Runtime Verification of Remotely Executed Code using Prdisilcally
Checkable Proof Systentis

Tugkan Batti Ronitt Rubinfeld Patrick Whité

Abstract

In this paper we consider the verification and certificatibea@mputations that are done remotely. We in-
vestigate the use of probabilistically checkable proofRP&ystems for efficiently certifying such computations.
This model can also be applied to verifying security prodfsaftware downloads. To make the use of PCPs
more practical, a new version of Cook’s Theorem is given lier RAM model: that is, we show that a correct
computation of a RAM can be encoded as a satisfiable boolearufa. We use this result to show that the
implementations of PCPs no longer need to be based on a plestof the desired computation in terms of a
Turing machine program.

1 Introduction

Remote execution of code is an attractive alternative tallegecution, when powerful computing resources are
available on a network such as the Internet. Yet the redipénhe result of a remote calculation needs to be
able to trust that the answer computed is in fact correct. eéxample, one may be looking for the member in a
combinatorial structure which is minimal under some fumgtisuch as the optimal tour of a graph, or might like
to know that a certain boolean formula is unsatisfiable. Bpthe correctness of a proposed answer to each can
be performed by a simple exhaustive search, of all feasillestin the former case, and all valid truth assignments
in the second. Both lists are exponentially longer than tipeiti to the problem, and hence than the length of the
answer which is being transferred from the powerful comp@ertainly this type of verification is much too costly
to be feasible. We consider the approach of applying prdibabally checkable proof systems (PCPs), which allow
interactions between a simple and efficient verifying maetdand a computationally powerful prover. PCPs provide
a general mechanism by which verifier can, in approximatgdyl” steps, trust the result of a computation requiring
T time steps. This takes care of the exponential blow up in bov@ examples, reducing the time complexity to
essentially that of reading the input. In fact, this modeldsantageous in any situation in which the computation to
be performed takes longer than reading the input. Thus itdéa beneficial to use networked computing resources
for solving quadratic time problems. Moreover, we can ugerttodel to check the validity of a result without caring
about how it is obtained, for example, verifying a satisfyassignment regardless of the process which produced it.
In this paper we consider a model in which a powerful untdist@chine can convince the user that the result of
a computation is correct by applying PCP technology. Noa¢ atthough conceptually the PCP protocols are quite
intricate and their correctness is difficult to prove, theiakalgorithms employed are not terribly complex. Nonethe
less, one unpleasant complication is that all known coostnus of PCPs require a description of the computation

*This work was partially supported by ONR N00014-97-1-09@8IRI, NSF Career grant CCR-9624552, and an Alfred P. SloaeReh
Award.

TDepartment of Computer Science, Cornell University, IthadY 14850. emailbat u@s. cor nel | . edu.

iDepartment of Computer Science, Cornell University, l1thadY 14850. emailr oni tt @s. cor nel | . edu. Part of this work was
done while on sabbatical at IBM Almaden Research Center.

§Department of Computer Science, Cornell University, lthadY 14850. emailwhi t e@s. cor nel | . edu.

to be performed in the form of a Turing machine computatiomok Theorem is then applied to transform the
computation into a satisfiable CNF formula. We instead show to generate a CNF formula directly from a RAM
(random access machine) description, thereby bypassingetbd for a Turing Machine description. Even though it
is a well-known fact that the RAM and Turing Machine models aquivalent, using the RAM model in this setting
proves to be more practical because of the lack of a compiten finy random access model to Turing Machine
model. From this point, the PCP protocol can continue uredte As a result we redescribe the PCP theorems in
terms of a RAM model, which can quite easily be generated myngpder from a modern high level language, such
as C or ML.

1.1 The Model

We assume a computationally bounded user (“Verifier” or “¥")nteracting with a very powerful, untrusted com-
puter (“Prover” or “P”) over a remote network. There are tywedfic models we consider. In the first, the Prover
is to execute some progra on inputz such that botll” and P have access tec M,z > . Assume that\/’s
computation time ig" and thatT" is prohibitively large for the verifier. The prover genesatePCP proof to con-
vince the verifier thaf\/ was executed correctly. It is the surprising result of [AL88} based on a long series of
papers [LFKN90, BFL91, BFLS90, FGL+96, AS98] that the proah be written in such a way thit can trust its
correctness after inspecting only a constant number ofitotain this proof. We use this machinery directly in our
first model, which is depicted in Figure 1, in which the progemputes and writes down the proof. The verifier
then determines which bits of the proof it wants to see, ardotover transmits these bits Yo over the network.

In previous PCP results it is assumed thatis given as a Turing machine. In this paper we show ftfainay be
directly encoded as a RAM.

PCP
proof
=
W
Copy
A
of
7 M
e

Figure 1: The Basic Model

The second model is an application to secure software dadnlawhich has been suggested previously by
[DKL+]. V would like to download code (e.g. Netscape) and be conviticadthe program has a certain property
(e.g. this code will not crash). The first model can be spiedland extended to describe this type of interaction.
The Prover provides &ertificate of a desired property along with a program. We do not care laacertificate
is computed, but we expect that the certificate is so mucletatgn the code that downloading it is undesirable.
The certificate may be very difficult to generate, yet it sdobé reasonably easy to deterministically certify its
correctness. We now assume that both the Prover and Verdfier dccess to an agreed upon and relatively simple
Certifier, which takes the program code and the certificate as inpuaecebts or rejects the certificate in tiffie

(The Certifier is here playing the role @f in the first model. The copy of the program is playing the rdle:p
Without using PCPsV would have to download the certificate and run the certifiethencertificate. Since the
certificate can be largé can instead apply PCP techniques. The verifier spéndig| + log T') steps, wher@” is

the number of steps required to run the certifier. To fatdithis, we again assume the certifier is compiled to RAM
code. Using the same techniques as ab&vayns the certifief\! to check the certificate, and then encodes the run
of M as a PCP proof. Now the Verifier acts exactly as in the first maperying the proof in just a few locations
to determine that the certificate is valid. This model is degal in Figure 2.

As an example of how this model could be used, we will integthe Proof-Carrying Code (PCC) technique
(INL96]) into our framework. In a PCC system, the code praduaevhich would be the prover in our model,
provides a formal safety proof for a predefined safety polithis safety proof will act as the certificate in our
model. The certifier from our model will be replaced by theginealidator of the PCC system. This proof validator
is a reasonably simple program which could be trusted by tlde consumer (verifier). At this point, instead of
uploading the whole certificate (safety proof) as it wouldhie PCC system, the code producer will produce and
commit to the proof of the certificate being accepted by théfeer as described above. The proof validator is the
part of the system that will be encoded as a RAM. The bandvdfithe communication will be reduced drastically
as a result.

Proof Commitment One requirement of the PCP protocols is that the proof bdemrilown by the prover and
remain unchanged throughout the interaction of the prondn@rifier. There are many ways in which the verifier
can trust the proof remains unchanged (without downloathegproof). One possibility is to use a trusted third
party: P transmits the proof to this third party, and the verifier iat#s with the third party assuming that it has no
reason to change the proof. Alternatively, one can fd?d¢e commit to the proof by using cryptographic techniques
of [Mer90], as suggested by [Kil92] (also employed in CS sdiMic94] and the work of [DKL+]). This latter
scheme introduces only a logarithmic overhead to the rgntiine of the verifier. We assume one of these schemes
is employed in what follows.

Program certificate &

downloaded
copy of
Program

Figure 2: The Verification Model

High level overview of the PCP protocols The various PCP protocols described in the literature shaieilar
high level outline. To begin, a nondeterministic Turing Maxe M is given, along with an input of lengthn.
The Turing Machine decides, running in7'(n) steps. A prover turns the computation historyidfinto a 3CNF

formula which is satisfiable if and only i/ really accepts:.. This formula is then transformed into a multivariate
polynomial £ whose zeros correspond in a one-one fashion to satisfysigraments of the 3CNF formula. The
prover finds a value’ such thatF'(Z) = 0, and then encodes this value in a special form. The vettsrso long
that the verifier does not have time to even look at all of itwdeer, the encoded version of the proof provided by
the prover enables the verifier to look at a small number dadtloos, verify some consistency properties, and if the
verifications pass trust thdt(z) = 0 in O(n + log(T)) time. From the existence of a zero, the verifier concludes
that the 3CNF is satisfiable, and thus thétaccepted:.

For our purposes, the version of PCP which is most applicabderesult of [BFLS90] which states the verifi-
cation process in a theorem-proof model. For us the theoséefhhis program has propert®,” or “This program
returns result:”, and the proof is the certificate.

Theorem 1 (BFLS?) A theorem-proof paik T, P > can be probabilistically verified in imé@(|T| + log | P|).

Note that the number of locations that the verifier looks atithproof can be made constant ([PS]) but the total
communication overhead is still logarithmic, since thefiearneeds to specify the addresses of the locations.

1.2 Our Results

The primary contribution of this paper is a direct reforntigia of Cook’s Theorem and hence the PCP character-
izations of NEXPtime and NP in terms of RAMs instead of TuriMgchines. Although it is known that RAMs
and Turing machines are equivalent in power (cf. [Papa])sh@v that a direct application of Cook’s Theorem
for RAMs is cleanly expressible and easily implemented.sThakes it plausible that PCP technology can be em-
ployed in an algorithmic setting for realizing computatbspeed-ups, since it is no longer required that a Turing
Machine be constructed to execute the program in questidre Work of [BFLS90] shows that the machiié
can be characterized in terms of Kolmogorov-Uspenskii rimesh But again this would require that the prover
implement)/ in terms of a Kolmogorov-Uspenskii machine, or have a coenibm a random access model to the
Kolmogorov-Uspenskii model.

Next, we show how this technology can be applied in the getiirruntime result verification. The model we
give is quite general and can be applied to the verificatiangfproperty which can be computed in nondeterministic
exponential time. This question has also been consider@dio®4, DKL+, FN].

2 Encoding a RAM by a Boolean Formula

2.1 The RAM model

A RAM as described in Papadimitriou [Papa] is a computingiceewhich has direct (i.e. one-step) access to an
unlimited number of registeréry, ... r;,...}, each of which can contain an arbitrarily long positive ogaté/e
integer. For our purposes, we will assume instead that trezgsters are space bounded and the largest location
used isS(n) which is a parameter of the machine. The input to a RAM is a tapgaining a lis{{xy, z2, ..., x,, } of
integers, also with random one-step access. The result 8\ ®mputation is the contents of register O after the
computation has completed. The RAM program itself is a secelH = (7, 7o, ..., T,) Of @any of the instructions
given in Figure 3. Note that other desirable primitive ofieres, such asnult, div, push, pop, etc. can be easily
simulated by the given operations, or added directly todhgliage in a way which will be clear from the exposition.

2.2 The Encoding

A correct computation of a RAM will be encoded as a satisfidddlelean formula. Each instruction of the RAM
program is translated into a boolean sentence which willusntified over all time steps of the execution of the

1This version depends on a linear time encoding of the thecdemto [Spi96].

Instruction Operand Semantics
read Jj To — &j
read] o < Ty,
store J i <10
store T3 Ty, <70
load Jjl1J|=3J ro—r; | ro—r [ro—j
add JI1Jl=J To = To+ 75 | To—T0+ T, | To—To+]
sub iltil=J To = To—Tj | ToT0 =T, |T0o < To—]
half Ty <— 7“0/2
jump J K J
jpos j if ro >0thenk « j
jzero J if o ==0thenx « j
jneg j if ro <Othenk « j
halt K<« 0
j, aninteger r;, contents of register

r,, contents of register; | x, program counter

Figure 3: Instruction set of a RAM

RAM. The resulting formula will describe consistency cdimis which must be true every time this instruction
is executed. For example, for thal f instruction we will ensure that each time it is executed, ¢betents of
the accumulator do become one half of what they were beferingtruction was initiated. In addition to boolean
formulas that correspond to the individual instructions, will also construct formulas that encode the consistency
of the machine state throughout the computation. For examplensure that at any time, each register has exactly
one value stored in it. Lastly, the initial and final stateshaf machine will be encoded by another boolean formula.

Before giving the formulation, we would like to stress thetfthat the resulting formula is bigX(7?)). Yet
the verifier never needs to write it down during the PCP veiiom process. It only has to be able to generate very
small pieces of the formula. These pieces, we will see, cagalbdy computed given the highly structured way in
which we translate a RAM program into a boolean formula.

Figure 2.2 lists the boolean variables used in our formaatiOur formulation is based on a proof of Cook’s
Theorem found in [Kozen]. Our local consistency conditi@me essentially from his exposition. Our control
flow and arithmetic operation conditions are necessarilyencomplicated because of the differences in the Turing
machine and RAM models. The underlying motivation is to dad&sconfigurationsof the RAM, where each
configuration lists the entire state of the machine. We daligsion variables which describe whether certain
relations hold in these configurations. For example thexedevariableQ: is true if and only if the machine is
executing line numberrat time step.

Qi Attime ¢, k = i (program counter points to th&" instruction).

R,ﬁ"L Attimet, r; = x (register; contains the value).

I z; = z, (the value ofi*? input isz).

P, Attimet,rg > 0.

N, Attime ¢, 7y < 0.

Cy Attimet, carry register has the valuestored in it.

Figure 4: The Boolean Variables

Now we give the formulas that capture the initial state anasigtency conditions of the computation. In the
formulas, the variablérefers to time steps, the variablgg are used for register and input indices, and the variables

x,y,z are used for the register and input values. Whenever vartalsl quantified, it is quantified over the set
{1,...,T} whereT is an upper bound on the running time of the RAM on that inpue a¢o assume that the
registers of our machine are bounded in space by some k&j(€). The variablest, y, z will be quantified over
binary strings of lengttog(S).

Local Consistency Conditions

e The initial state of the RAM is captured by the following fauta (I, a sequence of intege(ss, ..., x,), IS
the input to the RAM):

Qé/\(/\Ré’(J)/\ AR Sl A I AN AN VA £
%

1<i<|I| 1<i<|T| @,y,2y

The four subformulas of the formula encode the facts thaptbgram counter is initialized to the first instruc-
tion, all registers initially have value O stored in thene thput values are written in the input cells, and each
input cell has exactly one value stored in it, respectively.

e At any time, the machine is executing exactly one instrunctio
Aver) sA A (o)
t o\ t i
The left conjunction ensures that there is at least oneuicisbn executed at any time, the right conjunction
ensures that at most one instruction is executed.
e At any time, each register contains exactly one integer.

MV)AA A oo

i Ty, FY

As above, two subformulas encode the facts that each regimttains at least and at most one value at any
time, respectively.

e Attimet, carry register contains exactly one integer and carrytfeffirst bit is always zero.

A <\/ CZ”> AN N (CEv=Ch A \CPL

t t zyaty

This one is similar to the register consistency above. Tgigmiost conjunction (over time) ensures that carry
bit into the least significant digit of any arithmetical comtation is 0. The bracket notation [1] refers to the
first bit of this register. These bits are necessary for eingoarithmetic operands, and in our arithmetization
of the SAT clause. More detail is given below, but for now wat jgloss over this detail.

e Finally we define an acceptance condition, in keeping wighlthring machine model. A RAM will be defined
to accept if and only if it halts and sets the program coumteeto and stores a zero value in its accumulator.

Hence the corresponding formula is
A (@ — Qb nRY)

t

Note that we can generalize the notion of acceptance by dgfthe value returned by a RAM computation.
This is defined as the value left in the accumulator aftetthlet instruction is executed. By modifying the
above boolean formula, we can easily extend the techniouen diiere to arithmetize the fact that machivie
on inputx returns valuey.

Control Flow Instructions In the next table, we give the translations of the move androbfiow instructions
(all instructions but the arithmetic ones) into booleanrfalas. The equality sigll = B, is the shortcut for the
formula((A A B) vV (=A A =B)). The translations in the table assumes that the instruiitven " instruction of
a RAM program.

Instructionr,, | Boolean Formula

read; A Ns :Q? AT — QPR A R A (/\i;é() A, RiY = Riiﬂ)}

storej W :Q? ARYT — QUL A REE A (/\#J WA m)}

read 1) | AcA,, [QF AR AT = QIR AR A (Ao A B = R
Store 17 | AAuy [QF AR AR — Qi AR A (Ape A RS = REE)]
load; Al [ARIT = QU ARG A (Nigo N\, BY = Rii’l)}

080 15 | AcAuy [@ AR AREY = QR AR A (Ao Ay B = i)
oad =j | A, [QF = QI AR A (Aigo A, B = R

jump j A @ = QL A (A A R = R

jpos; A :Q —((PAQL)V PAQED) A (NA, B = Rit)]
jzeroj A :Q ((Ze AQLy) v (52 A Q’gjf)) A (AN, BEY = t+1)]
Ineg. A @ = (VA QL) V (BN AQED) A (A A, B = Rit)]
halt /\t _ t Qt+1 A N>t (Qt’ (/\a: Rto’x = Ri”))}

Figure 5: Translations for move and control flow instruction

As an example, jump 13 instruction on the'! line of a RAM program is translated into

/\ QZHQH&/\ /\/\RJJ t+1
t

which reads “For all times, if at time¢, instruction 7 is belng executed, then the program couhiauld advance to
instruction13 at timet + 1 and the contents of all registers should remain unchandéek"translations for the other
control flow instructions are very similar to thgmp instruction. For the conditional jumpg60s, jzero, jneg), we
check that program counter is updated to the target line efrtbtruction in the case the condition holds. In the
case ofhalt instruction, what we require is that the program counteeig® zero, and neither the program counter
nor the contents of, (the accumulator) changes after that point. The remaimistylictions are self-explanatory,
though note that in the case of pointer operatidng) @n additional quantification over all possible contentthat
register is required, since at compile time the future austef any register is unknown.

Arithmetic instructions The arithmetic instructions are more complicated, bufelsimply from encoding a
boolean circuit for performing the requisite operation fikst define the following boolean variables:

RI®li] Attimet, it™ bit of registerj is b
CP[d] Attime ¢, i'h bit of the carry register is

Figure 6: The indexed boolean variables

Note that the boolean variab}éf’y now becomes a conjunction over the binary representation afid can be

written as ,
N B
1<k<[logy]

wherey; is theit" bit of y.

Having defined these variables, we can encode the arithimstizictions, using the same ideas as above, as
they are given in the Figure 7. To save space, the subfornemesding the register consistency condition (all but
register 0 remains unchanged) are omitted from the table.

2.3 Defining the Boolean Formulation

Fora RAM progranil = {7, ..., m} with running time bounded by the integer functifbfn), and inputz, letT =
T'(|z|). Define a function)(r;) which maps a RAM instructions; into its encoding given above. Quantifications
of t,z,y are over[l,...,T] and ofi, j are overl,...,S]. We first take the conjunction of all the clauses resulting
from encoding the program.

Definition 1 For a machin€ll as given above, we defidgIl) = /\f:1 ¥ (m;) as thesatisfiability formulatiorof IT.

We will now do two things. We first replace variables whichvioeisly encoded integers with a set of variables
corresponding to the individual bits of each integer, i&:Y is replaced by the conjunction ovBi,Y*[k]'s. Secondly
we transform our entire formula into 3CNF form. Consider aardacal list of the values of all the registers and the
input. Assume we have: registers andn input integers. The list can be writtiRo, ..., Ry, lo, ... In}. We
define a new set of variablgsX!} for i = 0,2mlog(S), t = 0,...,T corresponding to the values of each bit of
each member of this list at each time stefRecall that we definefl as the space bound of the machine). By directly
substituting these variables in for the previous varigtaesl making appropriate modifications to the equality tests
we arrive at a boolean formula. We then apply DeMorgan’s Lamg convert this into 3SCNF form.

Definition 2 For the satisfiability formula® above, we defin@’ as theboolean formulatiorof IT, & = A, 7;

wherer; = (V1 VY2 v Y]?), where the literals} = X or - X!.
Theorem 2 I1(z) accepts iff®’ ({ X }!) is satisfiable.

Proof. The proof is analogous to Cook’s Theorem. We have given a&seatwhich encodes the execution of the
RAM, hence the satisfying assignments are in one-one gurneence with the accepting runs of the machine.

Note that although the RAM model we describe is determmisly modifying the jump instructions it is simple
to implement nondeterminism. Moreover, our encoding neged the fact that the computation was deterministic.
Hence, just as in Cook’s reduction, our proof extends e#&sifyondeterministic RAM models.

Instruction| Boolean Formula
) AePNis Moo |QFARZT A RMEACE =
Q;z:ll /\R?jralq,@bi@cq, [i] /\Ct(ibl/\bl)V(amcl)V(bl/\cz)[i + 1]-‘
iy | MANase [@ARSOACE—
Q?lel AR?ff@”@” [z] /\Ct(ill/\jl)V(al/\61)\/(‘71/\51)[i + 1ﬂ
wd1; | AP [QFARAARIG AR ACE ~
Q?jﬁ A R?ff@bi@ci [z] A Céiq,l/\bL)V(aq,/\(,L)V(bL/\cq,)[7;+ 1ﬂ
sub; Aelis Rosper |QFARIANB NG —
Q?lel /\R;)ff@bi@ci [i] /\Ct(f;l/\bq,)\/((,L/\(aq,\/bq,))[i+ 1ﬂ
wbej | NANese [QEARSAACGD—
Q?Ill /\R;)ff@]i@ci [z] /\Ct(iLI/\bq,)\/((,L/\(aq,\/b7,))[i+ 1ﬂ
w1 | MNP [QFARIUIARARE A ACE —
Q;Lj-f A Ri)ff@bi@ci [z] A Ct(:,l/\bq,)V(cq,/\(aq,\/bq,))[i + 1ﬂ
half j Ae Ni Mo, |QF A R “[i) = QU AR = 1] A (Ay Njro R} = RIY))

Figure 7: Translations for arithmetic instructions

3 Completing the Protocol

All PCP protocols can now be revised to begin with a RAM dgsion instead of a Turing Machine description,
as shown in the previous section. For completeness we sumanarthis section the remainder of one variant of
the PCP protocol, at a high level, so that the reader may gstlddr the feasibility of implementing the protocol.
This exposition is based primarily on the description of §8% which in turn depends on [BFL91] and [LFKN9Q].
Although [ALM+98] actually requires fewer queries than danachieved in [BFL91], we employ the latter method
because it is simpler and the total communication bandwadiith running times of the verifier are similar in both
models.

Here we also explained why in our version of this protocag filll 3CNF formula never needs to be explicitly
written out by our verifier. It should be noted that the resolt PCP protocols do not end here. Numerous beautiful
and surprising optimizations have been derived in receatsyeThe results in this paper may be applied to any of
these versions of PCP.

The problem of the input All PCP protocols require that the verifier and the provehlretad the input string to
the RAM M. ltis for this reason that the verifier's running time is ajwat least linear, even though the time spent
in verification is only logarithmic inV/’s running time. In our certification model, we are allowing to read and
accept a very long certificate. We explicitly assumed thaoes not want to download this long certificate, but this
certificate is the input td/, soV seemingly needs to take the time to read it.

It turns out thatl” does not have to read the entire certificate. Using a staridtegretation of the classP
we instead assume that the certificatgugssedy M nondeterministically.)M then verifies that the certificate it
guessed is correct. Using this, the only inpufMois the program which we assunirealready downloaded. It does
not matter that the certificate is in fact provided by anoswirce (namely, the prover.) If a certificate exists which
M accepts, then the protocol will pass.

10

3.1 Arithmetization

Given a 3CNF formulab’ overw variablesX, we describe a polynomiaP () which has a zero ovef0, 1}* if
and only if®’ is satisfiable. Le®’ = A ;. Then define a functionl from boolean formulas to polynomials in the
following way: A(T) =0, A(F) =1, A(X) = (1 —x), A(-X) =z, A(Y1 VYy VY3) = A(Y7)A(Y2) A(Y3).

Definition 3 Let®’ be a boolean formulation di as in Definition 2 above. Then the polynomidlz) = Y, (A(;))?
is called theboolean arithmetizatioof the programil.

Lemma 1 The boolean arithmetizatioR () of ® has a zero ovef0, 1} iff ' is satisfiable.

Proof. From the definition of P it is clear that there is arsuch thatP(z) = 0 has a zero at only if each of its
summands is 0. Each summand is a product, thus is zero is ampenef the factors is zero. But these factors
correspond to the arithmetization of literals, which hawealue 0 if and only if the literal evaluates to trme.

3.2 Compression

A general scheme is given in [BFL91] for converting sums & #bove type into sums which can be efficiently
zero tested. We briefly recount that transformation here. gdal is to produce an equivalent polynomial with more
levels of nested sums, which as we will see below, allows reffreient zero testing.

Given a set of boolean variabl¢s,, ..., z,} and ase{r,...,r,} of disjunctions of 3 literals, we again let
® = A;”, ;. Now instead of taking the conjunction of only thewhich appear inb, we want to conjunct over all
possible disjunctions of length three. We then incorposatee additional logic to ignore the superfluous formulas
which were introduced. First we need a decision procedurehich takes as input 3 variablés;, , z;,, z;, } and 3
bits {b1, b2, b3} to indicate whether the variables are negat®daccepts only if the resulting disjunctian appears
in . In the general theory of this papéd,(Z, b) could be compiled in RAM code and transformed into a boolean
formulation, A(Z, 5). Using this we can transform into a hew boolean formula, which we then arithmetize. The
boolean formula inside the summation can be read as “efthery \V z) does not appear it or else it satisfiable.”
Recall thatA is a function which arithmetizes boolean formulas.

A@®@) = A(\7)

i=1

= ZA(Ti)
- Z Z Z Z Z Z A(=A(b1, ba, b3, T4y, Tiy, Tig) V (b1 © w4y) V (b2 @ @3,) V (b3 © 245))

=0b3=0b3=04i1=11i3=113=1

Note that this new formula in fact has zero exactly wideis satisfiable and hence it has a zero if and only if our
original programiI accepts its input.

Definition 4 We call the above transformation of a boolean formulatigrthe decision formulatiorof ®. We use
this term indiscriminately to refer to both the logical andlynomial formulations.

3.3 The Protocol

By applying 3.1 and 3.2 to a prografh, we find a polynomialF’. Computing the value of'(Z) directly involves
unwrapping the above sum and hence computing the summéamt) times. Since: is at least the running time of
II this computation is clearly too long. Yet the result of [LFBO] shows that such a sum can be evaluated with the

11

aid of a prover with an additive complexity increase instefithe normal multiplicative one. Hence by performing
O(3n) simple computations and queries to the prover, the verifiarle convinced that the formula is satisfiable.
But 3n is still essentially the running time &f. Another trick from BFL allows us to perform onty (log n) queries
by quantifying not over the variables:y, ..., z,} themselves, but over the binary digits of their indices. Shu

conjunction such as
n n
> Ay
i=1 j=1
is instead written as

1 1 1 1
E e E E e E A <$Eio:gln ;20 V .'Ezio:gln d¢2i>
c1=0 Clogn=0d1=0 diog n=0

By applying this idea to our decision formulation®fwe arrive at a sum which would requié&log n) steps of the
LFKN protocol.

Definition 5 The above transformation is called thbempressed formulatioof ®.

-,

The final step The last step of the LFKN protocol requires the evaluatiothef summand\(Z, b) Vv 7 for one
particular valuation of all the quantified boolean variabl&he bottleneck in this computation is the evaluation of
A. A simple way of performing the decision procedure of findingiven triple of literals i would be to compute

® completely and then search. To bypass this, recall thatarotlginal boolean formulation, each variable name
specifically referred to the line number Bf which gave rise to that variable. Moreover, within that lmember,

the precise time step and register values consider are mtsaled in the variable name. Hence given any variable,
determining if it appears i® reduces to determining if it appears in the encoding of aqaatr instructionr,.
This process can be encoded simply in logarithmic time, amté the final step of the protocol does not add to our
running time. Note also that it should now be clear why théfieemever needs to explicitly compute. It is only
ever needed to know how to quedyand this can be done with a logarithmic time lookup procedure

References
[ALM+98] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szege Proof verification and hardness of approximation
problems,J. of the ACM 45(3):501-555, 1998.

[AS98] S. Arora and S. Safra. Probabilistic checkable mo@éf new characterization of NRl. of the ACM 45(1):70-122,
1998.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-determiniséixponential time has two-prover interactive protoc@sm-
putational Complexitypp. 3—40, 1991.

[BFLS90] L. Babai, L. Fortnow, C. Lund, and M. Szegedy. Cliagkcomputations in polylogarithmic timeProc. 31st
Foundations of Computer Sciengg. 16-25, 1990.

[BGKW88] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigdens Multi-prover interactive proofs: How to remove in-
tractability assumption€?roc. 20th Symposium on Theory of Computing 113-131, 1988.

[BK95] M. Blum and S. Kannan. Designing programs that chéelrtwork. J. of the ACM42(1):269-291, 1995.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testingfececting with applications to numerical problems.of Com-
puting and System Sciencd3(3):549-595, 1993.

[CMS99] C. Cachin, S. Micali, and M. Stadler. Computatidygativate information retrieval with polylogarithmic camuni-
cation. Manuscript, 1999.

[CLSY90] J.YV. Cai, R. Lipton, R. Sedgewick, and A. Yao. Todsiuncheatable benchmarksoc. 8th Structure in Complexity
Theory pp. 2-11, 1993

12

[DKL+] C. Dwork, S. Kannan, P. D. Lincoln, J. C. Mitchell, RuRinfeld, A. Scedrov. Interactive Proof-Carrying Code.
[DS92] C. Dwork and L. Stockmeyer. Finite state verifiershelpower of interaction]. of the ACM 39(4):800-828, 1992.

[FGL+96] U. Feige, S. Goldwasser, L. Lovasz, S. Safra, an&xégedy. Interactive proofs and the hardness of approxignat
cliques,J. of the ACM43(2):268-292, 1996.

[FN] U. Feige, K. Nissim. On the use of interactive proofsfimmal program verification Manuscript, 1997
[FS88] L. Fortnow and M. Sipser. Interactive proof systenith & log space verifier. Manuscript, 1988.

[GLR+91] P. Gemmell, R. Lipton. R. Rubinfeld, M. Sudan, and/Migderson. Self-testing/correcting for polynomials &od
approximate function?roc. 23rd Symposium on Theory of Computiog. 32—42, 1991.

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knadge complexity of interactive proof systemSIAM J. on
Computing 18(1):186—208, 1989.

[GS86] S. Goldwasser and M. Sipser. Private coins versukigoedins in interactive proof systemBroc. 18th Symposium on
Theory of Computingpp. 59-68, 1986.

[Kozen] Kozen] D. Kozen Design and Analysis of AlgorithmsriBger-Verlag, 1994.

[Kil92] J. Kilian. A note on efficient zero-knowledge proaiad argumentsroc. 24th Symposium on Theory of Computing
pp. 723-732,1992.

[Kil94] J. Kilian. Improved efficient arguments (preliminaversion). Proc. Advances in Cryptology — CRYP;T8€pringer
LNCS 963:311-324, 1995.

[KO97] E. Kushilevitz and R. Ostrovsky. Replication is n&eted: Single database, computationally-private inftiona
retrieval. Proc. 38th Foundations of Computer Sciengp. 364—-373, 1997.

[Lip91] R. Lipton. New directions in testingProc. DIMACS Workshop on Distr. Comp. and Cryptograppy. 191-202,
1991.

[LFKN9O0] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algehic methods for interactive proof systemk,of the ACM
39(4):859-868, 1992.

[Mer90] R. C. Merkle. A certified digital signatur@®roc. Advances in Cryptology — CRYP;T&pringer LNCS 435:218-238,
1989.

[Mic94] S. Micali. CS proofs.Proc. 35th Foundations of Computer Sciengp. 436—453, 1994.

[NL96] G. C. Necula, P. Lee. Proof-carrying code. TechnRaport CMU-CS-96-165, Computer Science Department, CMU,
1996.

[Papa] C. Papadimitriou.. Computational Complexity AddisVesley, 1996

[PS] A.Polishchuk, D. A. Spielman. Nearly-linear Size Hplaphic ProofsProc. 26th Symposium on Theory of Computing
1994.

[Sha90] A. Shamir. IP=PSPACH. of the ACM 39(4):869-877,1992.

[Spi96] D. A. Spielman. Linear-time encodable and decogl@bptor-correcting codedEEE Trans. on Information Theory
42(6):1723-1732, 1996.

