no symmetric algorithm with sample complexity s/2 can.

Let Fi be the random variable corresponding to the number of times the element i appears in
the sample from the first distribution. Define Gi analogously for the second distribution. It is well
known that Fi is distributed identically to the Poisson distribution with parameter λ = sr, where
r is the probability of element i (cf., Feller ([11], p. 216). Furthermore, it can also be shown that
all Fi’s are mutually independent. Thus, the total number of samples from the heavy elements and
the total number of samples from the light elements are independent.

Recall the definition of the fingerprint of a sample from Section 3.3. The random variable Cij ,
denotes the number of elements that appear exactly i times in the sample from the first distribution
and exactly j times in the sample from the second distribution. For the rest of the proof, we shall
assume that the algorithm is only given the fingerprint of the sample. The theorem follows by
Lemma 17.

The proof will proceed by showing that the distributions on the fingerprint when the samples
come from Case 1 or Case 2 are indistinguishable. The following lemma shows that with high
probability, it is only the heavy elements that contribute to the random variables Cij for i + j ≥ 3.

Lemma 20 (1) With probability 1 − o(1), at most o(s) of the heavy elements appear at least three
times in the combined sample from both distributions. (2) With probability 1 − o(1), none of the
light elements appear at least three times in the combined sample from both distributions.

Proof: Fix a heavy element i of probability 1
2n2/3 . Recall that Fi and Gi denote the number of

times this element appears from each distribution. The sum of the probabilities of the samples in
which element i appears at most twice is

ρ = exp(−s/n2/3)(1 +
s

n2/3
+

s2

2n4/3
).

11

By using the approximation e−x = 1 − x + x2/2, we can show that 1 − ρ = O(s3/n2). By linearity
of expectation, we expect to have o(s) heavy elements that appear at least three times. For the
light elements, an analogous argument shows that o(1) light elements appear at least three times.
The lemma follows by Markov’s inequality. 2

Let D1 and D2 be the distributions on all possible fingerprints when samples come from Case 1
and Case 2, respectively. The rest of the proof proceeds as follows. We first construct two processes
T1 and T2 that generate distributions on fingerprints such that T1 is statistically close to D1 and T2

is statistically close to D2. Then, we prove that the distributions T1 and T2 are statistically close.
Hence, the theorem follows by the indistinguishability of D1 and D2.

Each process has two phases. The first phase is the same in both processes. They randomly
generate the frequency counts for each heavy element i using the random variables Fi and Gi defined
above. The processes know which elements are heavy and which elements are light, although any
distinguishing algorithm does not. This concludes the first phase of the processes.

In the second phase, process Ti determines the frequency counts of each light element according
to Case i. If any light element is given a total frequency count of at least three during this step,
the second phase of the process is restarted from scratch.

Since the frequency counts for all elements are determined at this point, both process output
the fingerprint of the sample they have generated.

Lemma 21 The output of T1, viewed as a distribution, has L1 distance o(1) to D1. The output of
T2, viewed as a distribution, has L1 distance o(1) to D2.

Proof: The distribution that Ti generates is the distribution Di conditioned on the event that
all light elements appear at most twice in the combined sample. Since this conditioning holds true
with probability at least 1 − o(1) by Lemma 20, |Ti − Di| ≤ o(1). 2

Lemma 22 |T1 − T2| ≤ 1/6.

Proof: By the generation process, the L1 distance between T1 and T2 can only arise from the
second phase. We show that the second phases of the processes do not generate an L1 distance
larger than 1/6.

For any variable Cij of the fingerprint, the number of heavy elements that contribute to Cij is
independent of the number of light elements that contribute to Cij. Let H be the random variable
denoting the number of heavy elements that appear exactly once from each distribution. Let L
be the random variable denoting the number of light elements that appear exactly once from each
distribution. In Case 1, C11 is distributed identically to H+L, whereas, in Case 2, C11 is distributed
identically to H.

Let C def
= {Cij}i,j and C+ def

= C \ {C10, C11, C01, C00}. Since
∑

i,j Cij = n, without loss of
generality, we omit C00 in the rest of the discussion. Define C1∗ =

∑
j C1j and C∗1 =

∑
i Ci1.

We use the notation PrTi [C′] to denote the probability that Ti generates the random variable C ′

(defined on the fingerprint). We will use the fact that for any C+, C1∗, C∗1, PrT1 [C+, C1∗, C∗1] =
PrT2 [C+, C1∗, C∗1] in the following calculation. This fact follows from the conditioning that Ti

generates on the respective Di, namely, the condition that it is only the heavy elements that appear
at least three times. Thus, only the heavy elements contribute to the variables Cij , for i + j ≥ 3,
so the distribution on this part of the fingerprint is identical in both cases. The probability that
a light element contributes to the random variable C20 conditioned on the event that it does not
appear more than twice is exactly the probability that it appears twice from the first distribution.
Therefore, C20 is also identically distributed (conditioned on Cij’s for i+j ≥ 3) in both cases by the

12

fact that the contribution of the light elements to C20 is independent of that of the heavy elements.
An analogous argument applies to C02, C1∗ and C∗1. So, we get

|T1 − T2| =
∑

C
|PrT1 [C] − PrT2 [C]|

=
∑

C+,C1∗,C∗1

PrT1 [C+, C1∗, C∗1]

∑

h,k,l≥0

|PrT1 [(C11, C10, C01) = (h, k, l)|C+, C1∗, C∗1]

− PrT2 [(C11, C10, C01) = (h, k, l)|C+, C1∗, C∗1]|
=

∑

C+,C1∗,C∗1

PrT1 [C+, C1∗, C∗1]

∑

h≥0

|PrT1 [C11 = h|C+, C1∗, C∗1] − PrT2 [C11 = h|C+, C1∗, C∗1]|

=
∑

h≥0

|Pr [H = h] − Pr [H + L = h] |

The third line follows since C10 and C01 are determined once C+, C1∗, C∗1, C11 are determined. In
the rest of the proof, we show that the fluctuations in H dominate the magnitude of L.

Let ξi be the indicator random variable that takes value 1 when element i appears exactly once
from each distribution. Then, H =

∑
heavy i ξi. By the assumption about the way samples are gen-

erated, the ξi’s are independent. Therefore, H is distributed identically to the binomial distribution
on the sum of n2/3 Bernoulli trials with success probability Pr [ξi = 1] = exp(−s/n2/3)(s2/4n4/3).
An analogous argument shows that L is distributed identically to the binomial distribution with
parameters n/4 and exp(−4s/n)(4s2/n2).

As n grows large enough, both H and L can be approximated well by normal distributions.
That is,

Pr [H = h] → 1√
2πStDev [H]

exp(−(h − E [H])2/2Var [H])

as n → ∞. Therefore, by the independence of H and L, H + L is also approximated well by a
normal distribution.

Thus, Pr [H = h] = Ω(1/StDev [H]) over an interval I1 of length Ω(StDev [H]) = Ω(s/n1/3)
centered at E [H]. Similarly, Pr [H + L = h] = Ω(1/StDev [H + L]) over an interval I2 of length
Ω(StDev [H + L]) centered at E [H + L]. Since E [H + L] − E [H] = E [L] = O(s2/n) = o(s/n1/3),
I1 ∩ I2 is an interval of length Ω(StDev [H]). Therefore,

∑

h∈I1∩I2

|Pr [H = h] − Pr [H + L = h] | ≤ o(1)

because for h ∈ I1 ∩ I2, |Pr [H = h] − Pr [H + L = h] | = o(1/StDev [H]). We can conclude that∑
h |Pr [H = h] − Pr [H + L = h] | is less than 1/6 after accounting for the probability mass of H

and H + L outside I1 ∩ I2. 2

The theorem follows by Lemma 21 and Lemma 22. 2

By appropriately modifying the distributions ~a and ~b we can give a stronger version of Theo-
rem 19 with a dependence on ε.

13

Corollary 23 Given any test using only o(n2/3/ε2/3) samples, there exist distributions ~a and ~b of
L1-distance ε such that the test will be unable to distinguish the case where one distribution is ~a
and the other is ~b from the case where both distributions are ~a.

We can get a lower bound of Ω(ε−2) for testing the L2-Distance with a rather simple proof.

Theorem 24 Given any test using only o(ε−2) samples, there exist distributions ~a and ~b of L2-
distance ε such that the test will be unable to distinguish the case where one distribution is ~a and
the other is ~b from the case where both distributions are ~a.

Proof: Let n = 2, a1 = a2 = 1/2 and b1 = 1/2 − ε/
√

2 and b2 = 1/2 + ε/
√

2. Distinguishing
these distributions is exactly the question of distinguishing a fair coin from a coin of bias θ(ε) which
is well known to require θ(ε2) coin flips. 2

The next theorem shows that learning a distribution using sublinear number of samples is not
possible.

Theorem 25 Suppose we have an algorithm that draws o(n) samples from some unknown distri-
bution ~b and outputs a distribution ~c. There is some distribution ~b for which the output ~c is such
that ~b and ~c have L1-distance close to one.

Proof: (Sketch) Let AS be the distribution that is uniform over S ⊆ {1, . . . , n}. Pick S
at random among sets of size n/2 and run the algorithm on AS . The algorithm only learns o(n)
elements from S. So with high probability the L1-distance of whatever distribution the algorithm
output will have L1-distance from AS of nearly one. 2

4 Application to Markov Chains

Random walks on Markov chains generate probability distributions over the states of the chain
which are endpoints of a random walk. We employ L1-Distance-Test , described in Section 3, to
test mixing properties of Markov Chains.

Preliminaries/Notation Let M be a Markov chain represented by the transition probability
matrix M. The uth state of M corresponds to an n-vector ~eu = (0, . . . , 1, . . . , 0), with a one in only
the uth location and zeroes elsewhere. The distribution generated by t-step random walks starting
at state u is denoted as a vector-matrix product ~euM

t.
Instead of computing such products in our algorithms, we assume that our L1-Distance-Test

has access to an oracle, next node which on input of the state u responds with the state v with
probability M(u, v). Given such an oracle, the distribution ~eT

u Mt can be generated in O(t) steps.
Furthermore, the oracle itself can be realized in O(log n) time per query, given linear preprocessing
time to compute the cumulative sums Mc(j, k) =

∑k
i=1 M(j, i). The oracle can be simulated on

input u by producing a random number α in [0, 1] and performing binary search over the uth row
of Mc to find v such that Mc(u, v) ≤ α ≤ Mc(u, v+1). It then outputs state v. Note that when M
is such that every row has at most d nonzero terms, slight modifications of this yield an O(log d)
implementation consuming O(n + m) words of memory if M is n × n and has m nonzero entries.
Improvements of the work given in [30] can be used to prove that in fact constant query time is
achievable with space consumption O(n+m) for implementing next node given linear preprocessing
time.

14

We say that two states u and v are (ε, t)-close if the distribution generated by t-step random
walks starting at u and v are within ε in the L1 norm, i.e. |~euM

t − ~evM
t| < ε. Similarly we say

that a state u and a distribution ~s are (ε, t)-close if |~euM
t − ~s| < ε. We say M is (ε, t)-mixing if all

states are (ε, t)-close to the same distribution:

Definition 26 A Markov chain M is (ε, t)-mixing if a distribution ~s exists such that for all states
u, |~euM

t − ~s| ≤ ε.

For example, if M is (ε, O(log n log 1/ε))-mixing, then M is rapidly-mixing [28]. It can be easily
seen that if M is (ε, t0)-mixing then it is (ε, t) mixing for all t > t0.

We now make the following definition:

Definition 27 The average t-step distribution, ~sM,t of a Markov chain M with n states is the
distribution

~sM,t =
1

n

∑

u

~euM
t.

This distribution can be easily generated by picking u uniformly from [n] and walking t steps from
state u. In an (ε, t)-mixing Markov chain, the average t-step distribution is ε-close to the stationary
distribution. In a Markov chain that is not (ε, t)-mixing, this is not necessarily the case.

Each test given below assumes access to an L1 distance tester L1-Distance-Test(u, v, ε, δ) which
given oracle access to distributions ~eu, ~ev over the same n element set decides whether |~eu−~ev| ≤ f(ε)
or if |~eu − ~ev| > ε with confidence 1 − δ. The time complexity of L1 test is T (n, ε, δ), and f is
the gap of the tester. The implementation of L1-Distance-Test given earlier in Section 3 has gap
f(ε) = ε/(4

√
n), and time complexity T = Õ(1

ε4 n2/3 log 1
δ).

4.1 A test for mixing and a test for almost-mixing

We show how to decide if a Markov chain is (ε, t)-mixing; then we define and solve a natural
relaxation of that problem.

In order to test that M is (ε, t)-mixing, one can use L1-Distance-Test to compare each dis-
tribution ~euM

t with ~sM,t, with error parameter ε and confidence δ/n. The running time is
O(nt·T (n, ε, δ/n)). If every state is (f(ε)/2, t)-close to some distribution ~s, then ~sM,t is f(ε)/2-close
to ~s. Therefore every state is (ε, t)-close to ~sM,t. On the other hand, if there is no distribution that
is (ε, t)-close to all states, then, in particular, ~sM,t is not (ε, t)-close to at least one state. We have
shown

Theorem 28 Let M be a Markov chain. Given L1-Distance-Test with time complexity T (n, ε, δ)
and gap f and an oracle for next node, there exists a test with time complexity O(nt ·T (n, ε, δ/n))
with the following behavior: If M is (f(ε)/2, t)-mixing then Pr [M passes] > 1 − δ; if M is not
(ε, t)-mixing then Pr [M passes] < δ.

For the implementation of L1-Distance-Test given in Section 3 the running time is O(1
ε4 n5/3t log n log 1

δ).
It distinguishes between chains which are ε/(4

√
n) mixing and those which are not ε-mixing. The

running time is sublinear in the size of M if t ∈ o(n1/3/ log(n)).
A relaxation of this procedure is testing that most starting states reach the same distribution

after t steps. If (1 − ρ) fraction of the states u of a given M satisfy |~s − ~euM
t| ≤ ε, then we say

that M is (ρ, ε, t)-almost mixing. By picking O(1/ρ · ln(/δ)) starting states uniformly at random,
and testing their closeness to ~sM,t we have:

15

Theorem 29 Let M be a Markov chain. Given L1-Distance-Test with time complexity T (n, ε, δ)
and gap f and an oracle for next node, there exists a test with time complexity O(t

ρT (n, ε, δρ) log 1
δ)

with the following behavior: If M is (ρ, f(ε)/2, t)-almost mixing then Pr [M passes] > 1 − δ; If M
is not (ρ, ε, t)-almost mixing then Pr [M passes] < δ.

4.2 A Property Tester for Mixing

The main result of this section is a test that determines if a Markov chain’s matrix representation
can be changed in an ε fraction of the non-zero entries to turn it into a (4ε, 2t)-mixing Markov
chain. This notion falls within the scope of property testing [26, 16, 17, 9, 25], which in general
takes a set S with distance function ∆ and a subset P ⊆ S and decides if an elements x ∈ S is in
P or if it is far from every element in P , according to ∆. For the Markov chain problem, we take
as our set S all matrices M of size n×n with at most d non-zero entries in each row. The distance
function is given by the fraction of non-zero entries in which two matrices differ, and the difference
in their average t-step distributions.

Definition 30 Let M1 and M2 be n-state Markov chains with at most d non-zero entries in each
row. Define distance function ∆(M1,M2) = (ε1, ε2) iff M1 and M2 differ on ε1dn entries and
|~sM1,t − ~sM2,t| = ε2. We say that M1 and M2 are (ε1, ε2)-close if ∆(M1,M2) ≤ (ε1, ε2).

1

A natural question is whether all Markov chains are ε-close to an (ε, t)-mixing Markov chain,
for certain parameters of ε. For constant ε and t = O(log n), one can show that every strongly-
connected Markov chain is (ε, 1)-close to another Markov chain which (ε, t)-mixes. However, the
situation changes when asking whether there is an (ε, t)-mixing Markov chain that is close both in
the matrix representation and in the average t-step distribution: specifically, it can be shown that
there exist constants ε, ε1, ε2 < 1 and Markov chain M for which no Markov chain is both (ε1, ε2)-
close to M and (ε, log n)-mixing. In fact, when ε1 is small enough, the problem becomes nontrivial
even for ε2 = 1. The Markov chain corresponding to random walks on the n-cycle provides an
example which is not (t−1/2, 1)-close to any (ε, t)-mixing Markov chain.

Motivation As before, our algorithm proceeds by taking random walks on the Markov chain and
comparing final distributions by using the L1 distance tester. We define three types of states. First
a normal state is one from which a random walk arrives at nearly the average t-step distribution.
In the discussion which follows, t and ε denote constant parameters fixed as input to the algorithm
TestMixing.

Definition 31 Given a Markov Chain M, a state u of the chain is normal if it is (ε, t)-close to
~sM,t. That is if |~euM

t − ~sM,t| ≤ ε. A state is bad if it is not normal.

Testing normality requires time O(t · T (n, ε, δ)). Using this definition the first two algorithms
given in this section can be described as testing whether all (resp. most) states in M are normal.
Additionally, we need to distinguish states which not only produce random walks which arrive near
~sM,t but which have low probability of visiting a bad state. We call such states smooth states:

Definition 32 A state ~eu in a Markov chain M is smooth if (a) u is (ε, τ)-close to ~sM,t for
τ = t, . . . , 2t and (b) the probability that a 2t-step random walk starting at ~eu visits a bad state is
at most ε.

Testing smoothness of a state requires O(t2 · T (n, ε, δ)) time. Our property test merely verifies by
random sampling that most states are smooth.

1We say (x, y) ≤ (a, b) iff x ≤ a and y ≤ b

16

The test Figure 3 gives an algorithm which on input Markov chain M and parameter ε determines
whether at least (1 − ε) fraction of the states of M are smooth according to two distributions:
uniform and the average t-step distribution. Assuming access to L1-Distance-Test with complexity
T (n, ε, δ), this test runs in time O(ε−2t2T (n, ε, 1

6t)).

TestMixing(M, t, ε)
Let k = Θ(1/ε)
Select k states u1, . . . , uk uniformly

Select k states uk+1, . . . , u2k according to ~sM,t

For i = 1 to 2k
u = ~eui

For w = 1 to O(1/ε)
For j = 1 to 2t

u = next node(M, u)
L1-Distance-Test(~euM

t, ~sM,t, ε,
1

6t)

End

End

For τ = t to 2t
L1-Distance-Test(~eui

Mτ , ~sM,t, ε,
1

3t)

End

Pass if all tests pass

Figure 3: Algorithm TestMixing

The main lemma of this section says that any Markov chain which passes our test is (2ε, 1.01ε)-
close to a (4ε, 2t)-mixing Markov chain. First we give the modification

Definition 33 F is a function from n × n matrices to n× n matrices such that F (M) returns M̃
by modifying the rows corresponding to bad states of M to ~eu where u is a smooth state.

An important feature of the transformation F is that it does not affect the distribution of random
walks originating from smooth states very much.

Lemma 34 Given a Markov chain M and any state u ∈ M which is smooth. If M̃ = F (M) then
for any time t ≤ τ ≤ 2t, |~euM

τ − ~euM̃
τ | ≤ ε and |~sM,t − ~euM̃

τ | ≤ 2ε.

Proof: Define Γ as the set of all walks of length τ from u in M. Partition Γ into ΓB and Γ̄B

where ΓB is the subset of walks which visit a bad state. Let χw,i be an indicator function which
equals 1 if walk w ends at state i, and 0 otherwise. Let weight function W (w) be defined as the
probability that walk w occurs. Finally define the primed counterparts Γ′, etc. for the Markov
chain M̃. Now the ith element of ~euM

τ is
∑

w∈ΓB
χw,i · W (w) +

∑
w∈Γ̄B

χw,i · W (w). A similar

expression can be written for each element of ~euM̃
τ . Since W (w) = W ′(w) whenever w ∈ Γ̄B it

follows that |~euM
τ − ~euM̃

τ | ≤∑
i

∑
w∈ΓB

χw,i|W (w) − W ′(w)| ≤∑
i

∑
w∈ΓB

χw,iW (w) ≤ ε.

Additionally, since |~sM,t−~euM
τ | ≤ ε by the definition of smooth, it follows that |~sM,t−~euM̃

τ | ≤
|~sM,t − ~euM

τ | + |~euM
τ − ~euM̃

τ | ≤ 2ε. 2

We can now prove the main lemma:

Lemma 35 If according to both the uniform distribution and the distribution ~sM,t, (1− ε) fraction
of the states of a Markov chain M are smooth, then the matrix M is (2ε, 1.01ε)-close to a matrix
M̃ which is (4ε, 2t)-mixing.

17

Proof: Let M̃ = F (M). M̃ and M differ on at most εn(d + 1) entries. This gives the first
part of our distance bound. For the second we analyze |~sM,t − ~s

M̃,t
| = 1

n

∑
u |~euM

t − ~euM̃
t| as

follows. The sum is split into two parts, over the nodes which are smooth and those nodes which
are not. For each of the smooth nodes u, Lemma 34 says that |~euM

t −~euM̃
t| ≤ ε. Nodes which are

not smooth account for at most ε fraction of the nodes in the sum, and thus can contribute no more
than ε absolute weight to the distribution ~s

M̃,t
. The sum can be bounded now by |~sM,t − ~s

M̃,t
| ≤

1
n((1 − ε)nε + εn) ≤ 2ε.

In order to show that M̃ is (4ε, 2t)-mixing, we prove that for every state u, |~sM,t−~euM
2t| ≤ 4ε.

The proof considers three cases: u smooth, u bad, and u normal. The last case is the most involved.
If u is smooth in the Markov chain M, then Lemma 34 immediately tells us that |~sM,t−~euM̃

2t| ≤
2ε. Similarly if u is bad in the Markov chain M, then in the chain M̃ any path starting at u
transitions to a smooth state v in one step. Since |~sM,t −~evM̃

2t−1| ≤ 2ε by Lemma 34, the desired
bound follows.

If ~eu is a normal state which is not smooth we need a more involved analysis of the distribution
|~euM̃

2t|. We divide Γ, the set of all 2t-step walks in M starting at u, into three sets, which we
consider separately.

For the first set take ΓB ⊆ Γ to be the set of walks which visit a bad node before time t. Let
~db be the distribution over endpoints of these walks, that is, let ~db assign to state i the probability
that any walk w ∈ ΓB ends at state i. Let w ∈ ΓB be any such walk. If w visits a bad state at
time τ < t, then in the new Markov chain M̃, w visits a smooth state v at time τ + 1. Another
application of Lemma 34 implies that |~evM̃

2t−τ−1 − ~sM,t| ≤ 2ε. Since this is true for all walks

w ∈ ΓB, we find |~db − ~sM,t| ≤ 2ε.
For the second set, let ΓS ⊆ Γ \ ΓB be the set of walks not in ΓB which visit a smooth state

at time t. Let ~ds be the distribution over endpoints of these walks. Any walk w ∈ ΓS is identical
in the chains M and M̃ up to time t, and then in the chain M̃ visits a smooth state v at time t.
Thus since |~evM̃

t − ~sM,t| ≤ 2ε, we have |~ds − ~sM,t| ≤ 2ε.

Finally let ΓN = Γ \ (ΓB ∪ ΓS), and let ~dn be the distribution over endpoints of walks in ΓN .
ΓN consists of a subset of the walks from a normal node u which do not visit a smooth node at
time t. By the definition of normal, u is (ε, t)-close to ~sM,t in the Markov chain M. By assumption
at most ε weight of ~sM,t is assigned to nodes which are not smooth. Therefore |ΓN |/|Γ| is at most
ε + ε = 2ε.

Now define the weights of these distributions as ωb, ωs and ωn. That is ωb is the probability that
a walk from u in M visits a bad state before time t. Similarly ωs is the probability that a walk does
not visit a bad state before time t, but visits a smooth state at time t, and ωn is the probability that a
walk does not visit a bad state but visits a normal, non-smooth state at time t. Then ωb+ωs+ωn = 1.
Finally |~euM̃

2t−~sM,t| = |ωb
~db +ωs

~ds +ωn
~dn−~sM,t| ≤ ωb|~db−~sM,t|+ωs|~ds−~sM,t|+ωn|~dn−~sM,t| ≤

(ωb + ωs)max{|~db − ~sM,t|, |~ds − ~sM,t|} + ωn|~dn − ~sM,t| ≤ 4ε. 2

Given this, we finally can show our main theorem:

Theorem 36 Let M be a Markov chain. Given L1-Distance-Test with time complexity T (n, ε, δ)
and gap f and an oracle for next node, there exists a test such that if M is (f(ε), t)-mixing then
the test passes with probability at least 2/3. If M is not (2ε, 1.01ε)-close to any M̃ which is (4ε, 2t)-
mixing then the test fails with probability at least 2/3. The runtime of the test is O(1

ε2
·t2 ·T (n, ε, 1

6t)).

Proof: Since in any Markov chain M which is (ε, t)-mixing all states are smooth, M passes this
test with probability at least (1− δ). Furthermore, any Markov chain with at least (1− ε) fraction
of smooth states is (2ε, 1.01ε)-close to a Markov chain which is (4ε, 2t)-mixing, by Lemma 35. 2

18

4.3 Extension to sparse graphs and uniform distributions

The property test can also be made to work for general sparse Markov chains by a simple modifi-
cation to the testing algorithms. Consider Markov chains with at most m << n2 nonzero entries,
but with no nontrivial bound on the number of nonzero entries per row. Then the definition of
the distance should be modified to ∆(M1,M2) = (ε1, ε2) if M1 and M2 differ on ε1 · m entries and
the ~sM1,t − ~sM2,t = ε2. The above test does not suffice for testing that M is (ε1, ε2)-close to an

(ε, t)-mixing Markov chain M̃ , since in our proof, the rows corresponding to bad states may have
many nonzero entries and thus M and M̃ may differ in a large fraction of the nonzero entries.
However, let D be a distribution on states in which the probability of each state is proportional to
cardinality of the support set of its row. Natural ways of encoding this Markov chain allow constant
time generation of states according to D. By modifying the test in Figure 3 to also test that most
states according to D are smooth, one can show that M is close to an (ε, t)-mixing Markov chain
M̃ .

Because of our ability to test ε-closeness to the uniform distribution in O(n1/2ε−2) steps [18], it
is possible to speed up our test for mixing for those Markov chains known to have uniform stationary
distribution, such as Markov chains corresponding to random walks on regular graphs. An ergodic
random walk on the vertices of an undirected graph instead may be regarded (by looking at it “at
times t +1/2”) as a random walk on the edge-midpoints of that graph. The stationary distribution
on edge-midpoints always exists and is uniform. So, for undirected graphs we can speed up mixing
testing by using a tester for closeness to uniform distribution.

5 Further Research

It would be interesting to study these questions for other difference measures. For example, the
Kullback-Leibler asymmetric “distance” from Information Theory defined as

KLdist(~p, ~q) =
∑

i

pi ln
pi

qi

measures the relative entropy between two distributions. However, small changes to the distribution
can cause great changes in the Kullback-Leibler distance making distinguishing the cases impossible.

Perhaps some variation of Kullback-Leibler distance might lead to more interesting results. For
example, consider the following distance formula

NPdist(~p, ~q) = KLdist(~p,
~p + ~q

2
) + KLdist(~q,

~p + ~q

2
).

Although it is not a true metric (it does not obey trangle inequailty), it has constant value if
~p and ~q have disjoint support and cannot increase if we use the same Markov chain transition of ~p
and ~q. We suspect NPdist is in some sense “most powerful” for the purpose of deciding whether
~p 6= ~q.

Russell Impagliazzo also suggests considering weighted differences, i.e., estimating ‖~p−~q‖/max(‖~p‖, ‖~q‖)
for various norms like the L2-norm.

Suppose instead of having two unknown distributions, we have only one distribution to sample
and we want to know whether it is close to some known fixed distribution D. If D is the uniform
distribution, Goldreich and Ron [18] give a tight bound of θ(

√
n). For other D the question remains

open. Our Ω(n2/3) lower bound proof does not apply.

19

What if our samples are not fully independent? Our upper bound works even if the samples are
only four-way independent. How do our bounds increase if we lack even that much independence?

Finally our lower and upper bounds do not precisely match. Can we get tighter bounds with
better analysis or do we need new variations on our tests and/or counterexamples?

Smith [29] has some improved bounds and additional applications of the results in this paper.

Acknowledgments We are very grateful to Oded Goldreich and Dana Ron for sharing an early
draft of their work with us and for several helpful discussions. We would also like to thank Naoke
Abe, Richard Beigel, Yoav Freund, Russell Impagliazzo, Alexis Maciel, Sofya Raskhodnikova, and
Tassos Viglas for helpful discussions. Finally, we thank Ning Xie for pointing out two errors in the
proofs in an earlier version.

References

[1] N. Alon, M. Krivelevich, E. Fischer, and M. Szegedy. Efficient testing of large graphs. In
IEEE, editor, 40th Annual Symposium on Foundations of Computer Science: October 17–19,
1999, New York City, New York,, pages 656–666, 1109 Spring Street, Suite 300, Silver Spring,
MD 20910, USA, 1999. IEEE Computer Society Press.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. JCSS, 58, 1999.

[3] Noga Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986.

[4] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: Lower bounds and
applications. In Proceedings of 33th Symposium on Theory of Computing, Crete, Greece, 6–8
July 2001. ACM.

[5] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise independent permutations.
JCSS, 60, 2000.

[6] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications. John Wiley & Sons, 1991.

[7] N. Cressie and P.B. Morgan. Design considerations for Neyman Pearson and Wald hypothesis
testing. Metrika, 36(6):317–325, 1989.

[8] I. Csiszár. Information-type measures of difference of probability distributions and indirect
observations. Studia Scientiarum Mathematicarum Hungarica, 1967.

[9] Funda Ergün, Sampath Kannan, S. Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. In STOC 30, pages 259–268, 1998.

[10] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate L1-difference
algorithm for massive data streams (extended abstract). In FOCS 40, 1999.

[11] William Feller. An Introduction to Probability Theory and Applications, volume 1. John Wiley
& Sons Publishers, New York, NY, 3rd ed., 1968.

[12] J. Fong and M. Strauss. An approximate Lp-difference algorithm for massive data streams. In
Annual Symposium on Theoretical Aspects of Computer Science, 2000.

20

[13] Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. COMBI-
NAT: Combinatorica, 19, 1999.

[14] Phillip B. Gibbons and Yossi Matias. Synopsis data structures for massive data sets. In SODA
10, pages 909–910. ACM-SIAM, 1999.

[15] O. Goldreich and L. Trevisan. Three theorems regarding testing graph properties. Technical
Report ECCC-10, Electronic Colloquium on Computational Complexity, January 2001.

[16] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. In FOCS 37, pages 339–348. IEEE, 14–16 October 1996.

[17] Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In STOC 29,
pages 406–415, 1997.

[18] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. Technical
Report TR00-020, Electronic Colloquium on Computational Complexity, 2000.

[19] G. H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins University Press.

[20] R. Kannan. Markov chains and polynomial time algorithms. In Shafi Goldwasser, editor,
Proceedings: 35th Annual Symposium on Foundations of Computer Science, November 20–22,
1994, Santa Fe, New Mexico, pages 656–671, 1109 Spring Street, Suite 300, Silver Spring, MD
20910, USA, 1994. IEEE Computer Society Press.

[21] Sampath Kannan and Andrew Chi-Chih Yao. Program checkers for probability generation.
In Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez-Artalejo, editors, ICALP 18,
volume 510 of Lecture Notes in Computer Science, pages 163–173, Madrid, Spain, 8–12 July
1991. Springer-Verlag.

[22] E. L. Lehmann. Testing Statistical Hypotheses. Wadsworth and Brooks/Cole, Pacific Grove,
CA, second edition, 1986. [Formerly New York: Wiley].

[23] J. Neyman and E.S. Pearson. On the problem of the most efficient test of statistical hypotheses.
Philos. Trans. Royal Soc. A, 231:289–337, 1933.

[24] Beresford N. Parlett. The Symmetric Eigenvalue Problem, volume 20 of Classics in applied
mathematics. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1998.

[25] Michal Parnas and Dana Ron. Testing the diameter of graphs. In Dorit Hochbaum, Klaus
Jensen, José D.P. Rolim, and Alistair Sinclair, editors, Randomization, Approximation, and
Combinatorial Optimization, volume 1671 of Lecture Notes in Computer Science, pages 85–96.
Springer-Verlag, 8–11 August 1999.

[26] Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, April 1996.

[27] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-knowledge. In
Proceedings of the 38th Annual Symposium on the Foundations of Computer Science, pages
448–457. IEEE, 20–22 October 1997.

[28] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93–133, July 1989.

21

[29] Warren D. Smith. Testing if distributions are close via sampling. Technical Report Available
as Report #56, NECI, 2000. http://www.neci.nj.nec.com/homepages/wds/works.html.

[30] A. J. Walker. An efficient method for generating discrete random variables with general
distributions. ACM trans. math. software, 3:253–256, 1977.

[31] Kenji Yamanishi. Probably almost discriminative learning. Machine Learning, 18(1):23–50,
1995.

22

