
Inferring Mixtures of Markov Chains
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Abstract. We define the problem of inferring a “mixture of Markov
chains” based on observing a stream of interleaved outputs from these
chains. We show a sharp characterization of the inference process. The
problems we consider also has applications such as gene finding, intrusion
detection, etc., and more generally in analyzing interleaved sequences.

1 Introduction

In this paper we study the question of inferring Markov chains from a stream
of interleaved behavior. We assume that the constituent Markov chains output
their current state. The sequences of states thus obtained are interleaved by
some switching mechanism (such as a natural mixture model). Observe that if
we only observe a (probabilistic) function of the current state, the above prob-
lem already captures hidden Markov models and probabilistic automata, and is
computationally intractable as shown by Abe and Warmuth [1]. Our results can
therefore be interpreted as providing an analytical inference mechanism for one
class of hidden Markov models. The closely related problem of learning switching
distributions is studied by Freund and Ron [10].

Thiesson et al. study learning mixtures of Bayesian networks and DAG mod-
els [16, 17]. In related works, learning mixtures of Gaussian distributions are
studied in [6, 3]. The hidden Markov model, pioneered in speech recognition (see
[14, 4]) has been the obvious choice for modeling sequential patterns. Related
Hierarchical Markov models [11] were proposed for graphical modeling. Mixture
models have been studied considerably in the context of learning and even earlier
in the context of pattern recognition [8]. To the best of our knowledge, mixture
models of Markov chains have not been explored.

Our motivation for studying the problem is in understanding interleaved pro-
cesses that can be modeled by discrete-time Markov chains. The interleaving
process controls a token which it hands off to one of the component processes
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at each time step. A component process that receives the token makes a tran-
sition, outputs its state, and returns the token. We consider several variants of
the interleaving process. In the simplest, tokens are handed off to the component
processes with fixed probabilities independent of history. A more general model
is where these hand-off probabilities are dependent on the chain of the state that
was generated last. The following are potential applications of our framework.

– The problem of intrusion detection is the problem of observing a stream
of packets and deciding if some improper use is being made of system re-
sources.3 We can attempt to model the background (good) traffic and the
intrusive traffic being different Markov processes. We then model the overall
traffic as a random mixture of these two types of traffic. The problem of
fraud detection arises in this context as well; see [7, 18, 12, 9] for models on
intrusion and fraud detection.

– Given a genome sequence (a sequence from a chromosome) the problem is to
locate the regions of this sequence (called exons) that collectively represent
a gene. Again, precise defining characteristics are not known for exons and
the regions in between them called introns. However, a number of papers
have attempted to identify statistical differences between these two types of
segments. Because the presence of a nucleotide at one position affects the
distribution of nucleotides at neighboring positions one needs to model these
distributions (at least) as first-order Markov chains rather than treating each
position independently. In fact, fifth-order Markov chains and Generalized
Hidden Markov Models (GHMMs) are used by gene finding programs such
as GENSCAN [5].

– The problem of validation and mining of log-files of transactions arises in e-
commerce applications [2, 15]. The user interacts with a server and the only
information is available at the server end is a transcript of the interleaved
interactions of multiple users . Typically searches/queries/requests are made
in “sessions” by the same user; but there is no obvious way to determine if two
requests correspond to the same user or different ones. Complete information
is not always available (due to proxies or explicit privacy concerns) and at
times unreliable. See [13] for a survey of issues in this area.

The common theme of the above problems is the analysis of a sequence that
arises from a process which is not completely known. Furthermore the problem is
quite simple if exactly one process is involved. The complexity of these problems
arise from the interleaving of the two or more processes due to probabilistic
linearization of parallel processes rather than due to adversarial intervention.

3 We do not have a precise definition of what constitutes such intrusion but we expect
that experts “will know it when they see it.”



1.1 Our Model

Let M (1),M (2), . . . , M (k) be Markov chains where Markov chain M (l) has state
space Vl for l = 1, 2, . . . , k. The inference algorithm has no a priori knowledge of
which states belong to which Markov chains. In fact, identifying the set of states
in each chain is the main challenge in the inference problem.

One might be tempted to “simplify” the picture by saying that the process
generating the data is a single Markov chain on the cross-product state space.
Note, however, that at each step we only observe one component of the state of
this cross-product chain and hence with this view, we are faced with the problem
of inferring a hidden Markov model. Our results can therefore be interpreted as
providing an analytical inference mechanism for one class of hidden Markov
models where the hiding function projects a state in a product space to an
appropriate component. We consider two mixture models.

– In the simpler mixture model, we assume that there are probability values
α1, . . . , αk summing to 1 such that at each time step, Markov chain M (i) is
chosen with probability αi. The choices at different time steps are assumed
to be independent. Note that the number k of Markov chains (and, neces-
sarily, the mixing probabilities) are not known in advance.

– A more sophisticated mixture model, for example, in the case of modeling
exons and introns, would be to assume that at any step the current chain
determines according to some probability distribution which Markov chain
(including itself) will be chosen in the next step. We call this more sophisti-
cated model the chain-dependent mixture model.

We assume that all Markov chains considered are ergodic which means that
there is a k0 such that every entry in Mk is non-zero for k ≥ k0. Informally,
this means that there is a non-zero probability of eventually getting from any
state i to any state j and that the chain is aperiodic. We also assume that the
cover time4 of each of the Markov chains is bounded by τ , a polynomial in the
maximum number of states in any chain — these restrictions are necessary to es-
timate the edge transition probabilities of any Markov chain in polynomial time.
Furthermore, since we cannot infer arbitrary real probabilities exactly based on
polynomially many observations, we will assume that all probabilities involved
in the problem are of the form p/q where all denominators are bounded by some
bound Q. As long as we are allowed to observe a stream whose length is some
suitable polynomial in Q, we will infer the Markov chains exactly with high
probability.

4 The cover time is the maximum over all vertices u of the expected number of steps
required by a random walk that starts at u and ends on visiting every vertex in the
graph. For a Markov chain M , if we are at vertex v we choose the next vertex to be
v′ with probability Mvv′ .



1.2 Our Results

We first consider the version of the inference problem where the Markov chains
have pairwise-disjoint state sets in the chain-dependent mixture model. In this
model, the interleaving process is itself a Markov Chain whose cover time we
denote by τ1. We show the following result in Section 3.

Theorem 1. For Markov chains over disjoint state sets and the chain-dependent
mixture model, we can infer a model of the source that is observationally equiva-
lent, to the original source, i.e., that the inferred model generates the exact same
distribution as the target model. We make the assumption that αii, i.e., the prob-
ability of observing the next label from the same Markov process is non-zero. We
require a stream of length O(τ2τ2

1 Q2), where Q is the upper bound on the denom-
inator of any probability represented as a fraction, and τ1, τ are upper bounds on
the cover times of the interleaving and constituent processes, respectively.

We can easily show that our upper bound in Theorem 1 is a polynomial
function of the minimum length required to estimate each of the probabilities.
Next, we prove that it is necessary to restrict to disjoint-state-set Markov chains
to achieve polynomial-time inference schemes.

Theorem 2. Inferring chain dependent mixture of Markov chains is computa-
tionally intractable. In particular, we show that the inference of two state prob-
ablistic automata (with variable alphabet size) can be represented in this model.

The question about the inference of simple probabilistic mixture of Markov
chains with overlapping state spaces arises naturally as a consequence of the
above two theorems. Although we do not get as general a result as Theorem 1,
we show the following in Section 4, providing evidence towards a positive result.

Theorem 3. For two Markov chains on non-disjoint state sets, we can infer
the chains in the simple mixture model with a stream of length O(poly(n)) where
n is the total number of states in both chains, provided that there is a state is
that occurs in only one chain, say M (1), and satisfies the technical condition:

either M
(1)
isj > S1(j) or M

(1)
isj = 0 for all states j

where S1 is the stationary distribution of M (1).

To make sense of the technical condition above consider the special case where
the Markov chain is a random walk in a graph. The condition above is satisfied
if there is a state that occurs in only one graph that has a small degree. This
condition sounds plausible in many applications.

2 Preliminaries and Notation

We identify the combined state space of the given Markov chains with the set
[n] def= {1, . . . , n}. Suppose M (1), . . . , M (k) are finite-state ergodic Markov chains



in discrete time with state space Vl ⊆ [n] corresponding to M (l). We consider two
possible cases—one where the state spaces of the individual Markov chains are
disjoint and the other where they are allowed to overlap. Suppose each Markov
chain outputs its current state after it makes a transition. The first and the
simpler mixture model that we consider generates streams with the alphabet [n]
in the following manner. Let α1, . . . , αk be such that

∑
l αl = 1. Assume that

initial states are chosen for each of the Markov chains arbitrarily. The stream
is generated by interleaving the outputs of Markov chains M (1), . . . , M (k). For
each stream element, an index l is chosen according to the distribution defined
by αl’s. Then, M (l) is allowed to make a transition from its previous state and
its output is appended to the stream. Define Sl(i) to be the probability of i in
the stationary distribution of M (l).

A more general mixture model we explore is where the probability distribution
for choosing the Markov chain that will make a transition next is dependent
on the chain of the last output state. For i, j ∈ [n], we use αij to denote the
probability that the control is handed off to Markov chain that j belongs to when
the last output was i. Note that for states i1, i2 in the same chain, αi1j = αi2j

and αji1 = αji2 for all states j ∈ [n]. Since we use this mixture model only for
Markov chains with disjoint state spaces, αij ’s are well defined.

We will sometimes denote the interleaving process by I. Then we can denote
the entire interleaved Markov process by a tuple, 〈M (1),M (2), . . . , M (k); I〉.

Let T̂i denote the (relative) frequency of occurrence of the state i. Given a
pattern 〈ij〉 let T̂ij be the frequency of j occurring immediately after i. Likewise
define T̂ijs to be the frequency of the pattern 〈ijs〉.

We define the problem of inferring mixtures of Markov chains as given a stream
generated as described above, constructing the transition matrices for the un-
derlying Markov chains as well as the mixing parameters. The problem reduces
to identifying the partitioning of the state space—since given a partitioning we
can project the data on each of the partitions and identify the transition prob-
abilities.

It is also clear that if two Markov chain mixtures produce each finite length
stream with equal probability, then they are indistinguishable by our techniques.
Consequently we need a notion of observational equivalence.

Definition 1. Two interleaved processes P = 〈M (1), . . . , M (k); I〉 and P ′ =
〈M ′(1), . . . , M ′(k′); I ′〉 are observationally indistinguishable if there is an as-
signment of initial state probabilities to each chain of P ′ for every assignment
of initial states to the chains in P such that for any finite sequence in [n]∗ the
probability of the sequence being produced by P is equal to the probability of the
sequence being produced by P ′.

Note that we have no hope of disambiguating between observationally equivalent
processes. We provide an example of such pairs of processes:



Example. Let process P = 〈M (1),M (2); I〉 where M (1) is the trivial single-state
Markov chain on state 1 and M (2) is the trivial single-state Markov chain on
state 2. Let I be the process which chooses each chain with probability 1

2 at
each step.

Let process P ′ = 〈M ′; I ′〉 where I ′ trivially always chooses M ′ and M ′

is a 2-state process which has probability 1
2 for all transitions. P and P ′ are

observationally indistinguishable.

Definition 2. A Markov chain M (1) is defined to be reducible to one-step mix-
ing if for all i, j ∈ V1 we have M

(1)
ij = S1(j), i.e., the next state distribution is

also the stationary distribution.

Proposition 1. If M (1) is reducible to one-step mixing, where |V1| = z, the
interleaved process P = 〈M (1), . . . , M (k); I〉 is observationally indistinguishable
from P ′ = 〈M (1)

1 ,M
(1)
2 , . . . M

(1)
z ,M (2), . . . ,M (k); I ′〉 for some interleaving pro-

cess I ′, where M
(1)
r indicates the Markov chain defined on the single state r ∈ V1.

The interleaving process I ′ is defined as follows: If in I the probability of tran-
sition from some chain into M (1) in P is α, in I ′ the probability of transition
from the same chain to M

(1)
j is αS1(j). Transition probabilities from M

(1)
j are

the same in I ′ as the transition probabilities from M (1) in I.
Remark: Note that a one-step-mixing Markov chain is a zeroth-order Markov
chain and a random walk on it is akin to drawing independent samples from
a distribution. Nevertheless, we use this terminology to highlight the fact that
such chains are a special pathological case for our algorithms.

3 Markov Chains on Disjoint State Spaces

In this section, we consider the problem of inferring mixtures of Markov chains
when state spaces are pairwise disjoint. To begin with, we will assume the simpler
mixture model. In Section 3.2, we show how our techniques extend to the chain-
dependent mixture model.

3.1 The Simple Mixture Model

Our algorithm will have two stages. In the first stage, our algorithm will discover
the partition of the whole state space [n] into sets V̂1, . . . , V̂m which are the state
spaces of the component Markov chains. Then, it is easy to infer the transition
probabilities between states by looking at the substream corresponding to states
in each V̂l. Once we infer the partition of the states, the mixing parameter αl’s
can be estimated accurately from the fraction of states in V̂l within the stream.

The main idea behind our algorithm is that certain patterns of states occur
with different probabilities depending on whether the states in the pattern come
from the same chain or from different chains. We make this idea precise and
describe the algorithm in what follows.



Recall that Sl is the stationary distribution vector for the Markov chain M (l)

extended to [n]. It is well know that the probability that Markov chain M (l)

visits a state i tends to Sl(i) as time goes to infinity. It follows that in our
mixture model, the probability that we see a state i in our stream tends to

S(i) def= αlSl(i)

where l is such that i ∈ Vl. Note that l is unique since the state spaces are
disjoint. Hence, one can get an estimate T̂i for S(i) by observing the frequencies5

of each state i in the stream. The accuracy of this estimate is characterized by
the following lemma.

Lemma 1. For all i, the estimate Ŝ(i) is within e−O(t) of T̂i when the length
of the stream is at least τt/(mini(αi)) where τ is maximum cover time of any
chain.

We make the following key observations.

Proposition 2. For i, j ∈ Vl, we expect to see the pattern 〈ij〉 in the stream
with the frequency αlS(i)M (l)

ij .

In particular, if states i and j belong to the same Markov chain but the transition
probability from i to j is 0, the pattern 〈ij〉 will not occur in the stream.

Proposition 3. For states i and j from separate Markov chains, we expect the
frequency of the pattern 〈ij〉, T̂ij to be equal to T̂iT̂j.

There is an important caveat to the last proposition. In order to accurately
measure the frequencies of patterns 〈ij〉 where i and j occur in different Markov
chain, it is necessary to look at positions in the stream that are sufficiently spaced
to allow mixing of the component Markov chains. Consequently, we fix a priori,
positions in the stream which are Ω(τQ) apart where τ is the maximum cover
time and Q is the upper bound on the denominator of any probability represented
as a fraction. We then sample these positions to determine the estimate on the
frequency of various patterns.
Since the values of Ŝ and T̂ are only estimates, we will use the notation “≈”
when we are comparing equalities relating such values. By the argument given in
Lemma 1, these estimation errors will not lead us to wrong deductions, provided
that the estimates are based on a long enough stream. Using the estimates Ŝ(·)
and the frequency T̂ij one can make the following deduction:

– If T̂ij 6≈ T̂iT̂j , then i, j belong to the same chain.

In the case that i, j ∈ Vl and αlM
(l)
i,j = S(j), or equivalently M

(l)
i,j = Sl(j). the

criterion above does not suffice to provide us with clear evidence that i and j
belong to the same Markov Chain and not to different Markov Chains. The next
proposition may be used to disambiguate such cases.
5 Here and elsewhere in the paper “frequency” refers to an estimated probability, i.e.,

it is a ratio of the observed number of successes to the total number of trials where
the definition of “success” is evident from the context



Proposition 4. Suppose i, j ∈ Vl such that M
(l)
ij 6= Sl(j). Suppose for a state

p we cannot determine if p ∈ Vl using the test above,6 then p ∈ Vl if and
only if pattern 〈ipj〉 has the frequency S(i)S(p)S(j), which translates to the test
T̂ipj ≈ T̂iT̂pT̂j.

Proof. If p ∈ Vl, then αlM
(l)
ip = S(p) by the assumption T̂ip ≈ Ŝ(i)Ŝ(p). Simi-

larly, αlM
(l)
pj = S(j). Therefore, the frequency of the pattern 〈ipj〉 in the stream

is expected to be α2
l S(i)M (l)

ip M
(l)
pj = S(i)S(p)S(j). In the case p 6∈ Vl, the same

frequency is expected to be αlS(i)S(p)M (l)
ij . These two expectation are separated

since αlM
(l)
ij 6= S(j) by the assumption.

Next, we give the subroutine Grow Components that constructs a partition of
[n] using the propositions above and the frequencies T̂ . The algorithms uses the
notation C(i) to denote the component to which i belongs to.

Grow Components(T̂)

Initialize: ∀i ∈ [n], C(i)← {i}
Phase 1:

For all i, j ∈ [n]

If T̂ij 6≈ T̂iT̂j then

Union(C(i), C(j))
Phase 2:

For all i, j, p ∈ [n] such that T̂ij 6≈ T̂iT̂j and T̂ipj ≈ T̂iT̂pT̂j

Union(C(i), C(p))
Return: the partition defined by C(·)’s

Lemma 2 (Soundness). At the end of Grow Components, if C(i) = C(j) for
some i, j, then there exists l such that i, j ∈ Vl.

Proof. At the start of the subroutine, every state is initialized to be a component
by itself. In Phase 1, two components are merged when there is definite evidence
that the components belong to the same Markov chain by Proposition 2 or
Proposition 3. In Phase 2, T̂ij 6≈ T̂iT̂j implies that i and j are in the same
component and hence Proposition 4 applies and shows the correctness of the
union operation performed.

Lemma 3 (Completeness). At the end of Grow Components, C(i) = C(j) for
all i, j such that i, j ∈ Vl for some l and M

(l)
i′j′ 6= Sl(j′) for some i′, j′ ∈ Vl.

Proof. First notice that our algorithm will identify i′ and j′ as being in the same
component in phase 1. Now if either M

(l)
i′i 6= Sl(i) or M

(l)
ij′ 6= Sl(j′) we would

have identified i as belonging to the same component as i′ and j′ in phase 1.
Otherwise, phase 2 allows us to make this determination. The same argument
holds for j as well. Thus, i and j will be known to belong to the component as
i′ and hence to each other’s component.
6 i.e., T̂ip ≈ Ŝ(i)Ŝ(p) ≈ T̂pi and T̂jp ≈ Ŝ(j)Ŝ(p) ≈ T̂pj .
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Compute T̂i, T̂ij and T̂ipj

Let V̂1, . . . , V̂m be the partition Grow Components(T̂) returns

For each 1 ≤ l ≤ m

Considering the substream of X formed by all i ∈ V̂l, calculate

estimates for the transition probabilities involving i, j ∈ V̂l.

At this point, we can claim that our algorithm identifies the irreducible Markov
chains M (l) in the mixture (and their parameters). For other chains which have
not been merged, from the contrapositive of the statement of Lemma 3 it must
be the case that for all i′, j′ ∈ Vl we have M

(l)
i′j′ = Sl(j′), and the chains reduce

to one-step mixing processes.

Theorem 4. The model output by the algorithm is observationally equivalent to
the true model with very high probability.

3.2 Chain-Dependent Mixture Model

We now consider the model where the mixing process chooses the next chain
with probabilities that are dependent on the chain that last made a transition.
As in our algorithm for the simple mixture model, we will start with each state
in a set by itself, and keep growing components by merging state sets as long as
we can.

Definition 3. A triple (i, j, s) satisfying T̂ij T̂js 6≈ T̂ijsT̂j is termed as a reveal-
ing triple, otherwise a triple is called non-revealing.

The following lemma ensues from case analysis.

Lemma 4. If (i, j, s) is a revealing triple then i and s belong to the same chain
and j belongs to a different chain.

The algorithm, in the first part, will keep combining the components of the first
two states in revealing triples, till no further merging is possible. Since the above
test is sound, we will have a partition at the end which is possibly finer than the
actual partition. That is, the state set of each of the original chains is the union
of some of the parts in our partition. We can show the following:

Lemma 5. If i, s ∈ M (l), j ∈ M (k), k 6= l, M
(l)
is 6= Sl(s) and αij · αjs 6= 0 then

(i, j, s) is a revealing triple.

Proof. Given i, j, s as in the statement consider the left hand side of the in-
equality in Lemma 4. T̂ij T̂js ≈ T̂iαijSk(j)T̂jαjsSl(s) and the right hand side,
T̂ijsT̂j ≈ T̂iαijSk(j)αjsM

(l)
is T̂j . Evidently, these two expressions are not equal

whenever M
(l)
is 6= Sl(s).



The contrapositive of the above Lemma shows that if the triple (i, j, s) is a non-
revealing triple where i and s belong to the same chain and T̂ij T̂js 6≈ 0 then it
must be the case that j belongs to the same chain as i and s. This suggests the
following merging algorithm:

Grow Components 2(T̂)

Initialize: ∀i ∈ [n], C(i)← {i}
Phase 1:

For all i, j, s ∈ [n]

If T̂ij T̂js 6≈ T̂ijsT̂j then

Union(C(i), C(s))
Phase 2:

For all i, j, s ∈ [n] such that i, s ∈ C(i) 6= C(j)

If T̂ij T̂js ≈ T̂ijsT̂j 6≈ 0 then

Union(C(i), C(j))
Return: the partition defined by C(·)’s

Thus if the condition αijαji 6= 0 is satisfied and the Markov chain of i is not
united in a single component, it must be the case that the Markov chain in
question is observationally reducible to one step mixing. Thus the only remaining
case to consider are (irreducible) Markov chains (containing i) such that for any
other chain (containing j) it must be that αijαji = 0.
To handle Markov chains M (l) such that for all l′ 6= l and j ∈ M (l′), we have
αijαji = 0 the algorithm, in the second part, will perform the following steps:

1. Let Fi(j) = T̂ij/T̂i, i.e., the relative frequency that the next label after an i
is j.

2. For all pairs i, j such that T̂ij 6= 0, and i and j are still singleton components,
start with Dij = {i, j}.
(a) If for some state p, Fi(p) 6≈ Fj(p), then include p in Dij .
(b) If for some state q, Fq(i)

Fq(j) 6≈ Ti

Tj
, then include q in Dij .

3. Keep applying the above rules above using all pairs in a component so far
until Dij does not change any more.

4. For each starting pair i, j, a set Dij of states will be obtained at the end of
this phase. Let D be the collection of those Dij ’s that are minimal.

5. Merge the components corresponding to the elements belonging to Dij ∈ D.

Lemma 6. For states i and j from separate Markov chains, Dij 6∈ D.

Proof. For any state s in the same chain M (l) as i, Fjs = 0, because αjs = 0.
Therefore, the second closure rule will eventually include all the states from M (l)

to Dij . On the other hand for states i, v such that v ∈ M (l), Div will contain
states only from M (l). Hence, as Div ⊂ Dij , Dij will not be minimal.



Now we know that each set in D is a subset of the state space of a Markov chain.
Thus, we get

Theorem 5. Let 〈M (1),M (2), . . . , M (k); I〉 be an interleaved process with chain-
dependent mixing and no one-step-mixing Markov chains. If for all l ∈ [k],
αii 6= 0 for i ∈ M (l), then we can infer a model observationally equivalent to the
true model.

3.3 A Negative Result

Suppose H is a two state probabilistic automaton where the transition proba-
bilities are Hija where i, j ∈ {1, 2}. Let {a} = L be the collection of all possible
labels output.

Consider the following mixture process: We will create two Markov chains
M

(a)
1 ,M

(a)
2 for each label a ∈ L. Each of the Markov chains M

(a)
1 ,M

(a)
2 is a

markov chain with a single state corresponding to the label a. The transition
probability from chain M

(a)
i to M

(b)
j is Hijb.

Clearly the “states” of the Markov chains M
(a)
1 ,M

(a)
2 overlap – and it is easy

to see that the probability of observing a sequence of labels as the output of H
is the same as observing the sequence in the interleaved mixture of the Markov
chains. Since the estimation of H is intractable [1], even for two states (but
variable size alphabet), we can conclude:

Theorem 6. Identifying interleaving Markov chains with overlapping state spaces
under the chain dependent mixture model is computationally intractable.

4 Non-Disjoint State Spaces

In the previous section we showed that in the chain dependent mixture model
we have a reasonably sharp characterization. A natural question that arises from
the negative result is: can we characterize under what conditions can we infer
the mixture of non-disjoint Markov chains, even for two chains ? A first step
towards the goal would be to understand the simple mixture model.

Consider the most extreme case of overlap where we have a mixture of two
identical Markov chains. The frequency of states in the sequence gives an es-
timate of the stationary distribution S of each chain which is also the overall
stationary distribution. Note that M

(l)
ij = Mij for all i, j.

Consider the pattern 〈ij〉. This pattern can arise because there was a transi-
tion from i to j in some chain M (l) or it can arise because we first observed i and
control shifted to the other chain and we observed j. Let αl be the probability
that the mixing process chooses M (l). Then,

T̂ij ≈
k∑

c=1

αcS(i)((αcMij) + (1− αc)S(j)).



Letting w =
∑

c α2
c we can simplify the above equation to get: T̂ij = S(i)[wMij+

(1 − w)S(j)] = S(i)[w(Mij − S(j)) + S(j)]. Rearranging terms we have Mij =
T̂ij
Si

−Sj

w + Sj . Any value of w that results in 0 ≤ Mij ≤ 1 for all i, j leads to
an observationally equivalent process to the one actually generating the stream.
The set of possible w’s is not empty since, in particular, w = 1 leads to Mij = T̂ij

Si

corresponding to having just one Markov chain with these transition probabitl-
ities.

What we see above is that the symmetries in the problem introduced by
assuming that all Markov chains are identical facilitate the inference of an ob-
servationally equivalent process. The general situation is more complicated even
for two Markov chains.

We consider the mixtures of two Markov chains with non-disjoint state spaces.
We give an algorithm for this case under a technical condition that requires a
special state. Namely, we require that there is a state is that is exclusively in
one of the Markov chains, say M (1), and

either M
(1)
isj > S1(j) or M

(1)
ij = 0 for all j ∈ V1.

Let α1, α2 be the mixture probabilities. Then, considering the four possible ways
of 〈ij〉 occurring in the stream, we get

T̂ij = α2
1S1(i)M

(1)
ij + α1α2 (S1(i)S2(j) + S2(i)S1(j)) + α2

2S2(i)M
(2)
ij .

Let Aij
def= T̂ij − (SST )ij where S = α1S1 + α2S2 as before. Then, we can write

Aij = α2
1S1(i)

(
M

(1)
ij − S1(j)

)
+ α2

2S2(i)
(
M

(2)
ij − S2(j)

)
.

Consider the state is required by the technical condition. For any state j

such that M
(1)
isj > 0, we have Aisj = α2

1S1(is)
(
M

(1)
isj − S1(j)

)
> 0. For any other

state j with S1(j) > 0, Aisj = −α2
1S1(is)S1(j) < 0. Finally, Aisj = 0 for all the

remaining states.
Since S(is) = α1S1(is), for each j ∈ [n], we can infer α1S1(j) from the

observations above. Hence, we can infer α2S2(j) for each j by S(j) = α1S1(j) +
α2S2(j). Since we know the vectors S1, S2, we can now calculate Mij

def= α1M
(1)
ij +

α2M
(2)
ij for all i, j pairs.

If state i or j exclusively belongs to one of the Markov chains, Mij gives the
product of the appropriate mixing parameter and the transition probability. In
the case when both states i and j are common between the Markov chains, we
will use the frequency T̂iisj of pattern 〈iisj〉 to infer M

(1)
ij and M

(2)
ij .

The frequency of the pattern 〈iisj〉 is expected to be

T̂iisj ≈ α2
1S1(i)M

(1)
iis

(α2S2(j) + α1M
(1)
isj ) + α1α2S2(i)S1(is)(α1M

(1)
isj + α2M

(2)
ij ).



Note that all but the last term is already inferred by the algorithm. Therefore,
α2M

(2)
ij , hence α1M

(1)
ij , can be calculated.

Finally, using the next state distribution for the state is, we can calculate α1

and α2. This completes the description of our algorithm.

5 Conclusions and Open Problems

In this paper we have taken the first steps towards understanding the behavior of
a mixture of Markov chains. We believe that there are many more problems to be
explored in this area which are both mathematically challenging and practically
interesting.

A natural open question is the condition αii 6= 0, i.e., there is a non-zero
probability of observing the next label from the same Markov chain. We note
that Freund and Ron had made a similar assumption that αii is large, which
allowed then to obtain “pure” runs from each of the chains. It is conceivable
that the inference problem of disjoint state Markov chains becomes intractable
after we allow αii = 0.

Another interesting question is the optimizing the length of the observation
required for inference – or if sufficient lengths are not available then compute the
best partial inference possible. This is interesting even for small ∼ 50 states and
a possible solution may be trade off computation or storage against observation
length.
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