
The Complexity of Approximating the Entropy∗

Tuğkan Batu† Sanjoy Dasgupta‡ Ravi Kumar§ Ronitt Rubinfeld¶

May 12, 2005

Abstract

We consider the problem of approximating the entropy of a discrete distribution under several different
models of oracle access to the distribution. In the evaluation oracle model, the algorithm is given access
to the explicit array of probabilities specifying the distribution. In this model, linear time in the size of
the domain is both necessary and sufficient for approximating the entropy.

In the generation oracle model, the algorithm has access only to independent samples from the
distribution. In this case, we show that a γ-multiplicative approximation to the entropy can be obtained

in O(n(1+η)/γ2

log n) time for distributions with entropy Ω(γ/η), where n is the size of the domain of the
distribution and η is an arbitrarily small positive constant. We show that this model does not permit a
multiplicative approximation to the entropy in general. For the class of distributions to which our upper

bound applies, we obtain a lower bound of Ω(n1/(2γ2)).
We next consider a combined oracle model in which the algorithm has access to both the genera-

tion and the evaluation oracles of the distribution. In this model, significantly greater efficiency can
be achieved: we present an algorithm for γ-multiplicative approximation to the entropy that runs in
O((γ2 log2 n)/(h2(γ−1)2)) time for distributions with entropy Ω(h); for such distributions, we also show
a lower bound of Ω((log n)/(h(γ2

− 1) + γ2)).
Finally, we consider two special families of distributions: those in which the probabilities of the

elements decrease monotonically with respect to a known ordering of the domain, and those that are
uniform over a subset of the domain. In each case, we give more efficient algorithms for approximating
the entropy.

∗A preliminary version of this paper appeared in the 34th ACM Symposium on Theory of Computing, pages 678–687, 2002.
†School of Computing Science, Simon Fraser University, Burnaby, BC, Canada V5A 1S6. This work was supported by ONR

N00014-97-1-0505, MURI. Phone: (604) 268 7115, Fax: (604) 291 3045, Email: batu@cs.sfu.ca.
‡University of California, San Diego 92093. Phone: (858) 822 5270, Fax: (858) 534 7029, Email: dasgupta@cs.ucsd.edu.
§IBM Almaden Research Center, San Jose, CA 95120. Phone: (408) 927 1885, Fax: (845) 432 0398, Email:

ravi@almaden.ibm.com.
¶CSAIL, MIT, Cambridge, MA 02139. Phone: (617) 253 0884, Fax: (617) 258 9738, Email: ronitt@csail.mit.edu.

1 Introduction

The Shannon entropy is a measure of the randomness of a distribution, and plays a central role in statistics,
information theory, and coding theory. The entropy of a random source sheds light on the inherent com-
pressibility of data produced by such a source. In this paper we consider the complexity of approximating
the entropy under various different assumptions on the way the input is presented.

Suppose the algorithm has access to an evaluation oracle1 in which the distribution p is given as an array
whose i-th location contains the probability pi assigned to the i-th element of the domain. It is clear that
an algorithm that reads the entire representation can calculate the exact entropy. However, it is also easy
to see that in this model, time linear in the size of the domain is required even to approximate the entropy:
consider two distributions, one with a singleton support set (zero entropy) and the other with a two-element
support set (positive entropy). Any algorithm that approximates the entropy to within a multiplicative
factor must distinguish between these two distributions, and a randomized algorithm for distinguishing two
such distributions requires linear time in general.

Next suppose the distribution p = 〈p1, . . . , pn〉 is given as a generation oracle that draws samples from it.
This model has been considered the statistics, physics, and information theory communities (c.f., [8, 15, 10,
14, 1, 7, 16, 11, 12, 4]). None of these previous works, however, provide a rigorous analysis of computational
efficiency and sample complexity in terms of the approximation quality and the domain size. To the best of
our knowledge, the only previously known algorithms that do not require superlinear (in the domain size)
sample complexity are those presented in [10, 14, 12], who give good estimates in some cases such as when
the infinity norm of the distribution is small. Some of these algorithms use an estimate of the collision
probability, ‖p‖2

, to give a lower bound estimate of the entropy: using Jensen’s inequality, it is shown [14]
that

log ‖p‖2
= log

∑

i

p2
i ≥

∑

i

pi log pi = −H(p).

In fact, when the infinity norm ‖p‖∞ of p is at most n−α, (in other words, when the min-entropy of p is
large) the collision probability can be used to give an upper bound on the entropy of the distribution: using
the relationship between norms,

log ‖p‖2 ≤ log(‖p‖∞) ≤ log n−α = −α log n ≤ −α · H(p).

It is, however, unclear how to use the collision probability to obtain an arbitrary multiplicative approximation
with a better sample complexity than our results (stated below), since approximating the collision probability
itself will require Ω(

√
n) samples. However, the collision probability can be used to understand much more

about certain types of distributions; for instance, it exactly determines the entropy in the special case of
distributions that are known to be uniform over an unknown subset of arbitrary size (see §7).

1.1 Our Results

(1) The generation oracle model: When the distribution is given as a generation oracle, we show that
the entropy can be approximated well in sublinear time for a large class of distributions. Informally, a γ-
multiplicative approximation to the entropy can be obtained in time O(n(1+η)/γ2

log n), where n is the size of
the domain of the distribution and η is an arbitrarily small positive constant, provided that the distribution
has Ω(γ/η) entropy. Our algorithm is simple—we partition the elements in the domain into big or small
based on their probability masses and approximate the entropy of the big and small elements separately by
different methods. On the other hand, we show that one cannot get a multiplicative approximation to the
entropy in general. Furthermore, even for the class of distributions to which our upper bound applies, we
obtain a lower bound of Ω(n1/(2γ2)). In the conference version of this paper, we also claimed another lower

bound of Ω(n2/(5γ2−2)) for this problem. We retract this bound as there was a gap in our proof.
It is interesting to consider what these bounds imply for the complexity of achieving a 2-approximation

for distributions with non-constant entropy. Our upper bound yields an algorithm that runs in Õ(n(1+o(1))/4)
time, while our lower bound demonstrates that a running time of at least Ω(n1/8) is necessary.

1We use the terminology from [9].

1

(2) The evaluation oracle model: When the distribution is given as an evaluation oracle, we show

a lower bound of Ω(n2−γ2(h+1)) on the number of oracle accesses needed to γ-approximate the entropy for
the class of distributions with entropy at least h.

(3) The combined oracle model: We then consider a combined oracle model, in which the algorithm
has access to both the generation and the evaluation oracles of the distribution. We assume that the two
oracles are consistent, which is a natural assumption for such a model. In the combined oracle model,
we give a γ-approximation algorithm that runs in time O((γ2 log2 n)/(h2(γ − 1)2)) for distributions with
entropy Ω(h); we also show a lower bound of Ω((log n)/(h(γ2 − 1) + γ2)) for this class of distributions. For
example, to achieve a constant approximation for distributions with entropy Ω(h), our algorithm runs in
time O((1/h2) log2 n) while our lower bound is Ω((1/h) log n), that is, quadratically smaller than the upper
bound.

(4) Special families of distributions: Finally we consider two families of distributions for which
we show more efficient upper bounds. The first family is that of monotone distributions, in which the
probabilities decrease monotonically over some known ordering of the elements (i.e., pi ≥ pi+1). We give
an O((1+ log−1 γ) log n)-time (resp., O((log n)6poly(γ))-time) algorithm for γ-approximating the entropy in
the evaluation oracle model (resp., generation oracle model). The second family is that of subset-uniform
distributions, in which the distribution is uniform over some subset of the domain. In this case we give
O(

√
k)-time algorithms for approximating the entropy, where k is the size of the support set.

Table 1: Our results for γ-approximation, where γ > 1.

Model Lower bound Upper bound

Evaluation General Ω(n) O(n)

oracle: H(p) ≥ h Ω(n2−γ2(h+1)), Thm. 8 ?

Generation General ∞, Thm. 6 −
oracle: High enough Ω

(

n1/(2γ2)
)

, Thm. 7, Õ(n1/γ2

), Thm. 2,

entropy H(p) > Ω((log n)/γ2) H(p) > Ω(γ)

Combined General Ω(n(1−o(1))/γ2

), Thm. 12 ?

oracle: H(p) ≥ h Ω
(

log n
h(γ2−1)+γ2

)

, Thm. 13 O
(

γ2 log2 n
h2(γ−1)2

)

, Thm. 9

1.2 Related Work

The work of Goldreich and Vadhan [6] considers the complexity of approximating the entropy in a different
model in which a distribution Y is encoded as a circuit Y = C(X) whose input X is uniformly distributed;
in this model, they show that a version of the problem is complete for statistical zero-knowledge. Their
version of the problem could be viewed as an additive approximation to the entropy.

The work of [3] and [2] considers algorithms for testing other properties of distributions in the generation
oracle model. The properties considered are whether two input distributions are close or far, and whether
a joint distribution is independent, respectively. Both papers give algorithms whose sample complexity is
sublinear in the domain size along with lower bounds showing the algorithms to be nearly optimal.

1.3 Organization

In §2, we introduce the basic definitions used in this paper. In §3, we give algorithms and lower bounds
for the generation oracle model. Section 4 describes a lower bound for the evaluation oracle model, and §5
gives algorithms and lower bounds for the combined oracle case. Finally, in §6 and §7, we give more efficient
algorithms for two families of distributions.

2

2 Preliminaries

We consider discrete distributions over a domain of size n, which we denote by [n]
def
= {1, . . . , n}. Let

p = 〈p1, . . . , pn〉 be such a distribution where pi ≥ 0,
∑n

i=1 pi = 1. An algorithm is said to have evaluation
oracle access to the distribution p if oracle query i is answered by pi. An algorithm is said to have generation
oracle access to p if it is given a source that draws samples independently from p. An algorithm has combined
oracle access to p if it has both evaluation and generation oracle access to p. We say the algorithm is in
model O if it has oracle access of type O to the distribution.

The entropy of distribution p is defined as

H(p)
def
= −

n
∑

i=1

pi log pi,

where all the logarithms are to the base 2. For a set S ⊆ [n], we define wp(S)
def
=
∑

i∈S pi, and we define the
contribution of S to the entropy as

HS(p)
def
= −

∑

i∈S

pi log pi.

Notice that HS(p) + H[n]\S(p) = H(p).

The L2-norm of distribution p is ‖p‖ def
=
√

∑n
i=1 p2

i and L∞-norm of p is ‖p‖∞
def
= maxn

i=1 pi. We denote

the L1-distance between two distributions p,q by |p− q| def
=
∑n

i=1 |pi − qi|.
The following lemma summarizes some upper and lower bounds on entropy that will turn out to be useful

at many points in the paper.

Lemma 1 Pick any S ⊆ [n].

(a) The partial entropy HS(p) is maximized when wp(S) is spread uniformly over the set |S|:

HS(p) ≤ wp(S) · log(|S|/wp(S)) ≤ wp(S) · log |S| + (log e)/e.

(b) Suppose there is some β ≤ 1/e such that pi ≤ β for all i ∈ S. Then HS(p) ≤ β|S| log(1/β).

(c) Suppose there is some β such β ≤ pi ≤ 1/e for all i ∈ S. Then HS(p) ≥ β|S| log(1/β).

(d) Suppose there is some β such that pi ≤ β for all i ∈ S. Then HS(p) ≥ wp(S) log(1/β).

Proof. Statement (a) follows from the concavity of the logarithm function. By Jensen’s inequality,

1

wp(S)
· HS(p) =

∑

i∈S

pi

wp(S)
log

1

pi
≤ log

(

∑

i∈S

pi

wp(S)
· 1

pi

)

= log
|S|

wp(S)
.

Therefore,

HS(p) ≤ wp(S) · log
|S|

wp(S)
≤ wp(S) · log |S| + log e

e
.

The last inequality comes from observing that the function x log(1/x) is zero at x = 0, 1 and has a single
local maximum in the interval [0, 1], at x = 1/e.

Statement (b) follows immediately from the previous observation about x log(1/x), which implies that
under the given constraint, HS(p) is maximized by setting all the pi to β.

The proof of Statement (c) also follows from the concavity of x log(1/x); under the given constraints,
pi log(1/pi) is minimized when pi = β.

For statement (d), we notice that HS(p) is strictly concave: therefore, over any closed domain, it is
minimized at a boundary point. In particular, when the domain is [0, β]|S|, the minimum point must have
some coordinate with pi = 0 or pi = β. We can now restrict attention to the remaining coordinates and
apply the same argument again. In this way, we find that the minimum is realized when wp(S)/β of the pi

are β, and the rest are zero. �

3

Let γ > 1 and let D be a family of distributions. We say that A is an algorithm in model O for γ-
approximating the entropy of a distribution in D, if for every p ∈ D, given oracle access of type O to p,
algorithm A outputs a value A(p) such that H(p)/γ ≤ A(p) ≤ γ ·H(p) with probability at least 3/4. (This
probability of success can generically be increased to 1 − δ by running the algorithm log(1/δ) times and
returning the median of the values.) The time complexity of A is specified as a function of γ and n. We will
use the notation Dh to denote the family of distributions with entropy at least h.

3 The Generation Oracle Model

3.1 Upper Bounds

In this section we obtain an algorithm for estimating the entropy of a large class of distributions in the
generation oracle model. We prove the following theorem.

Theorem 2 For every γ > 1 and every εo such that 0 < εo ≤ 1/2, there exists an algorithm in the

generation oracle model that runs in time O((n1/γ2

/ε2o) · log n), and with success probability at least 3/4,
returns a (1 + 2εo)γ-approximation to the entropy of any distribution on [n] in D4γ/(εo(1−2εo)).

Given any η > 0 and γ ′ > 1, one can set γ = γ ′/(1 + 2εo) above and choose εo small enough to yield

a γ′-approximation algorithm with running time O(n(1+η)/γ′2

log n), for distributions of entropy Ω(γ/η).
Note that choosing η to be small affects both the running time and the family of distributions to which the
algorithm can be applied.

The main idea behind the algorithm is the following. We classify elements in [n] as either big or small,
depending on their probability mass. For a fixed α > 0 and a distribution p, the set of indices with high
probabilities (the big elements) is defined as:

Bα(p)
def
= {i ∈ [n] | pi ≥ n−α}.

We then approximate the contributions of the big and small elements to the entropy separately. Section 3.1.1
shows how to approximate the entropy of the big elements, Section 3.1.2 shows how to approximate the
entropy of the small elements, and Section 3.1.3 combines these approximations to yield Theorem 2.

3.1.1 Approximating the Entropy of the Big Elements

To estimate the amount by which the big elements contribute to the entropy, we approximate each of their
probabilities by drawing samples from the generation oracle.

Lemma 3 For every α such that 0 < α ≤ 1, every εo such that 0 < εo ≤ 1/2, and sufficiently large n, there
is an algorithm that uses O((nα/ε2o) · log n) samples from p and outputs a distribution q over [n] such that
with probability at least 1 − n−1, the following hold for all i:

1. if pi ≥ 1−εo

1+εo
n−α (in particular, if i ∈ Bα(p)), then |pi − qi| ≤ εopi, and

2. if pi ≤ 1−εo

1+εo
n−α, then qi ≤ (1 − εo)n

−α.

Proof. Let m = (18nα/ε2o) · log 2n. Fix any i ∈ [n] and define Xj to be the indicator variable that the j-th
sample is i. Let qi =

∑

Xj/m, the average of independent, identically distributed Boolean random variables.
If pi ≥ 1−εo

1+εo
n−α, then by Chernoff bounds

Pr [|pi − qi| > εopi] ≤ 2 exp

(

−ε2opim

3

)

≤ 1

2n2
.

Moving onto smaller elements, we again can use Chernoff bounds to show that if pi < 1−εo

1+εo
n−α, then

Pr
[

qi > (1 − εo)n
−α
]

= Pr
[

qi − pi > (1 − εo)n
−α − pi

]

4

≤ Pr

[

qi − pi >
εo(1 − εo)

1 + εo
n−α

]

≤ exp

(

−
(

εo(1 − εo)n
−α

(1 + εo)pi

)2

· pim

3

)

≤ exp

(

−
(

1 − εo

1 + εo

)2

· 6n−α

pi
· log 2n

)

≤ exp(−2 log 2n) ≤ 1/2n2.

Statements (1) and (2) of the lemma follow from a union bound over all i. �

The following lemma shows that the contribution of the big elements Bα(p) to the entropy can be
approximated well using q instead of p.

Lemma 4 Pick any B ⊆ [n]. Let εo ∈ (0, 1) be chosen so that each i ∈ B satisfies |pi − qi| ≤ εopi. Then,

|HB(q) − HB(p)| ≤ εo · HB(p) + 2εo · wp(B).

Proof. For i ∈ B, write qi = (1 + εi)pi. We know that |εi| ≤ εo.

HB(q) − HB(p) = −
∑

i∈B

(1 + εi)pi log((1 + εi)pi) +
∑

i∈B

pi log pi

= −
∑

i∈B

(1 + εi)pi log pi −
∑

i∈B

(1 + εi)pi log(1 + εi) +
∑

i∈B

pi log pi

= −
∑

i∈B

εipi log pi −
∑

i∈B

(1 + εi)pi log(1 + εi).

By the triangle inequality,

|HB(q) − HB(p)| ≤
∣

∣

∣

∣

∣

−
∑

i∈B

εipi log pi

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑

i∈B

(1 + εi)pi log(1 + εi)

∣

∣

∣

∣

∣

≤
∑

i∈B

−|εi|pi log pi +
∑

i∈B

pi |(1 + εi) log(1 + εi)|

≤ εo · HB(p) + 2εo · wp(B).

The last step above uses that for |ε| ≤ εo ≤ 1, |(1 + ε) log(1 + ε)| ≤ 2|ε| ≤ 2εo. �

3.1.2 Approximating the Entropy of the Small Elements

We now estimate the entropy contribution of the small elements. Let S be any subset of small elements,
that is, S ⊆ [n] \ Bα(p).

If wp(S) ≤ n−α, then the contribution of S to the entropy is below any constant and can be ignored for
approximation purposes. So, we may assume without loss of generality that wp(S) ≥ n−α. Let ŵ(S) be the
empirical estimate of the probability mass of S, in other words, the number of samples from S divided by
the total number of samples. The following lemma bounds the accuracy of this estimate.

Lemma 5 If S ⊆ [n] satisfies wp(S) ≥ n−α and if m = O((nα/ε2o) log n) samples are drawn from p, then
with probability at least 1−n−1, the empirical estimate ŵ(S) satisfies (1−εo)·wp(S) ≤ ŵ(S) ≤ (1+εo)·wp(S).
Moreover, if wp(S) < n−α, then ŵ(S) < (1 + εo)n

−α.

Proof. Let Xj be the indicator random variable that takes value 1 when the j-th sample lies in S, and
let X =

∑

Xj . Then X is mŵ(S) and it has expected value E [X] = m · wp(S). The lemma follows by
Chernoff bounds, and by the fact that wp(S) ≥ n−α. Similar to the proof of Lemma 3, we can show that if
wp(S) < n−α, then ŵ(S) < (1 + εo)n

−α. �

Since pi < n−α for i ∈ S, by Lemma 1(a,d), we have that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.

Hence, using estimate ŵ(S) for wp(S), we get an approximation to HS(p).

5

3.1.3 Putting It Together

In this section we describe our approximation algorithm for H(p) and prove Theorem 2. The following is
our algorithm for obtaining a γ-approximation to the entropy:

Algorithm ApproximateEntropy(γ, εo)

1. Set α = 1/γ2.

2. Get m = O((nα/ε2o) · log n) samples from p.

3. Let q be the empirical probabilities of the n elements; that is, qi is the frequency of i in the sample
divided by m. Let B = {i | qi > (1 − εo)n

−α}.

4. Output HB(q) +
wq([n]\B) log n

γ .

Notice that the set B is an empirically-determined substitute for Bα(p). We now prove that this algorithm
satisfies Theorem 2.
Proof. (of Theorem 2) First of all, Lemma 3 assures us that with probability at least 1−1/n, two conditions
hold: (1) Bα(p) ⊆ B, and (2) every element i ∈ B satisfies |pi − qi| ≤ εopi. For the rest of the proof, we will
assume that these conditions hold.

Let S = [n] \ B. Assume for the moment that wp(S) ≥ n−α. In this case, we know from Lemma 5 that
with high probability, |wq(S) − wp(S)| ≤ εowp(S). Lemma 1(a,d) tells us that

αwp(S) log n ≤ HS(p) ≤ wp(S) log n + (log e)/e.

Then by Lemma 4,

HB(q) +
wq(S) log n

γ
≤ (1 + εo) · HB(p) + 2εo +

1 + εo

γ
· wp(S) log n

≤ (1 + εo)(HB(p) + γ · HS(p)) + 2εo

≤ (1 + εo)γ · H(p) + 2εo

≤ (1 + 2εo)γ · H(p),

if H(p) ≥ 2/γ. Similarly,

HB(q) +
wq(S) log n

γ
≥ (1 − εo) · HB(p) − 2εo +

1 − εo

γ
· wp(S) log n

≥ (1 − εo)

(

HB(p) +
(HS(p) − e−1 log e)

γ

)

− 2εo

= (1 − εo)(HB(p) + HS(p)/γ) − 1 − εo

γ
e−1 log e − 2εo

≥ H(p)/((1 + 2εo)γ),

if H(p) ≥ 4γ
εo(1−2εo) ≥ 2/γ.

It remains to handle the case when wp(S) is less than n−α. Lemma 5 tells us that wq(S) is with high
probability at most (1+εo)n

−α. Therefore, our estimate of the entropy from small elements, (wq(S) log n)/γ,
lies somewhere between zero and ((1 + εo)n

−α log n)/γ. For any γ bounded away from one, this is only a
negligible contribution to H(p), well within the approximation bound. �

3.2 Lower Bounds

In this section we prove lower bounds on the number of samples needed to approximate the entropy of a
distribution to within a multiplicative factor of γ > 1. All of our lower bounds are shown by exhibiting pairs
of distributions that have very different entropies, with ratio at least γ2, and yet are hard to distinguish
given only a few samples.

6

3.2.1 Impossibility of Approximating Entropy in General

First we show that there is no algorithm for computing entropy that can guarantee a bounded approximation
factor for all input distributions. The basic problem is that no amount of sampling can conclusively establish
that a distribution has zero entropy.

Theorem 6 For every γ > 1, there is no algorithm that γ-approximates the entropy of every distribution in
the generation oracle model.

Proof. Let A be any algorithm for computing entropy, and let t(n) be an upper bound on its running time on
distributions over [n]. Consider the two distributions p = 〈1, 0, . . . , 0〉 and q = 〈1−1/(100t(n)), 1/(100t(n)), 0, . . . , 0〉.
Notice that p has zero entropy while q has positive entropy.

Suppose we run A on either p or q. Since it uses at most t(n) samples, its oracle calls will almost
always (99% of the time) produce a succession of identical elements, regardless of whether the underlying
distribution is p or q. In such cases, if A guesses that the entropy is zero, its approximation factor on q will
be unbounded, whereas if it guesses a positive number, its approximation factor on p will be unbounded. �

3.2.2 A Lower Bound on Approximating the Entropy of High-Entropy Distributions

The following theorem shows a lower bound on the number of samples required to approximate the entropy
of distributions with high entropy.

Theorem 7 For every γ > 1 and sufficiently large n, any algorithm in the generation oracle model that
γ-approximates the entropy of a distribution in D(log n)/γ2 requires Ω(n1/2γ2

) samples.

Proof. Consider two distributions p and q on n elements where p is uniform on the set [n] and q is

uniform on a randomly chosen subset S ⊆ [n] of size n1/γ2

. It is easy to see that H(p)/H(q) = γ2. By the

Birthday Paradox, with probability 1/2, we will not see any repetitions if we take n1/2γ2

samples from either

distribution. In such cases, the samples from p and q look identical. Thus at least Ω(n1/2γ2

) samples are
needed to distinguish these distributions. �

As we mentioned before, in the conference version of this paper, we claimed another lower bound of
Ω(n2/(5γ2−2)) for approximating the entropy, but retract this bound as there is a gap in our proof. Recently,

however, Ron [13] showed a lower bound of Ω̃(n2/(6γ2−3)) for approximating the entropy. This is better than

the lower bound (in Theorem 7) of Ω(n1/2γ2

) when γ <
√

3/2. Her proof also exhibits two distributions with

entropy ratio γ2 and shows that the two distributions are indistinguishable unless Ω̃(n2/(6γ2−3)) samples are
taken.

4 The Evaluation Oracle Model: A Lower Bound

In the introduction, we mentioned that for general distributions over [n], a linear number of queries is
necessary to approximate the entropy in the evaluation oracle model. Since there are only n possible queries,
the complexity of entropy approximation in this model is settled. Next, we study the number of queries
needed when a lower bound on the entropy of the distribution can be assumed.

Theorem 8 Let γ > 1, h > 0, and n be sufficiently large. If an algorithm A that operates in the evaluation
oracle model achieves a γ-approximation to the entropy of distributions over [n] in Dh, then it must make

Ω(n2−γ2(h+1)) queries.

Proof. We will define two distributions p and q in Dh that have entropy ratio at least γ2 and yet require
Ω(n2−γ2(h+1)) queries to distinguish.

Let R be a subset of [n] of size 2γ2(h+1), chosen uniformly at random. Distribution p is defined to

be uniform over R. Let S also be a uniform-random subset of [n], but of smaller size β · 2γ2(h+1), where

β = 1/(γ2(h+1)/h). In addition, pick s randomly from [n] \S. Distribution q assigns probability 2−γ2(h+1)

to each element in S and assigns the rest of the probability mass, namely 1 − β, to s.

7

Both these distributions belong to Dh: H(p) = γ2(h + 1) and H(q) is between h and h + 1 (to see this,
notice HS(q) = h). The ratio between their entropies is H(p)/H(q) ≥ γ2.

In the evaluation oracle, any algorithm that distinguishes between p and q must (on at least one of these
two inputs) discover some location i ∈ [n] with nonzero probability. The number of queries required is there-

fore at least the reciprocal of the fraction of the elements with nonzero probabilities, which is Ω(n/2γ2(h+1)).
�

5 The Combined Oracle Model

In this section we consider the combined oracle model in which an algorithm is given both evaluation and
generation oracle access to the same distribution.

5.1 Upper Bound

The entropy of a distribution p can be viewed as the expected value of − log pi, where i is distributed
according to p. This suggests an algorithm:

1. Draw m samples from the generation oracle (m to be defined later). Call these i1, . . . , im.

2. For each ij , ask the evaluation oracle for pij .

3. Return − 1
m

∑m
j=1 log pij .

As we will now see, if H(p) is not too small this algorithm needs only a polylogarithmic number of queries
in order to return a good approximation.

Theorem 9 Pick any γ > 1 and any h > 0. If the above algorithm is run with m = O
(

γ2 log2 n
h2(γ−1)2

)

, then it

returns a γ-approximation to the entropy of any distribution over [n] in Dh, with success probability at least
3/4.

Proof. Let m
def
= 3γ2 log2 n

h2(γ−1)2 . Define the random variable Xj
def
= − log pij for j = 1, . . . , m, and let X =

(1/m)
∑

j Xj be the final answer returned. Clearly, E [X] = E [Xj] = H(p). All that needs to be shown is
that the variance of X is not too large. Since the Xj ’s are independent, it will suffice to bound the variance
of an individual Xj .

Lemma 10 Var [Xj] ≤ log2 n.

Proof. For n = 2, maximizing Var [Xj] = p log2 p+(1− p) log2(1− p)− (p logp+(1− p) log(1− p))2 subject
to 0 ≤ p ≤ 1 yields Var [Xj] < 1 = log2 n. Therefore, let n ≥ 3. Since Var [Xj] ≤ E

[

X2
j

]

, it suffices to show

an upper bound on E
[

X2
j

]

=
∑

i pi log2 pi.

Note that the function f(x) = x log2 x is concave for 0 < x < e−1. Hence
∑

i f(pi) is a symmetric concave
function when its domain is limited to p ∈ (0, 1/e)n, and, as in Lemma 1, is maximized (on this domain)
when p is uniform. This maximum value is log2 n.

To finish the proof, we need to show that we cannot attain higher values of
∑

i f(pi) by looking at
p 6∈ (0, 1/e)n. To this end, suppose pj ≥ e−1 for some j. Then there exists k such that pk ≤ (1−pj)/(n−1).
Consider the derivative f ′(x) = log2 x + 2 log(e) log x, at points pj and pk. Using simple calculus, and the
fact that n ≥ 3, it is easy to check that f ′(pk) > f ′(pj). Hence, we can increase the sum by simultaneously
decreasing pj and increasing pk. By combining with the argument above, we conclude that

∑

i f(pi) ≤ log2 n.
�

Since the Xj ’s are identical and independent, Var [X] = Var [Xj] /m ≤ (log2 n)/m. To bound the error
probability of our algorithm, we now use Chebyshev’s inequality, which states that for any ρ > 0,

Pr [|X − E [X] | ≥ ρ] ≤ Var [X] /ρ2.

8

Hence, we get

Pr [A does not γ-approximate H(p)] = Pr [X ≤ H(p)/γ or X ≥ γ · H(p)]

≤ Pr [|X − H(p)| ≥ (γ − 1)H(p)/γ]

≤ γ2 log2 n

m · H(p)2(γ − 1)2
≤ 1

3
,

where the last inequality follows from the choice of m. �

Corollary 11 There exists an algorithm A in the combined oracle model that γ-approximates H(p) in
O((γ

γ−1)2) time, for distributions with H(p) = Ω(log n).

5.2 Lower Bounds

This next theorem gives a lower bound for the combined oracle model when the entropy of the distribution
is allowed to be very small, so small that for instance the previous upper bound does not apply.

Theorem 12 Pick any γ > 1 and any sufficiently large n. Then any algorithm in the combined oracle model
that γ-approximates the entropy of distributions over [n] (with non-zero entropy) must make Ω(n1/γ2

) oracle
calls.

Proof. Let α = 1
γ2 − log e

log n < 1. Consider distributions p and q defined as follows:

pi
def
=

1− n−α i = 1
n−α i = 2
0 otherwise

qi
def
=

1− n−α i = 1
n−1 2 ≤ i ≤ n1−α + 1
0 otherwise

Note that, by the concavity of f(x) = −x log x for 0 ≤ δ < 1, and that f ′(1) = − log e, we have that
−(1 − δ) log(1 − δ) ≤ δ log e. Hence, a quick calculation shows that H(p) = −(1 − n−α) log(1 − n−α) +
n−α log nα ≤ n−α(log e + α log n) and H(q) > n−α log n. By the choice of α, H(q)/H(p) > γ2.

Let P be the family of distributions obtained from p by permuting the labels of the elements. Define Q
similarly for q. It is simple to verify that any algorithm taking o(nα) samples and making o(nα) probes will
fail to distinguish between a randomly chosen member of P and a randomly chosen member of Q with high
probability. To finish, notice that nα = e−1n1/γ2

. �

The next theorem gives a lower bound on the complexity of approximating the entropy in the com-
bined oracle model for distributions with entropy above some specific threshold. The proof generalizes the
counterexample in Theorem 12.

Theorem 13 Pick any γ > 1, any h > 0, and any sufficiently large n. Then any algorithm in the combined
oracle model that γ-approximates the entropy of distributions over [n] in Dh must make Ω(log n/(h(γ2−1)+
2γ2)) oracle calls.

Proof. Let w = (h(γ2 − 1) + 2γ2)/ log n and k
def
= d2h/(1−w)e. Consider the following distributions p and q:

pi
def
=

(1 − w)/k 1 ≤ i ≤ k
w i = k + 1
0 otherwise

qi
def
=

(1 − w)/k 1 ≤ i ≤ k
n−1 k + 1 ≤ i ≤ k + wn
0 otherwise

Note that H(p) = (1 − w) log k
1−w − w log w = (1 − w) log k − (1 − w) log(1 − w) − w log w. Hence,

h ≤ H(p) ≤ h + 2. Similarly, H(q) > h + w log n.

9

Let P be the family of distributions obtained from p by permuting the labels of the elements. Define Q
similarly for q. It is simple to verify that any algorithm taking o(1/w) samples and making o(1/w) probes
will fail to distinguish between a randomly chosen member of P and a randomly chosen member of Q with
high probability.

Meanwhile, by the choice of w, the entropy ratio is

H(q)

H(p)
>

h + w log n

h + 2
=

hγ2 + 2γ2

h + 2
= γ2.

This concludes the proof. �

6 Monotone Distributions

A monotone distribution p = 〈p1, . . . , pn〉 is one for which pi ≥ pi+1 for all i. The structure of a monotone
distribution makes it much easier to approximate the entropy.

6.1 The Evaluation Oracle Model

We show that given evaluation oracle access to a monotone distribution, we can approximate the entropy in
polylogarithmic time.

Theorem 14 For any γ > 1, there is an algorithm in the evaluation oracle model that γ-approximates the
entropy of monotone distributions on [n] in the family DΩ(γ2/(

√
γ−1)), and runs in O(d1/ log γe logn) time.

Proof. Algorithm A partitions the domain [n] into intervals, and only queries the endpoints of each interval.
The remaining probability values are interpolated from these queries.

The partition of [n] is constructed recursively, starting with a single active interval [1, n]:

While there is some active interval [`, u]:

• Make it inactive.

• If p` > n−2 and p`/pu > γ, then split [`, u] into two equal-sized active subintervals.

Any required probability values (i.e., p`, pu at each iteration) are obtained from the oracle. At the end of the
procedure, the algorithm has probabilities for a particular sequence of elements 1 = io ≤ i1 ≤ · · · ≤ ik = n,
such that for each j < k, either pij ≤ n−2 or pij /pij+1

≤ γ. The splitting criteria ensure that the total number
of queries k + 1 is roughly logarithmic in the number of elements; more precisely, k ≤ 1 + (1 + 4/ logγ) log n.

The algorithm then approximates p by a distribution q that is interpolated from the handful of pi values
that it queries:

• For each ij , set qij = pij .

• For any i ∈ (ij , ij+1): if pij ≤ n−2 then set qi = 0; otherwise set qi =
√

pij pij+1
.

Let B0 denote the elements whose probabilities get set to zero, and let B = [n] \ B0 be the remaining
elements. We know that for i ∈ B0, pi ≤ n−2. Thus, wp(B0) ≤ n−1 and so by Lemma 1(b), B0 doesn’t
contribute much to the entropy: HB0

(p) ≤ 2n−1 log n. We therefore need to focus on B.

For each i ∈ B, define ci
def
= qi/pi. Since the endpoints of the interval containing i have probabilities that

are within a multiplicative factor γ of each other, it follows that 1√
γ ≤ ci ≤

√
γ. This means that HB(q) is

not too different from HB(p):

HB(q) = −
∑

i∈B

qi log qi = −
∑

i∈B

cipi log(cipi) = −
∑

i∈B

cipi log pi −
∑

i∈B

cipi log ci

≤ √
γ · HB(p) +

wp(B) log e

e
≤ γ · H(p),

10

when H(p) ≥ log e/(e(γ − √
γ)). The first inequality follows from the fact (see Lemma 1) that −x log x ≤

(log e)/e for all x ∈ (0, 1). Similarly,

HB(q) = −
∑

i∈B

qi log qi = −
∑

i∈B

cipi log(cipi) = −
∑

i∈B

cipi log pi −
∑

i∈B

cipi log ci

≥ 1√
γ
· HB(p) − wp(B)

√
γ log

√
γ ≥ 1√

γ

(

H(p) − 2 logn

n

)

− wp(B)
√

γ log
√

γ

≥ H(p)/γ,

when H(p) ≥ (γ2 + (2n−1√γ log n))/(
√

γ − 1). The second-to-last inequality uses HB0
(p) ≤ 2n−1 log n.

The algorithm outputs H(q) = HB(q), which we’ve shown is a γ-approximation to H(p). �

6.2 The Generation Oracle Model

We show that the entropy of a monotone distribution can also be approximated in polylogarithmic time in
the generation oracle model. Our algorithm rests upon the following observation that is formally stated in
Lemma 15: if a monotone distribution p over [n] is such that wp([n/2]) and wp([n]\[n/2]) are very close,
then the distribution must be close to uniform. In such a case, we can approximate the entropy of the
distribution by the entropy of the uniform distribution.

The main idea behind our algorithm is to recursively partition the domain into half, stopping the recursion
when either (1) the probability masses of two halves are very close or (2) they are both too small to contribute
much to the total entropy. Our algorithm can be viewed as forming a tree based on the set of samples S,
where the root is labeled by the range [1, n], and if the node labeled by the range [i, j] is partitioned, its
children are labeled by the ranges [i, (i + j)/2] and [(i + j)/2 + 1, j], respectively. Once the partition tree is
determined, the algorithm estimates the entropy by summing the contributions from each leaf, assuming that
the conditional distribution within a leaf (that is, the distribution restricted to the leaf’s range) is uniform.
By the choice of our splitting and stopping criteria, we show that the number of leaves in the tree is at most
polylogarithmic in n. This in turn allows us to bound both the running time and the probability of error.

More specifically, the procedure BuildTree(S, β) takes as input a parameter β > 1 and a multiset S
of m samples from p, and outputs a rooted binary tree TS as follows: Let v be a node in the tree that is
currently a leaf corresponding to the interval [i, j] for some i < j. For an interval I , let SI denote the set of
samples that fall in I and |I | the length of the interval. We determine that v will remain a leaf if either of
the following two conditions is satisfied:

• |S[i,j]| < mβ/ log3 n (call v light), or

• |S[i,b(i+j)/2c]| ≤ β|S[b(i+j)/2c+1,j] | (call v balanced).

Otherwise, we split v’s interval by attaching two children to v, corresponding to the intervals [i, b(i + j)/2c]
(the left child) and [b(i + j)/2c+ 1, j] (the right child). Let I(TS) denote the set of intervals corresponding
to the balanced leaves of TS .

For each balanced interval I ∈ I(TS), we estimate the contribution of the interval to the total entropy of
the distribution. Note that if the interval I had uniform conditional distribution, then

HI(p) =
∑

i∈I

wp(I)

|I | log
|I |

wp(I)

= wp(I) (log |I | − log wp(I))

= wp(I) (log(|I |/2) − log(wp(I)/2)) .

Motivated by this, we define a function α(I, β) that approximates the entropy in the balanced interval I :

α(I, β)
def
=

|SI |
m

(

log
|I |
2

+ log
m

β|SI |

)

.

We now give the top level description of our algorithm:

Algorithm MonotoneApproximateEntropy(γ)

11

1. β =
√

γ.

2. Get a multiset S of m = O((β5 log4 n)/(β − 1)2) samples from p.

3. TS = BuildTree(S, β).

4. Output
∑

I∈I(TS) α(I, β).

Overview of the proof The main steps in the proof are the following. First, we give a key lemma on
which the whole algorithm is based; this lemma implies that for an interval corresponding to a balanced leaf,
the upper and lower bounds on the possible entropy values are fairly close (Lemma 15). The rest of the proof
is devoted to showing that the domain can be split into intervals that are either balanced or small enough
that they do not contribute much (in total) to the entropy of the distribution. In Lemma 16, we show that
sampling can be reliably used to decide whether or not to split an interval. We then quantify the relationship
between α(I, β) and HI(p) for each interval I corresponding to a balanced leaf, taking the sampling error
into account (Lemma 18). Note that if it were possible to partition the whole domain into balanced intervals
of large enough size, then it would be a simple matter to bound the the number of intervals and thus the
error probability and running time of the algorithm. The most challenging part of the proof is to deal with
the light intervals, in particular to show two properties: (1) the number of such intervals is approximately
logarithmic in the size of the domain (Lemma 19) and (2) their total entropy contribution is negligible and
thus can be ignored. In order to do this, we prove an interesting and non-trivial property of the tree TS : at
any level, it contains at most O(log log n) nodes. Thereafter, (1) and (2) follow easily.

First, we show upper and lower bounds on the entropy contribution of an interval in terms of the total
weight and the weight distribution between two halves of the interval.

Lemma 15 Let I be an interval of length 2k in [n], let I1 and I2 be the bisection of I, and let p be a
monotone distribution over [n]. Then,

HI(p) ≤ wp(I) log k − wp(I1) log wp(I1) − wp(I2) log wp(I2),

and
HI(p) ≥ 2wp(I2) log k − wp(I2)

(

log wp(I1) + log wp(I2)
)

.

Notice in particular that the ratio of the upper bound to the lower bound is at most wp(I)/2wp(I2).

Proof. The upper bound follows from Lemma 1(a): the partial entropies HI1(p) and HI2(p) are maximized
when their weights are spread uniformly over their constituent elements.

Let w1
def
= wp(I1) and w2

def
= wp(I2). We will prove the lower bound even for functions that satisfy a

relaxation of the monotonicity property: namely, the condition that for i ≤ k, pi ≥ w2/k, and for i > k,
pi ≤ w1/k. It is easy to verify that any monotone distribution will satisfy this new constraint. A lower
bound on HI1(p) is given by Lemma 1(c) (plug in w2/k for as many elements as possible), and for HI2(p)
it follows immediately from pi ≤ w1/k for i ∈ I2. Combining, we get

HI(p) ≥ w2 log
k

w2
+ w2 log

k

w1
.

�

For a balanced leaf corresponding to an interval I with bisection I1, I2, the error in the entropy estimate
depends upon the ratio wp(I)/2wp(I2). This can be made small by choosing the parameter β appropriately.

The following lemma shows that the samples can be used to decide if an interval should be split.

Lemma 16 Let I be an interval in [1, n] such that wp(I) ≥ log−3 n and I1, I2 a bisection of I. Let S be a
sample set of size m = O((β5 log4 n)/(β − 1)2) drawn from p. For β > 1,

1. With probability at least 1 − n−2, (1/β) · m · wp(I) ≤ |SI | ≤ β · m · wp(I);

2. If wp(I1)/wp(I2) ≥ 2β − 1, then with probability at least 1 − 2n−2, |SI1 | ≥ β · |SI2 |;

12

3. If wp(I1)/wp(I2) ≤ (1 + β)/2, then with probability at least 1 − 2n−2, |SI1 | ≤ β · |SI2 |.

Proof. Part 1 follows from a straightforward application of multiplicative Chernoff bounds. The random
variable |SI | is the sum of m independent Bernoulli trials, each with success probability wp(I). Therefore
E [|SI |] = mwp(I), and by the choice of m in the algorithm, the probability that |SI | deviates from its
expectation by more than a multiplicative factor of β is at most 1/n2.

From Part 1, we know that with probability at least 1− n−2, |SI | ≥ mwp(I)/β. Fix any t ≥ mwp(I)/β.
To prove Part 2, consider the ratio of the number of samples from I1 and I2 conditioned on the event that
there are exactly t samples from I . Let Yi, for i = 1, . . . , t, be an indicator random variable that takes the
value 1 if the i-th of these t samples is in I2, and Y =

∑

i Yi. Therefore, we want to show that the probability
that (t − Y)/Y < β is at most 2/n2.

The rest of the proof is an application of Chernoff bounds. Note that (t−Y)/Y < β implies Y > t/(β+1).
Since E [Y] ≤ t/(2β), we get

Pr

[

Y >
t

β + 1

]

≤ Pr

[

Y > E [Y] +
t(β − 1)

2β(β + 1)

]

≤ exp

(−t(β − 1)2

β2(β + 1)2

)

.

Conditioned on the event that t ≥ mwp(I)/β, this probability is less than 1/n2. Combining this with Part 1,
we can conclude that with probability at least 1 − 2n−2, we have |SI1 | ≥ β · |SI2 |.

Similarly, the third part of the lemma can be proved. �

There are various events that we would like to count upon: for instance, that for balanced intervals I , the
ratio of the weights of the two halves is at most 2β − 1; and that intervals associated with two sibling nodes
have weight ratio at least (1 + β)/2. Lemma 16 tells us that these events hold with high probability. We
now package all of them into a single assumption.

Assumption 17 (1) For each interval I corresponding to a balanced node of the tree, |SI | lies in the range
[(1/β) · m · wp(I), β · m · wp(I)]; (2) for each interval I we decide to split, wp(I1)/wp(I2) ≥ (1 + β)/2; (3)
for each balanced interval I, we have wp(I1)/wp(I2) ≤ 2β − 1; and (4) each light leaf has weight at most
β2/ log3 n.

Now we can show that under the assumption above, the entropy contribution of each balanced interval
is approximated well. Recall that I(TS) is the set of all balanced intervals in TS .

Lemma 18 Under Assumption 17, for every I ∈ I(TS), if wp(I) ≥ log−3 n, then

HI(p)

β
− 2β · wp(I) ≤ α(I, β) ≤ β2 · HI(p).

Proof. Let I1, I2 be the bisection of I . Under Assumption 17, |SI |/(mβ) ≤ wp(I) ≤ |SI |β/m and
wp(I1)/wp(I2) ≤ 2β − 1. These imply that the upper and lower bounds for HI(p) given in Lemma 15
are within a multiplicative factor β of one another. Therefore our entropy estimate α(I, β) is not too far
from HI(p):

α(I, β) =
|SI |
m

(

log
|I |
2

+ log
m

β|SI |

)

≤ βwp(I) log(|I |/2) − βwp(I) log wp(I)

≤ β · (wp(I) log(|I |/2) − wp(I1) log wp(I1) − wp(I2) log wp(I2))

≤ β2 · HI(p).

The second inequality above is a simple consequence of wp(I) = wp(I1)+wp(I2), and the expression on that
line is exactly (β times) the upper bound of Lemma 15. Similarly, for the other direction,

α(I, β) =
|SI |
m

(

log
|I |
2

+ log
m

β|SI |

)

≥ wp(I)

β
log

|I |
2

− wp(I)

β
log

wp(I)

2
− wp(I)

β
log 2β2

13

≥ 1

β

(

wp(I) log
|I |
2

− wp(I1) log wp(I1) − wp(I2) log wp(I2)

)

− 2β · wp(I)

≥ HI(p)

β
− 2β · wp(I).

The second inequality follows from the concavity of log x. �

Next, we show a bound on the number of nodes in the tree.

Lemma 19 Under Assumption 17, given β > 1, the number of nodes in TS is at most

12 logn log log n

log(β + 1) − 1
.

Proof. For any given level of the tree, let v1, . . . , v2k denote the internal (that is, non-leaf) nodes at that
level, ordered by the intervals they define. There is an even number of these nodes because they each have a
sibling at the same level. If vi, vi+1 are siblings, we know from Assumption 17 that w(vi) ≥ w(vi+1)·(1+β)/2.
And in general, by monotonicity, w(vi) ≥ w(vi+1). Therefore, as one moves from v1 to v2k, the weight w(vi)
drops by a factor of at least (1+β)/2 for every two nodes. Moreover these weights never drop below 1/ log3 n,
by the split criterion and Assumption 17. It follows that

k ≤ 3 log log n

log(1 + β) − 1
.

We now have a bound on the number of internal nodes at any level. To finish the lemma, we observe that
there are at most log n levels, that the total number of nodes (internal and leaf) is twice the number of
internal nodes plus one, and that we have overcounted by at least one at the root level. �

Now, we are ready to complete our proof.

Theorem 20 For every γ > 1, there is an algorithm that approximates the entropy of a monotone distribu-
tion on [n] in D(6γ3/2/(log(

√
γ+1)−1)(

√
γ−1)) to within a multiplicative factor of γ with probability at least 3/4

in

O

(

γ5/2 log6 n

(
√

γ − 1)2(log(
√

γ + 1) − 1)

)

time.

Proof. Suppose Assumption 17 holds; we will come back and address this later. Let’s start by handling
the leaves. By Assumption 17, each light leaf has weight at most β2/ log3 n, and so by Lemma 19, the total
weight of the intervals associated with light leaves is at most

6β2 log log n

(log(β + 1) − 1) log2 n
.

Therefore, their combined entropy contribution is at most log n times this,

6γ log log n

(log(
√

γ + 1) − 1) log n

(recall β2 = γ), which will turn out to be negligible for our purposes.
Now we move on to the internal nodes. By Lemma 18,

HI(p)

β
− 2β · wp(I) ≤ α(I, β) ≤ β2 · HI(p)

for each interval I associated with a balanced leaf. Let B = ∪I∈I(TS)I . The algorithm’s output is:

∑

I∈I(TS)

α(I, β) ≤
∑

I∈I(TS)

β2 · HI(p) = γ · HB(p) ≤ γ · H(p).

14

We can show the other direction as follows.

∑

I∈I(TS)

α(I, β) ≥ HB(p)

β
− 2β ≥

H(p) − 6γ log log n
(log(

√
γ+1)−1) log n

β
− 2β ≥ H(p)

β2

when H(p) ≥ (6γ3/2/(log(
√

γ + 1) − 1)(
√

γ − 1)).
We now proceed to justify Assumption 17. Consider the 2n intervals that correspond to the nodes of a

complete tree T . By Lemma 16, Assumption 17 fails to hold for a particular interval of T with probability
O(1/n2). Hence, Assumption 17 fails to hold for TS with probability O(1/n) by the union bound over all
the intervals. Therefore, the error probability of the algorithm is o(1). The running time of the algorithm is
the sample size times the size of TS . �

Note that the lower bound shown in Theorem 6 applies to monotone distributions. Therefore, a restriction
on the entropy such as the one in the statement of Theorem 20 is necessary.

7 Subset-Uniform Distributions

Consider the family of distributions Ek that are uniform over some subset K ⊆ [n] with |K| = k. The entropy
of this class of distributions is log k. If we approximate k to within a multiplicative factor of γ, then we get
a very strong additive approximation to log k. Now, given a generation oracle access to a distribution that
is promised to be from Ek for some k, the entropy estimation problem reduces to approximating k.

Theorem 21 For every γ > 1, there exists an algorithm in the generation oracle model that, for every k and
for any distribution p ∈ Ek, outputs ` such that k/γ ≤ ` ≤ γk with probability at least 3/4 in O(γ

√
k/(γ−1))

time.

Proof. Our algorithm, inspired by [5], is as follows.

1. Let c = 16γ/(γ − 1)2.

2. Draw samples until at least c pairwise collisions are observed.

3. If M is the number of samples seen, output
(

M
2

)

/c.

Note that M is a random variable.
To analyze this algorithm, pick any integer m, and suppose that m samples are drawn from the distribu-

tion. For i < j, let Xij be an indicator random variable denoting a collision between the ith and jth samples
seen. Let Sm =

∑

i<j Xij be the total number of collisions.

For any i < j, E [Xij] = 1/k; therefore E [Sm] =
(

m
2

)

· 1/k. This motivates the algorithm above. To
bound the chance of failure, we also need the variance of Sm. Notice that

E
[

S2
m

]

= E

(

∑

i<j

Xij

)(

∑

a<b

Xab

)

 =
∑

i<j, a<b

E [XijXab] .

In the final summation, the various terms can be segregated according to the cardinality of the set {i, j, a, b}.
If this set has cardinality 3 or 4, then E [XijXab] = 1/k2. If the set has cardinality 2, then E [XijXab] = 1/k.

This last possibility occurs for exactly
(

m
2

)

of the
(

m
2

)2
terms in the summation. Therefore

E
[

S2
m

]

=

(

(

m

2

)2

−
(

m

2

)

)

1

k2
+

(

m

2

)

1

k
,

whereupon Var [Sm] = E
[

S2
m

]

− E [Sm]
2

=
(

m
2

)

(1/k − 1/k2) ≤ E [Sm].

15

What is the chance that the algorithm outputs a number less than k/γ? Let m0 be the largest integer
m such that

(

m
2

)

< ck/γ.

Pr [Output is < k/γ] = Pr [M ≤ m0] = Pr [Sm0
≥ c]

≤ Pr [|Sm0
− E [Sm0

] | ≥ (c − E [Sm0
])] .

This last probability can be bounded by Chebyshev’s inequality, giving

Pr [Output is < k/γ] ≤ Var [Sm0
]

(c − E [Sm0
])2

≤ E [Sm0
]

(c − E [Sm0
])2

≤ γ

c(γ − 1)2
≤ 1

16
,

where the last two inequalities follow from E [Sm0
] < c/γ, and from the particular choice of c.

To bound that chance that the output is more than kγ, we proceed similarly, letting m0 denote the
smallest integer m for which

(

m+1
2

)

> cγk. Then,

Pr [Output is > kγ] = Pr [M > m0] = Pr [Sm0
< c]

≤ Pr [|Sm0
− E [Sm0

] | ≥ (E [Sm0
] − c)] .

Again using Chebyshev’s inequality, we get

Pr [Output is > kγ] ≤ Var [Sm0
]

(E [Sm0
] − c)2

≤ E [Sm0
]

(E [Sm0
] − c)2

≤ 3γ

c(γ − 1)2
≤ 3

16
.

The total probability of error is therefore at most 1/4. When the algorithm succeeds,
(

M
2

)

/c ≤ kγ, and so
the number of samples (and the running time) is O(

√
ckγ). �

Acknowledgment

We thank the referee for improving the presentation of the paper.

References

[1] A. Antos and I. Kontoyiannis. Estimating the entropy of discrete distributions. In Proceedings of IEEE
International Symposium on Information Theory (ISIT), page 45, 2001.

[2] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random variables for
independence and identity. In Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, pages 442–451. IEEE Computer Society, 2001.

[3] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are close.
In Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pages 259–269,
Redondo Beach, CA, 2000. IEEE Computer Society.

[4] H. Cai, S. R. Kulkarni, and S. Verdú. Universal entropy estimation via block sorting. IEEE Transactions
on Information Theory, 50(7):1551–1561, 2004.

[5] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Technical Report TR00-020,
Electronic Colloquium on Computational Complexity (ECCC), 2000.

[6] O. Goldreich and S. Vadhan. Comparing entropies in statistical zero knowledge with applications to the
structure of SZK. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity
(CCC-99), pages 54–73, Los Alamitos, May 4–6 1999. IEEE Computer Society.

[7] P. Grassberger. Entropy estimates from insufficient samplings. E-print Physics/0307138, July 2003.

[8] B. Harris. The statistical estimation of entropy in the non-parametric case. Colloquia Mathematica
Societatis János Bolyai, Topics in Information Theory, 16:323–355, 1975.

16

[9] M. Kearns, Y. Mansour, D. Ron, R. Rubinfeld, R. E. Schapire, and L. Sellie. On the learnability of
discrete distributions. In Proceedings of the 26th Annual Symposium on the Theory of Computing, pages
273–282, New York, May 1994. ACM Press.

[10] S-K. Ma. Calculation of entropy from data of motion. J. of Statistical Physics, 26(2):221–240, 1981.

[11] L. Paninski. Estimation of entropy and mutual information. Neural Computation, 15(6):1191–1253,
2003.

[12] L. Paninski. Estimating entropy on m bins given fewer than m samples. IEEE Transactions on Infor-
mation Theory, 50(9):2200–2203, 2004.

[13] D. Ron. Unpublished manuscript, 2004.

[14] S. P. Strong, R. Koberle, R. R. de Ruyter van Steveninck, and W. Bialek. Entropy and information in
neural spike trains. Phys. Rev. Lett., 80:197–200, 1998.

[15] D. Wolpert and D. R. Wolf. Estimating functions of probability distributions from a finite set of samples.
Part I. Bayes estimators and the Shannon entropy. Physical Review E, 52(6):6841–6854, 1995.

[16] A. J. Wyner and D. Foster. On the lower limits of entropy estimation. Submitted to IEEE Transactions
on Information Theory, 2003.

17

