
Testing random variables for independence and identity∗

Tuğkan Batu† Eldar Fischer‡ Lance Fortnow§ Ravi Kumar¶ Ronitt Rubinfeld‡

Patrick White‖

January 10, 2003

Abstract

Given access to independent samples of a distributionA over [n]× [m], we show how to test whether
the distributions formed by projecting A to each coordinate are independent, i.e., whether A is ε-close
in the L1 norm to the product distribution A1 ×A2 for some distributions A1 over [n] and A2 over [m].
The sample complexity of our test is Õ(n2/3m1/3poly(ε−1)), assuming without loss of generality that
m ≤ n. We also give a matching lower bound, up to poly(log n, ε−1) factors.

Furthermore, given access to samples of a distributionX over [n], we show how to test ifX is ε-close
in L1 norm to an explicitly specified distribution Y . Our test uses Õ(n1/2poly(ε−1)) samples, which
nearly matches the known tight bounds for the case when Y is uniform.

∗A preliminary version of this paper appeared in the 42nd Symposium on Foundations of Computer Science, 2002, Las Vegas,
NV.

†Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA. This work was partially
supported by ONR N00014-97-1-0505. batu@saul.cis.upenn.edu.

‡NEC Research Institute, Princeton, NJ. Current Address: Computer Science Department, Technion, Technion City, Haifa,
Israel. eldar@cs.technion.ac.il.

§NEC Research Institute, Princeton, NJ. {fortnow, ronitt}@research.nj.nec.com.
¶IBM Almaden Research Center, San Jose, CA. ravi@almaden.ibm.com.
‖Department of Computer Science, Cornell University, Ithaca, NY. This work was partially supported by ONR N00014-97-1-

0505. white@cs.cornell.edu.

1 Introduction

Fred works at a national consumer affairs office, where each day he gets several consumer complaints.
Because he has a hunch that there is some correlation between the zip code of the consumer and the zip code
of the company, Fred wants to check whether these zip codes are dependent. However, since there are 1010

zip code pairs, he does not have enough samples for traditional statistical techniques. What can Fred do?
Suppose we are given a black box that generates independent samples of a distribution A over pairs

(i, j) for i ∈ [n] and j ∈ [m] with m ≤ n. We want to test whether the distribution over the first elements
is independent of the distribution over the second elements, without making any additional assumptions on
the structure of A.

Checking independence is a central question in statistics and there exist many different techniques for
attacking it (see [5]). Classical tests such as the χ2 test or the Kolmogorov-Smirnoff test work well when n
and m are small, but for large n,m these tests require more than n ·m samples, which may be huge. Can
one develop a test that uses fewer than nm samples?

We also consider the problem of testing if a black-box distribution over [n] is close to a known distribu-
tion. The χ2 test is commonly used for this problem, but requires at least a linear number of samples. Can
one develop a test that uses a sublinear number of samples?

Testing statistical properties of distributions has been studied in the context of property testing [7, 3]
(see the survey by Ron [6]). Using the techniques of Goldreich and Ron [4], one can get (see [1]) an Õ(

√
r)

algorithm to test if a black-box distribution over r elements is close in L1 norm to uniform. Batu, Fortnow,
Rubinfeld, Smith, and White [1] show how to test whether two black-box distributions over r elements are
close in L1 norm, using Õ(r2/3) samples. In particular, this gives a test that answers the second question in
the affirmative.

Our results. In this paper we develop a general algorithm (Section 3) for the independence testing prob-
lem with a sublinear sample complexity (in the size of [n] × [m]). To our knowledge, this is the first
sublinear time test which makes no assumptions about the structure of the distribution. Our test uses
O(n2/3m1/3poly(log n, ε−1)) samples, assuming without loss of generality that n ≥ m, and distinguishes
between the case that A = A1 × A2, and the case that for all A1 and A2, |A − A1 × A2| ≥ ε. Here, A1

and A2 are distributions over [n] and [m] respectively and |A−B| represents the L1 or statistical difference
between two distributions. We also show that this bound is tight up to poly(log n, ε−1) factors (Sectin 5).

We then give an algorithm (Section 4) to test if a black-box distribution over [n] is close (in L1 norm) to
an explicitly specified distribution. Our algorithm uses O(n1/2poly(log n, ε−1)) samples – almost matching
the upper and lower bounds of [4] for the uniform case.

Overview of our techniques. Our approach begins with presenting two different ways of testing indepen-
dence of distributions. These two methods have different sample complexities and are desirable in different
situations.

In the first method, we use the equivalence of testing independence to testing whether A is close to
π1A × π2A where πiA is the distribution of A projected to the i-th coordinate. Since it is easy to generate
samples of π1A × π2A given samples of A, we can apply the result of Batu et al. [1]. This immediately
gives us a test for independence that uses Õ(n2/3m2/3) samples.

For the second method, first consider the case where π1A and π2A are uniform over [n] and [m], respec-
tively. Testing the independence is equivalent to testing whether A is uniform in [n] × [m]. We can use the
test of Goldreich and Ron [4] for this using Õ(

√
nm) = Õ(n) samples.

1

To reduce the general problem to that of π1A and π2A uniform we first use a bucketing technique
(Section 2.3) to partition [n] and [m] into a polylogarithmic number of buckets of elements of similar prob-
abilities given π1A and π2A, respectively. To do this we must approximate the probabilities of each π1A(i)
and π2A(j) which requires Õ(max(n,m)) = Õ(n) samples.

For all buckets B1 ⊆ [n] and B2 ⊆ [m] we could try to test independence of A restricted to B1 × B2

since π1A restricted to B1 and π2A restricted to B2 are close to uniform. Unfortunately they are not close
enough to uniform for our purposes. To overcome this we use a sifting technique (Section 2.4). We first
collect many samples (i, j) with i ∈ B1 and j ∈ B2. We then create a virtual sampler that first chooses i
uniformly from B1 and then picks the first (i, j) we previously sampled. We then create a second virtual
sampler that chooses j uniformly from B2 and picks the first (i, j) from the first virtual sampler. We show
that the second virtual sampler, which we call a sieve, preserves the dependencies of the original distribution,
and has uniform projections to B1 and B2, so we can apply the uniform tester described above. We also
show that this process only costs us a polylogarithmic factor in the number of samples we need, achieving a
tester using Õ(n) samples overall.

Then, we combine these two algorithms in an appropriate manner to exploit their different behavior.
In particular, we partition the elements of [n] to ‘light’ and ‘heavy’ elements based on π1A. We apply the
first method to the light elements, and apply the second method to the heavy elements. This asymmetric
approach helps us achieve an optimal trade-off in the sample complexities, resulting in the Õ(n2/3m1/3)
bound.

2 Some preliminary tools

We use the Õ notation to hide dependencies on the logarithm of any of the quantities in the expression, i.e.,
f = Õ(g) if f = O(g · poly(log g)). To simplify the exposition, we assume that all tests are repeated so that
the confidence is sufficiently high. Since amplifying the confidence to 1 − δ can be achieved with O(log 1

δ)

trials, an additional multiplicative factor that is polylogarithmic in n or n2/3m1/3 (as the case may be) is all
that we will require.

We use X,Y,Z to denote random variables over sets and A,B,C,D to denote random variables over
pairs of sets. We often refer to the first coordinate of a sample from the latter type of distributions as the
prefix.

For a set R, let UR denote the uniform random variable over R. Let X(i) denote the probability that

X = i, and for a subset R′ of R, let X(R′)
def
=

∑

i∈R′ X(i). If A is a random variable over S × T , let
πiA denote the random variable obtained by projecting A into the i-th coordinate. Let A(i, j) denote the
probability that A = (i, j).

Let | · | stand for the L1 norm, ‖ · ‖ for the L2 norm, and ‖ · ‖∞ for the L∞ norm. If |A − B| ≤ ε, we
say that A is ε-close to B.

We assume that a distribution X over R can be specified in one of two ways. We call X a black-box
distribution if an algorithm can only get independent samples from X and otherwise has no knowledge
about X . We call X an explicit distribution if it is represented by an oracle which on input i ∈ R outputs
the probability mass X(i).

2.1 Independence and approximate independence

Let A be a distribution over [n] × [m]. We say that A is independent if the induced distributions π1A and
π2A are independent, i.e., that A = (π1A) × (π2A). Equivalently, A is independent if for all i ∈ [n] and

2

j ∈ [m], A(i, j) = (π1A)(i) · (π2A)(j).
We say that A is ε-independent if there is a distribution B that is independent and |A − B| ≤ ε. Other-

wise, we say A is not ε-independent or is ε-far from being independent.
Now, closeness is preserved under independence:

Proposition 1 Let A,B be distributions over S × T . If |A − B| ≤ ε/3 and B is independent, then |A −
(π1A) × (π2A)| ≤ ε.

Proposition 1 follows from the following lemmas.

Lemma 2 ([8]) Let X1, Y1 be distributions over S and X2, Y2 be distributions over T . Then |X1 × Y1 −
X2 × Y2| ≤ |X1 − Y1| + |X2 − Y2|.

Lemma 3 LetA,B be distributions over S×T . If |A−B| ≤ ε, then |π1A−π1B| ≤ ε and |π2A−π2B| ≤ ε.

PROOF OF PROPOSITION 1: Clearly, B = (π1B) × (π2B). Using the triangle inequality, Lemma 2 and
Lemma 3, |A − (π1A) × (π2A)| ≤ |A − B| + |B − (π1A) × (π2A)| = |A − B| + |(π1B) × (π2B) −
(π1A) × (π2A)| ≤ ε/3 + 2ε/3 = ε. �

2.2 Restriction and coarsening

We begin with the definitions.

Definition 4 Given a random variable X over R, and ∅ ⊂ R′ ⊆ R, the restriction X|R′ is the random
variable over R′ with distribution X|R′(i) = X(i)/X(R′).

Given a random variable X over R, and a partition R = {R1, . . . , Rk} of R, the coarsening X〈R〉 is
the random variable over [k] with distribution X〈R〉(i) = X(Ri).

The definition of restriction resembles the definition of a conditional distribution, only a restriction is defined
as a distribution over the subset R′, while a conditional distribution is defined over the whole R by padding
it with zeros.

In the light of the above definition, it follows that:

Observation 5 If X is a random variable over R and R = {R1, . . . , Rk} is a partition of R, then for all i
in [k] and j in Ri, X(j) = X〈R〉(i) ·X|Ri

(j).

In words, the probability of picking an element j belonging to the partition Ri according to X is equivalent
to the probability of picking the partition Ri times the probability of picking j when restricted to the partition
Ri. Using Observation 5, it follows that A(i, j) = (π1A)(i) · (π2A|{i}×[m])(j).

The following lemma (proof omitted) shows that two random variables are close if they are close with
respect to restrictions and coarsening.

Lemma 6 Let X,Y be random variables over R and let R = {R1, . . . , Rk} be a partition of R. If for all i
in [k], |X|Ri

− Y|Ri
| ≤ ε1 and |X〈R〉 − Y〈R〉| ≤ ε2, then |X − Y | ≤ ε1 + ε2.

Note that if (1 − ε)X(Ri) ≤ Y (Ri) ≤ (1 + ε)X(Ri) for every i ∈ [k], then |X〈R〉 − Y〈R〉| ≤ ε.
The following lemma (proof omitted) shows a partial converse: ifX and Y are close, then they are close

when restricted to sufficiently ‘heavy’ partitions of the domain.

Lemma 7 Let X,Y be distributions over R and let R′ ⊆ R. Then |X|R′ − Y|R′ | ≤ 2|X − Y |/X(R′).

3

2.3 Bucketing

Bucketing is a general tool that decomposes an arbitrary explicitly given distribution into a collection of
distributions that are almost uniform.

Given an explicit distribution X over R, we define Bucket(X,R, ε) as a partition {R0, R1, . . . , Rk} of
R with k = (2/ log(1 + ε)) · log |R|, R0 = {i | X(i) < 1/(|R| log |R|)}, and for all i in [k],

Ri =

{

j

∣

∣

∣

∣

(1 + ε)i−1

|R| log |R| ≤ X(j) <
(1 + ε)i

|R| log |R|

}

.

The following lemma shows that if one considers the restriction of X to any of the buckets Ri, then the
distribution is close to uniform.

Lemma 8 Let X be an explicit distribution over R and let {R0, . . . , Rk} = Bucket(X,R, ε). For i ∈ [k]
we have |X|Ri

− URi
| ≤ ε, ‖X|Ri

− URi
‖2 ≤ ε2/|Ri|, and X(R0) ≤ 1/ log |R|.

PROOF: Clearly, X(R0) ≤ 1/ log |R|. For i ≥ 1, consider an arbitrary (non-empty) subset Ri and without
loss of generality, assume Ri = {1, . . . , `} with X(1) ≤ · · · ≤ X(`). Let Y = X|Ri

. Then, Y (`)/Y (1) <
1+ ε. Also, by averaging, Y (1) ≤ 1/` ≤ Y (`). Hence Y (`) ≤ (1+ ε)Y (1) ≤ (1+ ε)/`. Similarly it can be
shown that Y (1) ≥ 1/(`(1 + ε)) > (1 − ε)/`. Thus, it follows that |Y (j) − 1/`| ≤ ε/` for all j = 1, . . . , `
and therefore,

∑

j∈Ri
|Y (j) − URi

| ≤ ε and
∑

j∈Ri
(Y (j) − URi

)2 ≤ ε2/`. �

Given an “approximation” X̃ of X , the bucketing of X̃ has similar properties as the bucketing of X .

Corollary 9 Let X, X̃ be distributions over R such that X̃ approximates X i.e., ∀i ∈ R, (1 − ε)X(i) ≤
X̃(i) ≤ (1 + ε)X(i) for some ε > 0. Then, Bucket(X̃,R, ε) is a partition {R0, . . . , Rk} of R with
k = O(ε−1 log |R|) such that for all i ∈ [k], |X|Ri

− URi
| ≤ 3ε and X(R0) ≤ (1 + ε)/ log |R|.

In our applications of bucketing, we usually ignore the 0-th bucket R0 since the probability mass on this
bucket will be negligible for our purposes.

2.4 Sieves

In our construction, we will have a distribution Awhose projections are nearly uniform. By using techniques
from Goldreich and Ron [4], we can quickly test independence of distributions whose projections are truly
uniform. In this section, we show how to reduce the nearly uniform case to the uniform case. We achieve this
reduction by constructing a sieve that collects samples from A and sifts out samples in a way that achieves
the desired uniformity.

We use the sieve in batch mode, i.e., given an input parameter t, we output t samples according to some
B, based on samples we take of the original A. An (A,B)-sieve is specified in terms of the relationship
between the properties of the output distribution B and those of input distribution A; in our case of an A
whose projections are nearly uniform the sieve will produce a B that is close to A, while uniformizing its
projections, and preserving its independence if such existed. The other important parameter is the sample
complexity of the sieve, which is the total number of samples of A it uses for a given t and the domain of A.

We first show that there is a sieve that takes a distribution A over S × T for which the first coordinate is
close to uniform, and produces a new distribution which is close to the original one, and for which the first
coordinate is uniform; moreover, this sieve preserves independence.

4

Lemma 10 There exists an (A,B)-sieve for random variables over S × T such that for any t, with high
probability, (1) ifA = (π1A)×(π2A) then B = US×(π2A), and (2) if |π1A−US | ≤ ε/4 then |A−B| ≤ ε.
The sample complexity of the sieve is O(max{|S|, t} log3 max{|S|, t}).

PROOF: First, we describe the construction of the sieve. Let t be given and let ` = O(t/|S| log |S| log t).
The sieve maintains a data structure which for every i ∈ S, contains a list Li of ` elements of T . Each list
starts out empty and is filled according to the following steps:

(1) Obtain O(max{|S|, t} log3 max{|S|, t}) samples from A and for each sample (i, j) from A, add j
to Li if |Li| ≤ `.

(2) For each i′ ∈ S, if |Li′ | < `, then discard Li′ . In this case, obtain ` more samples from A and for
each sample (i, j) from A, add j to Li′ .

For i ∈ S, let Bi be a random variable with the distribution π2A|{i}×T if Li was not discarded in step
(2) and with the distribution π2A otherwise. Thus, Li contains ` independent samples of Bi.

Next, we describe the operation of the sieve. Upon a sample request, the sieve generates a uniformly
random i ∈R S. If |Li| > 0, then the sieve picks the first element j in Li, outputs (i, j), and deletes the first
element in Li. If |Li| = 0, then the sieve gets a sample (i′, j′) from A and outputs (i, j ′).

First, notice that with high probability (via a Chernoff bound), no Li becomes empty in any of the t
requests for samples. Also, it is clear that the output of the sieve is the random variable B defined by
generating a uniform i ∈R S and then simulating the corresponding Bi. The exact distribution of B may
depend on the outcome of the preprocessing stage of the sieve, but we show that with high probability B
satisfies the assertions of the lemma.

For the first assertion, note that if A = (π1A) × (π2A), then the second coordinate is independent of
the first coordinate. So, Bi = π2A for every i (regardless of whether Li was filled by step (1) or (2)). Thus,
B = US × (π2A).

To show the second assertion, let I = {i | π1A(i) ≥ 1/(2|S|)}. Another application of the Chernoff
bound shows that with high probability, for every i ∈ I , Bi is distributed as π2(A|{i}×T) (since Li would
not be discarded in step (2)). Thus, for every i ∈ I , Li contains ` independent samples of Bi = π2A|{i}×T .
Also, since |π1(A) − US | ≤ ε/4, we have |S\I| ≤ ε|S|/2. We get
|A−B| =

∑

i∈I
∑

j∈T |A(i, j) −B(i, j)|
+

∑

i∈S\I
∑

j∈T |A(i, j) −B(i, j)|
≤ ∑

i∈I
∑

j∈T |A(i, j) −B(i, j)|
+

∑

i∈S\I
∑

j∈T (A(i, j) +B(i, j))

=
∑

i∈I
∑

j∈T π2A|{i}×T (j) ·
∣

∣

∣
π1A(i) − 1

|S|

∣

∣

∣

+
∑

i∈S\I(π1A(i) + π1B(i))

≤ ∑

i∈I

∣

∣

∣
π1A(i) − 1

|S|

∣

∣

∣
+

∑

i∈S\I π1A(i) + |S\I|
|S|

≤ 1
4ε+ 1

4ε+ 1
2ε = ε �

Sieves can be composed, i.e., an (A,C)-sieve can be combined with a (C,B)-sieve to give an (A,B)-sieve.
If the sample complexity of the (A,C)-sieve is given by the function f(t), and that of the (C,B)-sieve is
given by g(t), then the sample complexity of the combined (A,B)-sieve will be given by h(t) = f(g(t)).

Corollary 11 There exists an (A,B)-sieve for random variables over S×T such that if |π1A−US | ≤ ε/25,
and |π2A − UT | ≤ ε/25, then with high probability, (1) |B − A| ≤ (24/25)ε; (2) if A = (π1A) × (π2A)
then B = US×T ; and (3) if A is not ε-independent, then |B − US×T | ≥ (1/25)ε. The sample complexity of
the sieve is O(max{|S| + |T |, t} log6 max{|S|, |T |, t}).

5

PROOF: We apply the (A,C)-sieve from Lemma 10 on the first coordinate. Using this sieve we obtain
a random variable C (with high probability) such that |C − A| ≤ 4ε/25, π1C = US , and such that C is
independent if A is independent. Now, using Lemma 3, |π2C − π2A| ≤ 4ε/25 and since by our hypothesis,
|π2A− UT | ≤ ε/25, we get |π2C − UT | ≤ ε/5.

We now construct a (C,B)-sieve from Lemma 10, only this time switching coordinates and sifting on
the second coordinate. Using this sieve, we obtain a random variable B (with high probability) such that
|B − C| ≤ 20ε/25 and π2B = UT .

Moreover, according to Lemma 10 ifA is independent (and thus so are C and B) then π1B has the same
distribution as π1C = US . Since π1B = US, π2B = UT and they are independent, we get that B is uniform
on S × T .

Clearly, |B−A| ≤ |B −C|+ |C −A| ≤ (24/25)ε. This implies that if A is not ε-independent, then B
is (1/25)ε-far from any independent distribution on S × T , and in particular from US×T . �

2.5 Tools from earlier work

We use the following results from earlier work. The first theorem states that the L2 norm of a distribution
can be approximated in sublinear time. This can be proved using techniques from Goldreich and Ron [4].

Theorem 12 (based on [4]) Given a black-box distribution X overR, there is a test usingO(
√

|R|ε−2 log(1/δ))
queries that estimates ‖X‖2 to within a factor of (1 ± ε), with probability at least 1 − δ.

The next theorem states that there is a sublinear time test for L2 closeness of two black-box distributions.

Theorem 13 ([1]) Given two black-box distributions X,Y over R, there is a test requiring O(ε−4 log(1/δ))
samples which (1) if ‖X −Y ‖ ≤ ε/2 it outputs PASS with probability at least 1− δ and (2) if ‖X −Y ‖ ≥ ε
it outputs FAIL with probability at least 1 − δ.

The next theorem states that there is a sublinear time test for L1 closeness of two black-box distributions.

Theorem 14 ([1]) Given two black-box distributions X and Y over R, there exists a test that requires
O(|R|2/3ε−4 log |R| log(1/δ)) samples which (1) if |X − Y | ≤ max(ε2/(32 3

√

|R|), ε/(4
√

|R|)), it outputs
PASS with probability at least 1 − δ and (2) if |X − Y | > ε, it outputs FAIL with probability at least 1 − δ.

The next theorem improves this result in the case that the L∞ norms of the distributions are sufficiently
small.

Theorem 15 ([1]) Given two black-box distributions X,Y over R, with ‖X‖∞ ≤ ‖Y ‖∞, there is a test
requiring O((|R|2‖X‖∞‖Y ‖∞ε−4 +

√

|R|‖X‖∞ε−2) log(1/δ)) samples that (1) if |X − Y | ≤ ε2

3
√

|R|
, it

outputs PASS with probability at least 1− δ and (2) if |X − Y | > ε, it outputs FAIL with probability at least
1 − δ.

The following theorem states that all sufficiently large entries of a probability vector can be estimated effi-
ciently.

Theorem 16 Given a black-box distribution X over R, a threshold t and an accuracy ε > 0, there is
an algorithm that requires O(t−1ε−2 log |R| log (1/δ)) samples and outputs an estimate X̃ such that with
probability at least 1 − δ, for every i ∈ R with X(i) ≥ t we have (1 − ε)X(i) ≤ X̃(i) ≤ (1 + ε)X(i);
the algorithm also outputs a set R′ ⊆ R that includes {i ∈ R | X(i) ≥ t} and on which the above
approximation is guaranteed.

6

The proof (omitted) of the above theorem is a simple application of a Chernoff bound to several independent
samples from X . Finally, by similar methods to Theorem 15 (in conjunction with those of [4]), we can show
the following (proof omitted):

Theorem 17 Given a black-box distribution X overR, there is a test that takesO(ε−4
√

|R| log(|R|) log (1/δ))
samples, outputs PASS with probability at least 1− δ if X = UR, and outputs FAIL with probability at least
1 − δ if |X − UR| > ε.

3 Testing independence

In this section we give a test for independence of a distribution A over [n]× [m]. Without loss of generality,
let n ≥ m. The basic steps are the following. We partition [n] into “heavy” and “light” prefixes while
estimating the probabilities of the heavy prefixes explicitly. We then apply different approaches for each
of these two classes: For the distribution restricted to the heavy prefixes, we use bucketing and sifting to
transform the distribution into one that is easier to test for independence (Section 3.1). For the light prefixes,
we use a different bucketing and previous results that allow one to test that such distributions are close in
the L1 distance (Section 3.2). Finally we ensure that the distributions restricted to the the different prefixes
are consistent.

Let ε be given and let m = nβ. Let 0 < α < 1 be a parameter to be determined later. Let S ′

denote the set of indices in the first coordinate with probability mass at least n−α, which we will also
refer to as the heavy prefixes. Formally, let S ′ = {i ∈ [n] | (π1A)(i) ≥ n−α}. Similarly, we also
define: S′′ = {i ∈ [n] | (π1A)(i) ≥ 1

2n
−α}. Using a total of O(nαε−2 log n) samples, we can estimate

(π1A)(i), i ∈ S ′′ by Ã1(i) to within an ε/75 factor using Theorem 16. Let S̃ be the set of all i for which
Ã1(i) ≥ 2

3n
−α. Then, S̃ ⊃ S′, and moreover S̃ does not contain any i for which (π1A)(i) ≤ n−α/2.

Our main idea is to first test that A is independent conditioned on the set of heavy prefixes and then to
test that A is independent conditioned on the set of light prefixes. To create these conditionings, we first
distinguish (using Õ(ε−1) samples) between (π1A)(S̃) ≥ ε and (π1A)(S̃) ≤ ε/2. If the latter case occurs,
then the distribution conditioned on the heavy prefixes cannot contribute more than ε/2 to A’s distance from
independence. Otherwise, if we are guaranteed that the second case does not occur, we can simulate the
distribution for A|S̃×[m] easily—we sample from A until we find a member of S̃ × [m] which we output;

this takes O(ε−1 log(nm)) queries with a high enough success probability. We then apply an independence
test that works well for heavy prefixes to A|S̃×[m].

Next we distinguish between (π1A)([n]\S̃) ≥ ε and (π1A)([n]\S̃) ≤ ε/2. Again if the latter occurs,
then the distribution conditioned on light elements can contribute at most ε/2 to the distance from indepen-
dence. Otherwise, if the latter does not occur, as before we simulate the distribution A |([n]\S̃)×[m], and use
it with a test that works well for distributions restricted to light prefixes (they will still remain light enough
provided that (π1A)([n]\S̃) ≥ ε/2).

Finally, we obtain a test for independence (Section 3.3) by merging the testing over light and heavy
prefixes and then applying Theorem 14 to ensure the consistency of the distributions.

3.1 The heavy prefixes

We show that using sieves, the heavy prefixes can be tested for independence using roughly Õ((nα +
m)poly(ε−1)) samples. In fact, the following theorem yields a general algorithm for testing independence;
it is just that the sample complexity is particularly appealing in the heavy prefix case. Note that in this case
|S| = O(nα).

7

Theorem 18 There is an algorithm that given a black-box distribution A over S×T : (1) ifA is independent,
it outputs PASS with high probability and (2) ifA is not 3ε-independent, it outputs FAIL with high probability.
The algorithm uses Õ((|S| + |T |)poly(ε−1)) samples.

PROOF: Let Ã1 be an explicit distribution which approximates π1A. Consider the following independence
test:

Algorithm TestHeavyIndependence(A, Ã1 , ε)

(1) S def
= {S0, S1, . . . , Sk} = Bucket (Ã1, S, ε/75).

(2) Obtain an approximation Ã2 of π2A to within an
ε/75 factor, on a T̃ that includes all j ∈ [m] which
have probability at least (m logm)−1.

(3) T def
= {T0, T1, . . . , T`} =Bucket (Ã2, T̃ , ε); add

T\T̃ to T0.
(4) For (Si, Tj), i ∈ [k], j ∈ [`] do
(5) If A(Si × Tj) is not small, then
(6) If π1A|Si×Tj

or π2A|Si×Tj
are not both ε/25-uniform or if A|Si×Tj

is not ε-independent, then
FAIL.

(7) If A〈S×T 〉 is not ε/2-independent, then FAIL.
(8) PASS.

Note that, if needed, Ã1 can be obtained using Õ|S|poly(ε−1) samples. After step (2), S0 can be ig-
nored (as usual). By Theorem 17, the uniformity test in step (6) can be done using O(ε−4√n) samples
of A|Si×Tj

. The independence test in step (7) can be done by brute force, for instance, since the alphabet
is only logarithmic in |S| and |T |. Also, by bucketing, we know that |π1A − USi

| ≤ ε/25,∀i ∈ [k] and
|π2A− UTj

| ≤ ε/25,∀j ∈ [`]. For deciding in step (5) whether to execute step (6), we distinguish between
A(Si × Tj) ≥ ε/(k`) and A(Si × Tj) ≤ ε/(2k`), by taking Õ(k`/ε) many samples of A and counting how
many of them are in Si × Tj . Step (6) requires sampling of A|Si×Tj

; this is done by repeatedly sampling A
until a member of Si × Tj is found. As we are assured in step (6) that A(Si × Tj) > ε/(2k`), it suffices to
take O(ε−1 log3(nm)) samples of A in order to generate a single sample of A|Si×Tj

(remember that k and
` are logarithmic in n and m).

We now present the independence test in step (6) which is used for each pair of buckets from S and T .

Lemma 19 There is an algorithm that given a black-box distribution A over S×T such that |π1A−US | ≤
ε/25, |π2A− UT | ≤ ε/25: (1) if A is independent, it outputs PASS with high probability and (2) if A is not
ε-close to US×T , it outputs FAIL with high probability (in particular, only one of these cases can occur for
a distribution satisfying the above conditions). The algorithm uses Õ((|S| + |T |)poly(ε−1)) samples.

PROOF: We apply the (A,B)-sieve from Corollary 11. By its properties, if A is independent then B =
US×T , and if A is not ε-close to US×T , then |B − US×T | ≥ ε/25 (because |A − B| ≤ 24

25 ε). We can
distinguish between these cases using Theorem 17, with Õ(ε−1

√

|S × T |) samples from the sieve, which
in itself takes less than a total of Õ(ε−4(|S| + |T |) log6(ε−1(|S| + |T |))) samples from A. �

Note that in the application of Lemma 19, its sampling estimate should be further multiplied byO(ε−1 log3(nm))
to get the total number of samples made from A, because it is applied separately to the restriction of A to
each Si × Tj .

We now return to the proof of the theorem. If A is independent, then for all i ∈ [k], j ∈ [`], the
restriction A|Si×Tj

is independent so steps (4)–(6) pass (remember that Lemma 19 ensures that independent

8

distributions pass step (6)). In the above case, also A〈S×T 〉 is independent, so step (7) and thus the entire
algorithm passes as well.

Conversely, if for each i ∈ [k] and j ∈ [`] for which step (6) was performed π1A|Si×Tj
and π2A|Si×Tj

are both ε/25-uniform, |A|Si×Tj
− USi×Tj

| ≤ ε (this step will not pass otherwise by Lemma 19), and
|A〈S×T 〉 − D| ≤ 1

2ε where D over [k] × [`] is an independent distribution, then we show that A is 3ε-
independent. First note that A(T0) ≤ (1 − ε)/ log n. Now, we define a new random variable B over S × T
which is defined by first generating an (i, j) ∈ [k]× [`] according toD, and then generating (i ′, j′) ∈ Si×Tj
according to USi×Tj

. It is easy to see that B is independent. Finally, by Lemma 6, |A−B| ≤ (3/2)ε+ ε+
(1−ε)/ log n ≤ 3ε, where the second term comes for possibly ignoring pairs i, j for whichA(i, j) < ε/(k`)
and the third term comes from ignoring A(T0).

The sample complexity of this algorithm is dominated by the complexity for each pair of buckets going
through the test of Lemma 19. It brings us to a total sample complexity of Õ((|S|+ |T |)poly(ε−1)) samples.

�

3.2 The light prefixes

We show that using the test for L1 distance between distributions, the light prefixes can be tested for inde-
pendence using roughly Õ((n2−2αm+ n2/3)poly(ε−1)) samples. Formally, we prove:

Theorem 20 There is an algorithm that given a black-box distribution A over S × T with ‖π1A‖∞ ≤
2ε−1|S|α such that: (1) if A is independent, it outputs PASS with high probability and (2) if A is not 3ε-
independent, it outputs FAIL with high probability. The algorithm uses Õ((|S|2−2α|T | + |S|2/3)poly(ε−1))
samples.

PROOF: The following is the outline of the algorithm. Note that {{x} | x ∈ S} is the partition of S into
singletons.

Algorithm TestLightIndependence(A, ε)
(1) Obtain an approximation Ã2 of π2A within an ε/75

factor, on a T̃ which includes all j ∈ [m] which
have probability at least (m logm)−1.

(2) T def
= {T0, T1, . . . , T`} =Bucket (Ã2, T̃ , ε); add

T\T̃ to T0.
(3) For j = 1, . . . , ` do
(4) If A(S × Tj) is not small, then
(5) If |A|S×Tj

− (π1A|S×Tj
) × (π2A|S×Tj

)| ≥ ε,
then FAIL.

(6) Let j′ be such that A(S × Tj′) > ε/(4`).
(7) For j = 1, . . . , ` do
(8) If A(S × Tj) is not small, then
(9) If |A|S×Tj′

−A|S×Tj
| ≥ ε, then FAIL.

(10) PASS.

The decisions in step (4) and step (8) are done in a similar manner to what was done in Theorem 18. We
distinguish between A(S × Tj) ≥ ε/(2`) and A(S × Tj) ≤ ε/(4`) by taking Õ(`/ε) samples of A. This
guarantees that we need to take O(poly(log(nm))`/ε) samples of A for every sample of A |S×Tj

required

9

in step (5) and step (9), by re-sampling A until we obtain a member of the required set (similarly step (6)
guarantees this for sampling A|S×Tj′

).
The projections appearing in step (5) are sampled by sampling the respective distribution and ignoring

a coordinate. Obtaining the j ′ in step (6) can be done for example using a brute-force approximation of
A〈{S}×T 〉.

The test for the distribution difference in step (5) is done by using Theorem 15 with parameter ε and the
distributions A|S×Tj

and (π1A|S×Tj
)×(π2A|S×Tj

); the bound on the L∞ norm of the distributions involved
will be given below. The test for the difference in step (9) is done similarly, but this time using Theorem 14
with parameter ε.

Notice that ‖A|S×Tj
‖∞ ≤ 2|S|−α/ε for every Tj (because of the bound on ‖π1A‖∞), and that ‖π2A|S×Tj

‖∞ ≤
(1 + 3ε)|Tj |−1.

The total sample complexity for steps (3)–(5) is given by log |T | times the sample complexity for itera-
tion j. The sample complexity of the latter is given by Theorem 15, which is Õ((1+3ε) · (|S||Tj |)2 · |S|−α ·
|S|−α|Tj |−1 · ε−5), times the Õ(`/ε) for sampling from the restrictions to the buckets. This clearly domi-
nates the sample complexity for step (6), and the sample complexity for steps (7)–(9), which is Õ(|S|2/3ε−5)
by multiplying the estimate of Theorem 14, the sample complexity of the restricted distributions, and the
number of iterations.

As for correctness, if A is independent then it readily follows that the algorithm accepts, while on the
other hand it is not hard to see that if the distribution pairs compared in step (5) and step (9) are indeed all
ε-close, then A is 3ε-independent. �

3.3 Putting them together

We now give the algorithm for the general case.

Theorem 21 For n ≥ m, there is an algorithm that given a distribution A over [n]× [m] and an ε > 0: (1)
if A is independent, it outputs PASS with high probability and (2) if A is not 7ε-independent, it outputs FAIL
with high probability. The algorithm uses Õ(n2/3m1/3poly(ε−1)) samples.

PROOF: The following is the outline of the algorithm.

Algorithm TestIndependence(A,n,m, ε)
(1) Let β be such that m = nβ, and set α = (2 + β)/3.
(2) Obtain an approximation Ã1 of π1A to within an

ε/75 factor, on an S̃ which includes all i ∈ [n] which
have probability at least n−α and no i ∈ [n] which
has probability at most n−α/2.

(3) If (π1A)(S̃) is not small then
(4) If TestHeavyIndependence(A|S̃×[m], Ã1|S̃×[m], ε)

fails then FAIL.
(5) If (π1A)([n]\S̃) is not small then
(6) If TestLightIndependence(A|([n]\S̃)×[m], ε) fails

then FAIL.
(7) If both (π1A)(S̃) and (π1A)([n]\S̃) are not small

then
(8) If π2A|S̃×[m] and π2A|([n]\S̃)×[m] are not ε-close,

10

then FAIL.
(9) PASS.

In the above algorithm, steps (3), (5) and (7) use sampling to distinguish between the cases where the re-
spective quantities are at least ε and the cases where they are at most ε/2. Step (4) (if required) is done
by using Theorem 18, and step (6) is done by using Theorem 20; by the choice of α in step (1), the num-
ber of queries in both is Õ(n2/3m1/3poly(ε−1)) times the O(ε−1 log(nm)) queries required for sifting the
restricted distributions (a factor which does not change the above estimate).

In step (8) the two distributions are fed into the algorithm of Theorem 14, parametrized to guarantee
failure if these distributions are more than ε-apart; this uses a number of queries that is dominated by the
terms in the rest of the algorithm.

It is clear that if A is independent, then the test will accept with high probability. We now prove that if
the test accepts, then A is at least 7ε-independent.

If steps (4), (6) and (8) are performed and none of the above tests fails, then by a final application of
Lemma 6, where R = {S̃ × [m], ([n]\S̃) × [m]}, we get that our distribution is at least 7ε-independent
(because step (8) guarantees that the coarsening is not more than ε-far from being independent). If steps (4)
and (8) are not performed, then A(S̃ × [m]) < ε, so it contributes no more than ε to the farness of A from
being independent, and so step (6) is sufficient to guarantee 4ε-independence. Similarly 4ε-independence
holds if steps (6) and (8) are not performed since in this case A(([n]\S̃) × [m]) is small. This covers all
possible cases and concludes the proof. �

4 Testing against a known distribution

In this section we assume that the distributions X and Y are over [n], where X is a black-box distribution
and Y is explicitly given. The task is to determine if |X−Y | < ε using as few samples (fromX) as possible.
We show that this can be done using roughly Õ(

√
npoly(ε−1)) samples.

The main technical idea is to use bucketing (Section 2.3) to reduce this problem to that of testing that
each of several distributions is approximately uniform. We first bucket the given distribution Y ; recall that
bucketing gives a partition {R0, . . . , Rk} of the domain so that the distribution is close to uniform in each
of the partitions Ri (Lemma 8). For each partition Ri, we sample X and test if X|Ri

is close to uniform on
Ri. This can be accomplished using Theorem 12.

First, we need an additional step to interpret L2 results in terms of the L1 norm.

Lemma 22 For any distribution X over R, ‖X‖2 − ‖UR‖2 = ‖X − UR‖2.

Lemma 23 Let X,Y be distributions over [n] and let (R0, . . . , Rk) = Bucket(Y, [n], ε). For each i in [k],
if ‖X|Ri

‖2 ≤ (1 + ε2)/|Ri| then |X|Ri
− URi

| ≤ ε and |X|Ri
− Y|Ri

| ≤ 2ε.

PROOF: By Cauchy-Schwartz |X|Ri
−U|Ri

| ≤
√

|Ri| ‖X|Ri
−U|Ri

‖ which by Lemma 22, equals
√

|Ri|(‖X|Ri
‖2−

‖U|Ri
‖2)1/2 =

√

|Ri|((1 + ε2)/|Ri| − 1/|Ri|)1/2 = ε. As for the second statement, using Lemma 8 and
triangle inequality, |X|Ri

− Y|Ri
| < |X|Ri

− U|Ri
| + |U|Ri

− Y|Ri
| ≤ 2ε.

�

Now, we give the complete algorithm to test if a black-box distribution X is close to an explicitly specified
distribution Y .

Algorithm TestIdentity(X,Y, n, ε)

11

(1) R def
= {R0, . . . , Rk} = Bucket(Y, n, ε/

√
2).

(2) Let M be a set of O(
√
nε−2 log n) samples from X .

(3) For each partition Ri do
(4) Let Mi = M ∩Ri (preserving repetitions);

let `i = |Mi| (counting also repetitions).
(5) If Y (Ri) ≥ ε/k then
(6) If `i < O(

√
nε−2) then FAIL.

(7) Estimate ‖X|Ri
‖2 using Mi. (Thm. 12)

(8) If ‖X|Ri
‖2 > (1 + ε2)/|Ri| then FAIL.

(9) If |X〈R〉 − Y〈R〉| > ε then FAIL.
(10) PASS.

Theorem 24 Algorithm TestIdentity(X,Y, n, ε) is such that: (1) if |X − Y | ≤ ε3

4
√
n log n

, it outputs PASS

with high probability and (2) if |X −Y | > 6ε, it outputs FAIL with constant probability. The algorithm uses
Õ(

√
npoly(ε−1)) samples.

PROOF: Step (9) can be done by using brute force to distinguish between |X〈R〉 − Y〈R〉| > ε and |X〈R〉 −
Y〈R〉| < 1

2ε. This does not take a significant number of additional samples, as k is logarithmic in n.
Note that by Chernoff bounds, the probability of failing in step (6) can be made sufficiently small, unless

there is a large difference between X(Ri) and Y (Ri) for some i. Suppose that the algorithm outputs PASS.
This implies that for each partition Ri for which steps (6)–(8) were performed (which are those for which
Y (Ri) ≥ ε/k), we have ‖X|Ri

‖2 ≤ (1 + ε2)/|Ri|. From Lemma 23 we get that for each of these Ri,
|X|Ri

− Y|Ri
| ≤ 2ε.

We also have that the sum of Y (Ri) over all Ri for which steps (6)–(8) were skipped is at most ε. Also,
|X〈R〉 − Y〈R〉| ≤ ε by step (9); so the total difference between X and Y over these partitions sums up to
no more than 3ε. Adding this to the 3ε difference over the partitions that were not skipped in steps (6)–(8)
(given by applying Lemma 6 with |X|Ri

− Y|Ri
| ≤ 2ε and |X〈R〉 − Y〈R〉| ≤ ε), we get that |X − Y | ≤ 6ε.

On the other hand, suppose |X−Y | < ε3

4
√
n log n

. From the definition of the bucketing algorithm, step (1)

will return a partition with k = (2/ log(1 + ε/
√

2)) · log n < (2
√

2/ε) · log n elements. Using Lemma 7 for
all partitions Ri with Y (Ri) ≥ ε/k > ε2/(2

√
2 log n), we have |X|Ri

− Y|Ri
| < ε/(

√
2n). In terms of ‖ · ‖,

this implies ‖X|Ri
− Y|Ri

‖2 < ε2/(2n) < ε2/(2|Ri|). Since from Lemma 8, ‖Y|Ri
− URi

‖2 < ε2/(2|Ri|),
then by the triangle inequality, ‖X|Ri

−URi
‖2 ≤ ‖X|Ri

−Y|Ri
‖2 +‖Y|Ri

−URi
‖2 ≤ ε2/|Ri|. So by Lemma

22, ‖X|Ri
‖2 = ‖X|Ri

− URi
‖2 + ‖URi

‖2 ≤ (1 + ε2)/|Ri|. Therefore the algorithm will pass with high
probability on all such partitions; it is also not hard to see that the algorithm will pass step (9) as well.

The sample complexity is Õ(
√
nε−2) from step (2), which dominates the sample complexity of step (9)

(no other samples are taken throughout the algorithm). �

5 Lower bound for testing independence

Theorem 25 For any algorithm A using o(n2/3m1/3) samples whenever n ≥ m, there exist two joint
distributions over [n] × [m] for any sufficiently large n ≥ m, with one of them being independent and the
other not being (1/6)-independent, such that A cannot distinguish between these two joint distributions
with probability greater than 2/3.

12

PROOF: Fix an algorithm A using o(n2/3m1/3) samples. We first define two joint distributions A0 and B0

over [n] × [m]. Let β = lognm and α = (2 + β)/3.

Pr [A0 = (i, j)] =

1
2nαm if 1 ≤ i ≤ nα

1
mn n/2 < i ≤ n
0 otherwise

Pr [B0 = (i, j)] =

1
2nαm if 1 ≤ i ≤ nα

2
mn if

n/2 < i ≤ n and
j ∈ [1, . . . ,m/2]

0 otherwise

We now define two joint distributions A andB such thatA,B modify A0 andB0 by randomly relabeling
each element in [n] and [m]. First choose random permutations σ0 of [n] and σ1, . . . , σn of [m]. Define A
to be the distribution such that

Pr [A = (σ0(i), σi(j))] = Pr [A0 = (i, j)] .

Likewise define B to be the distribution such that

Pr [B = (σ0(i), σi(j))] = Pr [B0 = (i, j)] .

Note that A and B are actually families of distributions (indexed by the permutations). Throughout
the rest of the proof, we will refer to A and B, with an abuse of notation, as individual distributions in
these families. Since we fixed the algorithm A, we could choose the permutations σ0, . . . , σn to obtain the
members of these families that maximizes the error probability of the algorithm A.

The distribution A is independent whereas the distribution B is 1
6 -far from independent. This follows

from B being 1
2 -far from π1B × π2B and Proposition 1. The distributions π1A and π1B are identical,

and they give half the weight to a small number, namely nα, of the elements, and distribute the remaining
weight to half of the elements. The distribution π2A is uniform over its domain independent of the value of
π1A. The distribution π2B, however, is uniform over its domain only when π1B outputs an element with
the higher weight, otherwise, conditioned on the event that π1B takes on a value with the lower probability,
π2B is uniform only on a subset of its domain that is half the size. The choice of σi’s makes the distribution
π2B uniform on its domain.

Definition 26 For a pair (i, j) ∈ [n] × [m], i is the prefix. An element (i, j) ∈ [n] × [m] such that
Pr [A (or B) takes on value (i, j)] = 1

2nαm is called a heavy element. The prefix i of a heavy element (i, j)
is called a heavy prefix. Elements and prefixes with non-zero probabilities that are not heavy are called
light.

When restricted to the heavy prefixes, both joint distributions are identical. The only difference between
A and B comes from the light prefixes, and the crux of the proof will be to show that this difference will
not change the relevant statistics in a statistically significant way. We do this by showing that the only really
relevant statistic is the number of prefixes that occur exactly twice and each time with different suffix. We
then show that this statistic has a very similar distribution when generated by A and B because the expected
number of such prefixes that are light is much less than the standard deviation of the number of such prefixes
that are heavy.

13

Next, we describe an aggregate representation of the samples that A takes. We then prove that we can
assume without loss of generality that A is given this representation of the samples as input instead of the
samples themselves. Then, we conclude the proof by showing that distributions on the fingerprint when the
samples are taken from A or B are indistinguishable.

Definition 27 Fix a set of samples S = {(x1, y1), . . . , (xs, ys)} from distribution A over [n] × [m]. Say
the pattern of prefix xi is ~c where cj is the number of y’s such that (xi, y) appears exactly j times in S.
Define the function dS(~c) to be the number of prefixes x for which the pattern of x is ~c. We refer to dS as the
fingerprint of S. We will just use d(~c) when S is clear from context.

The next claim shows that the fingerprint of the sample is just as useful as the samples themselves to
distinguish between A and B.

Claim 28 Given algorithm A which for joint distributions chosen from the family A or B, correctly distin-
guishes whether the distribution is independent or ε-far from independent, there exists algorithm A ′ which
gets as input only the fingerprint of the generated sample and has the same correctness probability as A.

PROOF: Note that one can view a sample of size s chosen from the distribution A (respectively B) as first
picking s samples from A0 (respectively, B0), then picking a set of random permutations of the element
labels and outputting the random relabeling of the samples. Thus the randomness used to generate the
sample can be divided into two parts: the first set of coins φ = (φ1, . . . , φu) are the coins used to generate
the sample from A0 (B0) and the second set of coins ψ = (ψ1, . . . , ψv) are the coins used to generate the
random permutations of the element labels.

The main idea behind the proof is that given the fingerprint of a sample from A0 (respectively B0),
the algorithm A′ can generate a labeled sample with the same distribution as A (respectively, B) without
knowing which part of the fingerprint is due to heavy or light elements or whether the sample is from A or
B. In particular, given the fingerprint, assign d(~b) distinct labels from [n] to each pattern ~b. Suppose that x~b
is assigned to pattern ~b. Then create a sample which includes i copies of (x~b, yj) for each nonzero bi and
distinct yj for 1 ≤ j ≤ bi . Then choose random permutations σ0, σ1, . . . , σn of [n] and [m] and use them
to relabel the prefixes and suffixes of the sample accordingly.

Thus, A′ generates a sample from the fingerprint and feeds it to A as input. For each choice of the
sample from A0 according to random coins φ, we have that Prψ[A′ correct] = Prψ[A correct]. Therefore,
Prφ,ψ[A′ correct] = Prφ,ψ[A correct]. �

The following lemma shows that it is only the heavy prefixes, which have identical distributions in both
A and B, that contribute to most of the entries in the fingerprint.

Lemma 29 The expected number of light prefixes that occur at least three times in the sample such that at
least two of them are the same element is o(1) for both A and B.

PROOF: For a fixed light prefix, the probability that at least three samples will land in this prefix and two
of these samples will collide is o(n−1). Since there are n/2 light prefixes, by the linearity of expectation,
the expected number of such light prefixes in the sample is o(1). �

We would like to have the pattern of each prefix be independent of the patterns of the other prefixes. To
achieve this we assume that algorithm A first chooses an integer s1 from the Poisson distribution with the
parameter λ = s = o(n2/3m1/3). The Poisson distribution with the positive parameter λ has the probability

14

mass function p(k) = exp(−λ)λk/k!. Then, after taking s1 samples from the input distribution, A decides
whether to accept or reject the distribution. In the following, we show that A cannot distinguish A from
B with success probability at least 2/3. Since s1 will have a value larger than s/2 with probability at least
1 − o(1) and we will show an upper bound on the statistical distance of the distributions of two random
variables (i.e., the distributions on the fingerprints), it will follow that no symmetric algorithm with sample
complexity s/2 can distinguish A from B.

Let Fij be the random variable that corresponds to the number of times that the element (i, j) appears
in the sample. It is well known that Fij is distributed identically to the Poisson distribution with parameter
λ = srij , where rij is the probability of element (i, j) (cf., Feller [2], p. 216). Furthermore, it can also be

shown that all Fij’s are mutually independent. The random variable Fi
def
=

∑

j Fij is distributed identically
to the Poisson distribution with parameter λ = s

∑

j rij .
Let DA and DB be the distributions on all possible fingerprints when samples are taken from A and B,

respectively. The rest of the proof proceeds as follows. We first construct two processes PA and PB that
generate distributions on fingerprints such that PA is statistically close to DA and PB is statistically close to
DB . Then, we prove that the distributions PA and PB are statistically close. Hence, the theorem follows by
the indistinguishability of DA and DB .

Each process has two phases. The first phase is the same in both processes. They randomly generate
the prefixes of a set of samples using the random variables Fi defined above. The processes know which
prefixes are heavy and which prefixes are light, although any distinguishing algorithm does not. For each
heavy prefix, the distribution on the patterns is identical in A and B and is determined by choosing samples
according to the uniform distribution on elements with that prefix. The processes PA and PB use the same
distribution to generate the patterns for each heavy prefix. For each each light prefix i that appears k times
for k 6= 2, both PA and PB will determine the pattern of the prefix to be (k,~0). This concludes the first
phase of the processes.

In the second phase, PA and PB determine the entries of the patterns for the light prefixes that appear
exactly twice. These entries are distributed differently in PA and PB . There are only two patterns to which
these remaining prefixes can contribute: (2, ~0) and (0, 1,~0). For each light prefix that appears exactly twice,
PA sets the pattern to be (2,~0) with probability 1 − (1/m) and (0, 1, ~0) otherwise. For such light prefixes,
PB sets the pattern to be (2,~0) with probability 1 − (2/m) and (0, 1, ~0) otherwise.

Since the patterns for all prefixes are determined at this point, both process output the fingerprint of the
sample they have generated. We show:

Lemma 30 The output of PA, viewed as a distribution, has L1 distance o(1) to DA. The output of PB ,
viewed as a distribution, has L1 distance o(1) to DB .

PROOF: The distribution that PA generates is the distribution DA conditioned on the event that all light
prefixes has one of the following patterns: (k,~0) for k ≥ 0 or (0, 1,~0). Since this conditioning holds true
with probability at least 1 − o(1) by Lemma 29, |PA −DA| ≤ o(1). The same argument applies to PB and
DB . �

Finally, we show (omitted) that the component of the fingerprint that creates the difference between PA
and PB is normally distributed in both cases. Moreover, the expectations of these two distributions are close
enough (relative to their standard deviations) so that they are indistinguishable. Using this, it can be shown
(omitted):

Lemma 31 |PA − PB | ≤ 1/6.

15

PROOF: Given the number of times a prefix appears in the sample, the pattern of that prefix is independent
of the patterns of all the other prefixes. By the generation process, the L1 distance between PA and PB can
only arise from the second phase. We show that the second phases of the processes do not generate an L1

distance larger than 1/6.
Let G (respectively, H) be the random variable that corresponds to the values d(2, ~0) when the input

distribution isA (respectively, B). Let d′ be the part of the fingerprint excluding entries d(2, ~0) and d(0, 1,~0).
We will use the fact that for any d′, Pr [PA gen. d′] = Pr [PB gen. d′] in the following calculation.

|PA − PB | =
∑

d

|Pr [PA gen. d] − Pr [PB gen. d] |

=
∑

d′

Pr
[

PA gen. d′
]

∑

k≥0

|Pr
[

PA gen. d(2,~0) = k|d′
]

−

Pr
[

PB gen. d(2,~0) = k|d′
]

|

=
∑

C≥0

Pr [PA gen. C prefixes twice]
∑

0≤k≤C

|Pr
[

PA gen. d(2,~0) = k|C
]

−

Pr
[

PB gen. d(2,~0) = k|C
]

|
= |G−H|

Consider the composition of G and H in terms of heavy and light prefixes. In the case of A, let Gh be
the number of heavy prefixes that contribute to d(2, ~0) and Gl be the number of such light prefixes. Hence,
G = Gh + Gl. Define Hh,Hl analogously. Then, Gh and Hh are distributed identically. In the rest of the
proof, we show that the fluctuations in Gh dominate the magnitude of Gl.

Let ξi be the indicator random variable that takes value 1 when prefix i has the pattern (2, ~0). Then,
Gh =

∑

heavy i ξi. By the assumption about the way samples are generated, the ξi’s are independent.
Therefore, Gh is distributed identically to the binomial distribution on the sum of nα Bernoulli trials with
success probability Pr [ξi = 1] = exp(−s/2nα)(s2/8n2α)(1− (1/m)). An analogous argument shows that
Gl is distributed identically to the binomial distribution with parameters n/2 and exp(−s/n)(s2/2n2)(1 −
(1/m)). Similarly, Hl is distributed identically to the binomial distribution with parameters n/2 and
exp(−s/n)(s2/2n2)(1 − (2/m)).

As n and m grow large enough, both Gh and Gl can be approximated well by normal distributions.
Therefore, by the independence of Gh and Gl, G is also approximated well by a normal distribution. Simi-
larly, H is approximated well by a normal distribution. That is,

Pr [G = t] → 1√
2πStDev [G]

exp(−(t− E [G])2/2Var [G])

as n→ ∞.
Thus, Pr [G = t] = Ω(1/StDev [G]) over an interval I1 of length Ω(StDev [G]) centered at E [G].

Similarly, Pr [H = t] = Ω(1/StDev [H]) over an interval I2 of length Ω(StDev [H]) centered at E [H].

16

Since E [G]−E [H] = E [Gl]−E [Hl] = exp(−s/n)(s2/4n)(1/m) = o(StDev [G]), I1 ∩ I2 is an interval
of length Ω(StDev [Gh]). Therefore,

∑

t∈I1∩I2
|Pr [G = t] − Pr [H = t] | ≤ o(1)

because for t ∈ I1∩I2, |Pr [G = t]−Pr [H = t] | = o(1/StDev [G]). We can conclude that
∑

t |Pr [G = t]−
Pr [H = t] | is less than 1/6 after accounting for the probability mass of G and H outside I1 ∩ I2. �

The theorem follows by Lemma 30 and Lemma 31.
�

References

[1] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing that distributions are close. Proc. 41st
FOCS, pp. 259–269, 2000.

[2] W. Feller. An Introduction to Probability Theory and Applications (Vol. I). John Wiley & Sons Publishers, 1968.
[3] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. J.

ACM, 45(4):653–750, 1998.
[4] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. ECCC, TR00-020, 2000.
[5] E. L. Lehmann. Testing Statistical Hypotheses. Wadsworth and Brooks/Cole, 1986.
[6] D. Ron. Property Testing (A Tutorial). In Handbook on Randomized Computing (Vol. II), Kluwer Academic

Publishers, 2001.
[7] R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM

J. Comput., 25(2):252–271, 1996.
[8] A. Sahai and S. Vadhan. Manipulating statistical difference. DIMACS Series in Discrete Mathematics and Theo-

retical Computer Science, 43:251–270, 1999.

17

