
TESTING PROPERTIES OF DISTRIBUTIONS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Tugkan Batu

August 2001

c© Tugkan Batu 2001

ALL RIGHTS RESERVED

TESTING PROPERTIES OF DISTRIBUTIONS

Tugkan Batu, Ph.D.

Cornell University 2001

We study the sample complexity of several basic statistical inference tasks as a

function of the domain size for the underlying discrete probability distributions.

Given access only to samples from two distributions over an n-element set, we

want to distinguish identical pairs of distributions from pairs of distributions that

have large statistical distance. We give an algorithm that uses O(n2/3 logn) indepen-

dent samples from each distribution, runs in time linear in the sample size, makes

no assumptions about the structure of the distributions, and distinguishes the case

that the statistical distance between the distributions is small from the case that it

is large. We also prove a lower bound of Ω(n2/3) for the sample complexity.

Under a related model, we show how to test, given access to samples from a

distribution over an n-element set, whether the distribution is statistically close to

an explicitly specified distribution. Our test uses Õ(n1/2) samples, which matches

the known tight bounds for the case when the explicit distribution is uniform.

Given access to independent samples of a distribution A over the product space

of two sets with n and m elements, respectively, we show how to test whether

the distributions induced by A restricted to each component are independent, i.e.,

whether A is statistically close to A1×A2 for some A1 over an n-element set and A2

over an m-element set. The sample complexity of our test is Õ(n2/3m1/3), assuming

without loss of generality that m ≤ n. We also give a matching lower bound up to

polylogarithmic factors.

We consider the problem of approximating the entropy of a black-box discrete

distribution in sublinear time. We show that a γ-multiplicative approximation to

the entropy can be obtained in Õ(n(1+ζ)/γ2
) time for distributions with sufficiently

high entropy where n is the size of the domain of the distribution and ζ is an

arbitrarily small positive constant. We show that one cannot get a multiplicative

approximation to the entropy in general. Even for the class of distributions to which

our upper bound applies, we show a lower bound of Ω(n1/(2γ2)).

Biographical Sketch

Tuğkan Batu made his first debut on May 23rd, 1974 in Ankara, Turkey. After a

happy childhood, a carefree adolescence, two schools, three generations of comput-

ers, many good friends, and a short and not-so-bright volleyball career, he decided

to settle on computers. He completed his B.S. degree in the Department of Com-

puter Engineering and Information Science at Bilkent University in 1996. He then

relocated to gorge(ou)s Ithaca, and was introduced to ice hockey to which he im-

mediately got addicted. Despite his heavy hockey schedule all year around, he got

his M.S. degree in Computer Science at Cornell in May 2000. After completing his

Ph.D. studies, he is joining the Department of Computer and Information Science

at University of Pennsylvania as a postdoctoral researcher.

iii

To my family and Balam

iv

Acknowledgments

Although it is only my name that appears on the title page, there are others who

contributed greatly to the making of this dissertation. I am grateful to my advisor

Ronitt Rubinfeld in so many ways that I cannot possibly express. While she was

a great advisor and educator, Ronitt never made me feel less than a colleague.

The pep talks were inspritational, the criticism useful. The effort she put into my

writing and presentation skills was enormous. I still miss a good fraction of the

“the”s though.

I have also learned a lot from my other collaborators Sanjoy Dasgupta, Lance

Fortnow, Eldar Fischer, Ravi Kumar, Warren Smith, Patrick White. The work

described in this dissertation is based on various joint works with them.

Patrick is much more than a mere co-author to me. He is a very good friend. In

addition to being an invaluable mathematical reference, he painstakingly attended

cultural, linguistic, and idiosyncratic questions of mine. He was very much fun to

share with, whether it was boredom, a hotel room, a meal, or a drink that we shared.

The work presented in this dissertation was partially supported by ONR grant

N00014–97–1–0505.

I cannot overlook many beautiful people who made my graduate school experi-

ence a blissful one. Any list of names that I come up with would undoubtedly be

v

incomplete, so I would like to thank all those who remain unnamed here—students

I met at Cornell, the faculty and staff.

But above all, I owe much to my family. Their continual support and love, and

the appreciation of knowledge that they planted in me made me what I am today.

If there is anything good in me, that is because they put it there.

My best discovery at Cornell is not mentioned on these pages. Balam enchanted

me with the gift of love. The beauty that she ingrained in me will be there forever.

Thank you my love.

vi

Table of Contents

1 Introduction 1

2 Preliminaries 7
2.1 Some useful theorems . 8
2.2 Restriction and coarsening . 9
2.3 Bucketing . 12

3 Testing closeness and identity of distributions 14
3.1 Testing closeness of distributions . 16

3.1.1 Testing closeness in L2 norm 21
3.1.2 Testing closeness in L1 norm 23
3.1.3 Characterization of canonical algorithms for testing properties

of distributions . 26
3.1.4 A lower bound on sample complexity of testing closeness . . . 30
3.1.5 An application of closeness test to Markov chains 36

3.2 Testing identity of distributions . 38
3.2.1 A lower bound on sample complexity of testing identity 40

4 Testing independence of distributions 42
4.1 Independence and approximate independence 43
4.2 A filtering scheme . 45
4.3 An algorithm for testing independence 49

4.3.1 The heavy prefixes . 51
4.3.2 The light prefixes . 54
4.3.3 Putting them together . 56

4.4 Lower bound on sample complexity of testing independence 58

5 Approximating the entropy 67
5.1 Approximating the entropy of the heavy elements 70
5.2 Approximating the entropy of the light elements 72
5.3 Putting it together . 73
5.4 Lower bounds for approximating the entropy 74
5.5 Some remarks . 76

vii

5.5.1 Entropy estimation via collisions 76
5.5.2 Uniform distributions over subsets of [n] 77

6 Future directions 78

Bibliography 80

viii

List of Figures

3.1 Algorithm L2-Distance-Test . 18
3.2 Algorithm L1-Distance-Test . 20

ix

Chapter 1

Introduction

The objective of a typical statistical application is to make inferences about a pop-

ulation using samples taken from the population. Such inferences might be used

in a wide variety of ways, including to infer causalities, or to base strategies on.

The types of inferences can include determining whether two populations have sim-

ilar characteristics, whether certain events tend to occur together, or whether the

occurrence of an event is distributed according to a specific kind of distribution.

One such inference might be to unveil any correlation between the zip code area

that people live in and their health conditions. Another such inference might be to

validate a large-scale plant experiment on pesticide combinations by comparing the

results against theoretical predictions.

Tests such as χ2 test have been proposed for such central questions in statis-

tics. Unfortunately, these tests seem to require a lot of samples. As the tasks

become more complicated, more samples are needed to discover the patterns that

are revealing. Samples are often expensive to obtain. As a consequence, in many

statistical applications, the lack of a sufficient number of samples from the popula-

tion is a perennial problem. The shortage of samples prevents one from reaching a

1

2

conclusion that one is confident about.

In order to reduce the required number of samples while keeping the results

relevant, one might try to simplify the inference task. One approach for such a sim-

plification is to make assumptions about the population, or equivalently, about the

underlying probability distributions. For example, one can assume that the samples

come from a normal distribution. Although such an assumption can make the task

easier, it may not always be valid to make a simplifying assumption. A second way

to simplify the inference task is most applicable when the distributions have large

domains. The required number of samples in a statistical application depends on

the size of the domain over which the distribution under study is defined. Thus,

reducing the domain size translates immediately into a reduction in the required

number of samples. A common approach to obtaining such a reduction is by coa-

lescing domain elements of the distribution into categories that constitute a smaller

domain. Note that in some cases, there may not be a justifiably good partition of

the domain with which to do the coalescing. Even in the cases where the domain

elements could legitimately be coalesced, this grouping introduces additional error.

We study several basic statistical tasks in terms of the required number of sam-

ples. Each task we study has a straight-forward algorithm that is based on the fol-

lowing idea: after taking enough samples from a distribution, the frequency counts

for the elements with sufficiently high probability give accurate estimates of the

respective probability values when normalized by the total number of samples. For

each task we consider, it is not hard to show that these estimates allow one to reach

reliable conclusions. Unfortunately, this approach requires at least linear (in the

domain size) number of samples.

We give nearly tight characterizations of sample complexity for these tasks as a

3

function of the domain size. The algorithms we present have sublinear sample com-

plexity. Although the straight-forward algorithms do not yield such performances,

we use the approach of the straight-forward algorithm to handle the high-probability

events of the distributions. We then give specially tailored algorithms that perform

the tasks efficiently on events that are of low probability.

We make no assumptions about the distributions. We assume that our algo-

rithms only get samples from the distributions as input. We analyze the number of

samples required by the algorithms as a function of the domain size. We formalize

this model of access by giving the algorithm an oracle that, upon request, outputs a

sample distributed according to the distribution. We call such an oracle a black-box

distribution.

In this dissertation, we study the following four properties of discrete distribu-

tions.

Testing Closeness of Distributions A marketing survey can use data on the

shopping habits of people living in two different geographic areas to tailor advertising

strategies. For example, if samples of shopping data indicate that shopping habits

from the two areas are similar, then the same advertising strategy might be used

for these areas.

We abstract the task of detecting similarities of two data-generating sources by

the problem of testing closeness of distributions. An algorithm for testing close-

ness of two distributions has access to two black-box distributions. It distinguishes

identical pairs of distributions from pairs of distributions that have large statisti-

cal distance. For pairs with small statistical distance, no performance guarantee is

made.

In Chapter 3, we present an algorithm that requires Õ(n2/3) samples for testing

4

closeness of two distributions over an n-element set and prove a lower bound of

Ω(n2/3) samples.

Testing Identity of a Distribution Consider the task of checking whether a

lottery is fair. In a fair lottery, each number has an equal chance of winning, that is,

the winning number is chosen from a uniform distribution. The history of winning

numbers in a lottery can be used to test if the lottery is fair.

We capture the verification problem of the source of given randomly-generated

data as testing identity of a distribution. Similar to the previous problem of testing

closeness of distributions, an algorithm for testing identity of a distribution also takes

two distributions as input and distinguishes identical pairs of distributions from

pairs of distributions that have large statistical distance. However, the algorithm

is provided with the description of one of the distributions in this case. We call an

oracle an explicit distribution if, upon being given the name of a domain element,

it outputs the probability value assigned to that element. An algorithm for testing

identity of a distribution has access to one black-box distribution and one explicit

distribution.

In Chapter 3, we present an algorithm that requires Õ(
√
n) samples for testing

identity of a distribution over an n-element set and prove a lower bound of Ω(
√
n)

samples.

It is interesting to note that when one of the distributions is given as an explicit

distribution instead of a black-box distribution, the problem of testing closeness

becomes provably easier.

Testing Independence of a Distribution In the evaluation of the results of

a medical experiment, one can study the correlation of the genetic makeup of an

5

individual and the outcome of the treatment for different doses of the tested drug.

The task of detecting correlations in the data can be viewed as testing inde-

pendence of joint distributions. We define the problem of testing independence of

distributions on joint black-box distributions over a set of pairs. A joint distribution

is called independent if for all possible a and b, the probability of sampling the pair

(a, b) is equal to the product of the probability of sampling a pair with a in the first

coordinate and the probability of sampling a pair with b in the second coordinate.

An algorithm for testing independence of a joint black-box distribution distin-

guishes independent joint distributions from distributions with large statistical dis-

tance to all independent joint distributions.

In Chapter 4, we present an algorithm that requires Õ(n2/3m1/3) samples for

testing independence of a joint distribution over the product space of two sets with

n and m elements, respectively, for n ≥ m and prove a lower bound of Ω(n2/3m1/3)

samples.

Approximating the Entropy of a Distribution The Shannon entropy is a

measure of randomness of a distribution. The notion of entropy plays a central

role in statistics, physics, information theory, and data compression and has been

studied extensively. For example, knowing the entropy of a random source can shed

light on the compressibility of data produced by such a source.

In Chapter 5, we present an algorithm that can approximate the entropy of a

black-box distribution over an n-element set within a multiplicative factor of γ > 1

using O(n(1+ζ)/γ2
) samples for arbitrarily small ζ > 0, provided that the entropy

value is sufficiently high. Such a restriction on the class of distributions of which

the entropy can be approximated is justified once we show that one cannot get a

multiplicative approximation to the entropy in general. We show lower bounds on

6

the sample complexity of approximating entropy even for the class of distributions

to which our algorithm applies.

Chapter 2

Preliminaries

For any natural number n, we denote the set {1, . . . , n} by [n]. A discrete probability

distribution p over [n] is identified with the vector notation p = (p1, . . . , pn).

The notation x ∈R [n] denotes that x is chosen uniformly at random from the set

[n]. The L1 norm of a vector v is denoted by |v| and is equal to
∑n

i=1 |vi|. Similarly,

the L2 norm is denoted by ‖v‖ and is equal to
√

∑n
i=1 v

2
i , and ‖v‖∞ = maxi |vi|. If

|p− q| ≤ ǫ, we say that p is ǫ-close to q.

The collision probability of two distributions p and q over the set R is the

probability that a sample from each of p and q yields the same element. Note that

for two distributions p,q over R, the collision probability is p · q =
∑

i∈R piqi. To

avoid ambiguity, we refer to the collision probability of p with itself as the self-

collision probability of p. Note that the self-collision probability of p is ‖p‖2.

We use the Õ notation to hide dependencies on the logarithm of any of the

quantities in the expression, i.e., f = Õ(g) if f = O(gpoly(log g)). To simplify the

exposition, we assume all tests are repeated so that the confidence is sufficiently

high. Since a confidence of 1− δ can be achieved with O(log 1
δ
) trials, an additional

multiplicative factor of O(poly(log n)) is all that is required.

7

8

For a set R, let UR denote the uniform distribution over R. For a distribution p

over the set R and a subset R′ of R, let p(R′)
def
=

∑

i∈R′ pi.

We assume that a distribution can be specified in one of the two following ways.

Definition 2.1 (Black-box distribution) A black-box distribution p is an

oracle such that, upon request from an algorithm that has access to it, outputs a

sample distributed according to p.

Definition 2.2 (Explicit distribution) An explicit distribution q is an ora-

cle that on input i outputs qi.

Definition 2.3 (Distinguishing random variables) Let X and Y be discrete

random variables taking values from a set D. An algorithm A distinguishes X

and Y , if given a sample from one of X or Y , A can correctly identify the source

of the sample with probability at least 2/3. The success probability is taken over the

randomness of the random variables and the internal coin tosses of A.

The following observation is well-known:

Observation 2.4 Let X and Y be as in Definition 2.3 and ǫ
def
=

∑

a∈D |Pr [X = a]−

Pr [Y = a] |. Then, no algorithm can distinguish X and Y with success probability

more than 1
2

+ ǫ
4
.

2.1 Some useful theorems

We shall use the following inequalities often.

Theorem 2.5 (Markov’s inequality) Let X be a random variable assuming only

non-negative values. Then for κ > 0,

Pr [X ≥ κE [X]] ≤ 1

κ
.

9

Theorem 2.6 (Chebyshev inequality) Let X be a random variable with expec-

tation E [X] and standard deviation σX . Then for κ > 0,

Pr [|X − E [X] | ≥ κσX] ≤ 1

κ2
.

Theorem 2.7 (Chernoff bounds) Let X1, X2, . . . , Xm be m independent random

variables where Xi ∈ [0, 1]. Let ρ
def
= 1

m

∑

i E [Xi]. Then, for every γ ∈ [0, 1], the

following bounds hold:

Pr

[

1

m

m
∑

i=1

Xi > (1 + γ)ρ

]

< exp(−γ2ρm/3)

and

Pr

[

1

m

m
∑

i=1

Xi < (1 − γ)ρ

]

< exp(−γ2ρm/2).

The following theorem states that all sufficiently large entries of a probability

vector can be estimated efficiently from frequency counts in a sample set.

Theorem 2.8 Given a black-box distribution p over R, a threshold t and an accu-

racy parameter ǫ > 0, there is an algorithm that requires O(t−1ǫ−2 log |R| log (1/δ))

samples and outputs an estimate p̃ such that with probability at least 1 − δ, ∀i ∈

R, pi ≥ t we have (1− ǫ)pi ≤ p̃(i) ≤ (1 + ǫ)pi; the algorithm also outputs a set R′ of

members of R which includes {i ∈ R|pi ≥ t} and on which the above approximation

is guaranteed.

The proof (omitted) of the above theorem is a simple application of a Chernoff

bounds to independent samples from p.

2.2 Restriction and coarsening

In this section, we define distributions induced by a distribution and a partition of

its domain. The first one, restriction, is the conditional distribution on a subset of

10

the domain. The second one, coarsening, is obtained by coalescing all the elements

in each set in a partitioning of the domain. We, then, prove some propositions

regarding these induced distributions.

Definition 2.9 (Restriction) Given a distribution p over R, and R′ ⊆ R, the

restriction (p↓R′

) is the distribution over R′ such that, for all i ∈ R′, (p↓R′

)i =

pi/p(R′).

Definition 2.10 (Coarsening) Given a distribution p over R, and a partition

R = {R1, . . . , Rk} of R, the coarsening (p〈R〉) is the distribution over [k] with

distribution defined by (p〈R〉)i = p(Ri).

We have the following:

Observation 2.11 If p is a distribution over R and R = {R1, . . . , Rk} is a parti-

tion of R, then for all i in [k] and j in Ri, pj = (p〈R〉)i · (p↓Ri)j.

In words, the probability of picking an element j belonging to the partition Ri

according to p is equivalent to the probability of picking the partition Ri times the

probability of picking j when restricted to the partition Ri.

The following lemma shows that two distributions are close if they are close with

respect to restrictions and coarsening.

Lemma 2.12 Let p,q be distributions over R and let R = {R1, . . . , Rk} be a par-

tition of R. If for all i in [k], |(p↓Ri)− (q↓Ri)| ≤ ǫ1 and |(p〈R〉)− (q〈R〉)| ≤ ǫ2, then

|p− q| ≤ ǫ1 + ǫ2.

11

Proof: Using the hypothesis and Observation 2.11,

|p− q| =
∑

i∈[k]

∑

j∈Ri

|pj − qj | =
∑

i∈[k]

∑

j∈Ri

|(p〈R〉)i · (p↓Ri)j − (q〈R〉)i · (q↓Ri)j|

≤
∑

i∈[k]

∑

j∈Ri

|(p〈R〉)i · (p↓Ri)j − (p〈R〉)i · (q↓Ri)j |

+
∑

i∈[k]

∑

j∈Ri

|(p〈R〉)i · (q↓Ri)j − (q〈R〉)i · (q↓Ri)j|

=
∑

i∈[k]

∑

j∈Ri

(p〈R〉)i · |(p↓Ri)j − (q↓Ri)j | +
∑

i∈[k]

∑

j∈Ri

(q↓Ri)j · |(p〈R〉)i − (q〈R〉)i|

≤ ǫ1
∑

i∈[k]

(p〈R〉)i +
∑

i∈[k]

|(p〈R〉)i − (q〈R〉)i| ≤ ǫ1 + ǫ2. 2
Note that for all i ∈ [k], (1 − ǫ)p(Ri) ≤ q(Ri) ≤ (1 + ǫ)p(Ri) implies that

|(p〈R〉)− (q〈R〉)| ≤ ǫ. The following lemma shows a partial converse: if p and q are

close, then they are close when restricted to partitions of the domain with sufficiently

large probability mass.

Lemma 2.13 Let p and q be distributions over R and R′ ⊆ R. Then |(p↓R′

) −

(q↓R′

)| ≤ 2 |p−q|
p(R′)

.

Proof:

|(p↓R′

) − (q↓R′

)| =
∑

i∈R′

∣

∣

∣

∣

pi
p(R′)

− qi
q(R′)

∣

∣

∣

∣

=
∑

i∈R′

∣

∣

∣

∣

pi
p(R′)

− qi
p(R′)

+
qi

p(R′)
− qi

q(R′)

∣

∣

∣

∣

≤ 1

p(R′)

∑

i∈R′

|pi − qi| +
∣

∣

∣

∣

1

p(R′)
− 1

q(R′)

∣

∣

∣

∣

∑

i∈R′

qi

≤ 1

p(R′)
|p− q| +

∣

∣

∣

∣

1

p(R′)
− 1

q(R′)

∣

∣

∣

∣

q(R′)

≤ 1

p(R′)
(|p− q| + |q(R′) − p(R′)|) ≤ 1

p(R′)
(|p− q| + |p− q|) = 2

|p− q|
p(R′) 2

12

2.3 Bucketing

In this section, we introduce a tool that we use in multiple occasions in the subse-

quent chapters. We use this tool, we call bucketing, to reduce the general problem

to a more specific case: in particular, to the case where the input distributions are

close to the uniform distribution. The inherent homogeneous nature of the uniform

distribution makes the problem easier, at least qualitatively if not quantitatively.

Bucketing is a general tool which decomposes an arbitrary probability distribu-

tion into a collection of distributions that are almost uniform. The restriction of a

distribution to a set of elements that have similar probabilities is close to uniform.

We define Bucket(p, R, ǫ) as a partition (R0, R1, . . . , Rk) ofR with k ≤ (2/ log(1+

ǫ)) · log |R| such that R0 = {i | pi ≤ 1/(|R| log |R|)}, and for all i in [k],

Ri =

{

j

∣

∣

∣

∣

(1 + ǫ)i−1

|R| log |R| ≤ pj ≤
(1 + ǫ)i

|R| log |R|

}

.

Lemma 2.14 Let p be a distribution over R and let (R0, . . . , Rk) = Bucket(p, R, ǫ).

We have |(p↓Ri) − URi
| ≤ ǫ, ‖(p↓Ri) − URi

‖ ≤ ǫ2/|Ri| for i ∈ [k], and p(R0) ≤

1/ log |R|.

Proof: Clearly, p(R0) ≤ 1/ log |R|. For i ≥ 1, consider an arbitrary (non-empty)

subset Ri. Without loss of generality, let Ri = {1, . . . , ℓ} with p1 ≤ · · · ≤ pℓ.

Let q = (p↓Ri). Then, qℓ/q1 < 1 + ǫ. Also, by averaging, q1 ≤ 1/ℓ ≤ qℓ. Hence

qℓ ≤ (1+ǫ)q1 ≤ (1+ǫ)/ℓ. Similarly it can be shown that q1 ≥ 1/(ℓ(1+ǫ)) > (1−ǫ)/ℓ.

Thus, it follows that |qj − 1/ℓ| ≤ ǫ/ℓ for all j = 1, . . . , ℓ and therefore, |q−URi
| ≤ ǫ

and ‖q − URi
‖ ≤ ǫ2/ℓ. 2

Given an approximation p̃ of p, the bucketing of p̃ has similar properties as the

bucketing of p.

13

Corollary 2.15 Let p and p̃ be distributions over R such that p̃ approximates

p, i.e., ∀i ∈ R, (1 − ǫ)pi ≤ p̃i ≤ (1 + ǫ)pi for some ǫ > 0. Let Bucket(p̃, R, ǫ)

be the partition {R0, . . . , Rk} of R with k = O(ǫ−1 log |R|). Then, for all i ≥ 1,

|(p↓Ri) − URi
| ≤ 3ǫ and p(R0) ≤ (1 + ǫ)/ log |R|.

In our applications of bucketing, we usually ignore the bucket R0 since the proba-

bility mass on this bucket would be negligible for our purposes.

Let R be a partition of the domain R generated by bucketing according to

distribution q. In the next lemma, we show that if another distribution p is close

to uniform when restricted to a set Ri in R, we can infer that distributions p and

q are close when restricted to Ri.

Lemma 2.16 Let p,q be distributions over R and let (R0, . . . , Rk) = Bucket(q, R, ǫ).

For each i in [k], if ‖(p↓Ri)‖2 ≤ (1 + ǫ2)/|Ri| then |(p↓Ri) − URi
| ≤ ǫ and |(p↓Ri) −

(q↓Ri)| ≤ 2ǫ.

The proof of this lemma uses the following fact.

Fact 2.17 For any distribution p over R, ‖p‖2 − ‖UR‖2 = ‖p− UR‖2.

Proof: ‖p‖2 − ‖UR‖2 = (
∑

j∈R p
2
j) − 1

|R| = (
∑

j∈R p
2
j) + 1

|R| − 2
|R|

∑

j∈R pj =

∑

j∈R(pj − 1
|R|)

2 = ‖p− UR‖2. 2
Proof: (of Lemma 2.16) Using Fact 2.17, note that for a distribution p over

R, if ‖p − UR‖2 = ‖p‖2 − ‖UR‖2 ≤ α then |p − UR| ≤
√

α|R|. Since we are given

‖(p↓Ri)‖2−‖URi
‖2 = ‖(p↓Ri)‖2−1/|Ri| ≤ ǫ2/|Ri|, the first part of the lemma follows.

We also know that |(q↓Ri)−URi
| ≤ ǫ by Lemma 2.14. This gives |(p↓Ri)− (q↓Ri)| ≤

2ǫ. 2

Chapter 3

Testing closeness and identity of

distributions

In this chapter, we present two tests that distinguish identical pairs of distributions

from pairs of distributions that have large L1 distance. Both of the tests take a

threshold parameter ǫ and have access to two distributions p and q over [n]. In the

case of the closeness test, both p and q are black-box distributions, whereas the

identity test has access to a black-box distribution p and an explicit distribution q.

The tests satisfy the following conditions: (1) if p = q, then the test outputs PASS

with probability at least 2/3, (2) if |p − q| ≥ ǫ, then the test outputs FAIL with

probability at least 2/3.

We then present lower bounds on the sample complexity of these tasks as a

function of the domain size of the distributions. We show Ω(n2/3) samples are re-

quired for testing closeness, whereas Ω(
√
n) samples are required for testing identity.

The lower bounds match the respective upper bounds up to polylogarithmic factors.

Besides showing the near optimality of our tests, these tight results establish the

relative hardness of testing closeness with respect to testing identity.

14

15

Related works arise in several different contexts. Goldreich and Ron [16] give

methods for testing that the L2 distance between a given black-box distribution and

the uniform distribution is small in time O(
√
n). Their method is based on the

number of collisions in the sample set. We also use collisions in the tests presented

here.

In an interactive setting, Sahai and Vadhan [23] show that given distributions p

and q, generated by polynomial-size circuits, the problem of distinguishing whether

p and q are close or far in L1 norm, is complete for statistical zero-knowledge.

A related work of Kannan and Yao [19] outlines a program checking framework

for certifying the randomness of a program’s output. Their model differs in that one

does not assume that samples from the input distribution are independent.

There is much work on the problem estimating the distance between distributions

in data streaming models where space is limited rather than time (cf. [14, 2, 10, 12]).

Another line of work [6] estimates the distance in frequency count distributions on

words between various documents, where again space is limited.

There is a vast literature on testing statistical hypotheses. In these works, one

is given examples chosen from the same distribution out of two possible choices, say

p and q. The goal is to decide which of two distributions the examples are coming

from. More generally, the goal can be stated as deciding which of two known classes

of distributions contains the distribution generating the examples. This can be seen

to be a generalization of our model as follows: Let the first class of distributions be

the set of distributions of the form q × q. Let the second class of distributions be

the set of distributions of the form p × q where the L1 distance of p and q is at

least ǫ. Then, given examples from two distributions u,v, create a set of example

pairs (x, y) where x is chosen according to u and y according to v. Bounds and an

16

optimal algorithm for the general problem for various distance measures are given

in [7, 22, 8, 9, 20, 28]. None of these give sublinear bounds in the domain size for

our problem.

3.1 Testing closeness of distributions

We develop a closeness test such that, given ǫ and access to two black-box distribu-

tions over [n], it distinguishes identical pairs of distributions from pairs of distribu-

tions that have L1 distance larger than ǫ. Actually, we can prove a slightly stronger

conditions: (1) if the distributions have L1 distance at most max(ǫ2

32 3
√
n
, ǫ

4
√
n
) then

the algorithm will accept with probability at least 2/3, and (2) if the distributions

have L1 distance more than ǫ then the algorithm will accept with probability at

most 1/3. The number of samples used is O(n2/3ǫ−4 log n). By repeating the the

algorithm O(log(1/δ) times and outputting the majority vote, the error probability

can be brought down to δ. In Section 3.1.4, we give an Ω(n2/3) lower bound for

testing L1 distance.

Our closeness test for L1 distance relies on a test for the L2 distance, which is

considerably easier to test: we give an algorithm that uses a number of samples

that is independent of n. However, the L2 distance does not in general give a good

measure of the closeness of two distributions. For example, two distributions can

have disjoint support and still have small L2 distance; two distributions each uniform

on disjoint halves of the domain have L2 distance 4/n. Still, we can estimate the

L2 distance of the distributions to within ǫ/
√
n and then use the fact that the L1

distance is at most
√
n times the L2 distance for n-vectors. Unfortunately, the

number of queries required by this approach is too large in general. Because of this,

our L1 test is forced to distinguish between two cases.

17

For distributions with small L2 norm, we show how to use the L2 distance to get

a good approximation of the L1 distance. For distributions with larger L2 norm, we

use the fact that such distributions must have elements which occur with relatively

high probability. We create a filtering test that estimates the L1 distance due to

these high probability elements, and then approximates the L1 distance due to the

low probability elements using the test for L2 distance. Optimizing the notion of

“high probability” yields our O(n2/3ǫ−4 log n)-time algorithm.

Theorem 3.1 Given parameters ǫ, δ, and black-box distributions p,q over a set of

n elements, there is a test which runs in time O(ǫ−4n2/3 log n log 1
δ
) such that if

|p− q| ≤ max(ǫ2

32 3
√
n
, ǫ

4
√
n
), then the test outputs pass with probability at least 1 − δ

and and if |p− q| > ǫ, then the test outputs fail with probability at least 1 − δ.

The proof of this theorem is given in Section 3.1.2. In order to prove this theorem,

we give a test which determines whether p and q are close in L2 norm. The test

is based on estimating the self-collision and collision probabilities of p and q. In

particular, if p and q are close, one would expect that the self-collision probabilities

of each are close to the collision probability of the pair. Formalizing this intuition,

in Section 3.1.1, we prove:

Theorem 3.2 Given parameters ǫ, δ, and black-box distributions p and q over a

set of n elements, there exists a test such that if ‖p− q‖ ≤ ǫ/2 then the test passes

with probability at least 1 − δ. If ‖p − q‖ > ǫ then the test passes with probability

less than δ. The running time of the test is O(ǫ−4 log 1
δ
).

The test used to prove Theorem 3.2 is given in Figure 3.1. The number of pairwise

self-collisions in sample set F is the count of i < j such that the ith sample in F

is same as the jth sample in F . Similarly, the number of collisions between Qp and

18

Qq is the count of (i, j) such that the ith sample in Qp is same as the jth sample in

Qq. We use the parameter m to indicate the number of samples needed by the test

L2-Distance-Test(p,q,m, ǫ, δ)

Repeat O(log(1
δ)) times

Let Fp = a set of m samples from p

Let Fq = a set of m samples from q

Let rp be the number of pairwise

self-collisions in Fp.

Let rq be the number of pairwise

self-collisions in Fq.

Let Qp = a set of m samples from p

Let Qq = a set of m samples from q

Let spq be the number of collisions

between Qp and Qq.

Let r = 2m
m−1 (rp + rq)

Let s = 2spq

If r − s > m2ǫ2/2 then reject

Reject if the majority of iterations reject,

accept otherwise

Figure 3.1: Algorithm L2-Distance-Test

to get constant confidence. In order to bound the L2 distance between p and q by

ǫ, we show that setting m = O(1
ǫ4

) suffices. By maintaining arrays which count the

number of times that each element is sampled in Fp, Fq, one can achieve the claimed

running time bounds. Thus essentially m2 estimations of the collision probability

can be performed in O(m) time.

19

Since |v| ≤ √
n‖v‖, a simple way to extend the above test to an L1-distance

test is by setting ǫ′ = ǫ/
√
n. Unfortunately, due to the order of the dependence on

ǫ in the L2-distance test, the resulting running time is prohibitive. It is possible,

though, to achieve sublinear running times if the input vectors are known to be

reasonably evenly distributed. We make this precise by a closer analysis of the

variance of the decision variable of the test in Lemma 3.5. In particular, we analyze

the dependence of the variance of s on the parameter b = max(‖p‖∞, ‖q‖∞). There

we show that given p and q such that max(‖p‖∞, ‖q‖∞) ≤ n−α for some α, one can

call L2-Distance-Test with an error parameter of ǫ√
n

and achieve a running time

of O(ǫ−4(n1−α/2 + n2−2α)).

We use the following definition to identify the elements with large weights.

Definition 3.3 An element i is called heavy with respect to a distribution p if

pi ≥ 1
n2/3 .

Our L1-distance tester calls the L2-distance testing algorithm as a subroutine.

When both input distributions have no heavy elements, the input is passed to the

L2-distance test unchanged. If the input distributions have a large self-collision

probability, the distances induced respectively by the heavy and non-heavy elements

are measured in two steps. The first step measures the distance corresponding to

the heavy elements via straightforward sampling and estimates probabilities using

normalized frequency counts, and the second step modifies the distributions so that

the distance attributed to the non-heavy elements can be measured using the L2-

distance test. The complete test is given in Figure 3.2. The proof of Theorem 3.1

is described in Section 3.1.2.

20

L1-Distance-Test(p,q, ǫ, δ)

Sample p and q for

M = O(max(ǫ−2, 4)n2/3 log n) times

Let Sp and Sq be the sample sets obtained

by discarding elements that occur less

than (1 − ǫ/63)Mn−2/3 times

If Sp and Sq are empty

L2-Distance-Test(p,q, O(n2/3/ǫ4), ǫ
2
√
n
, δ/2)

else

ℓpi = # times element i appears in Sp

ℓqi = # times element i appears in Sq

Fail if
∑

i |ℓ
p
i − ℓqi | > ǫM/8.

Define p′ as follows:

sample an element from p

if this sample is not in Sp output it,

otherwise output an x ∈R [n].

Define q′ similarly.

L2-Distance-Test(p
′,q′, O(n2/3/ǫ4), ǫ

2
√
n
, δ/2)

Figure 3.2: Algorithm L1-Distance-Test

21

3.1.1 Testing closeness in L2 norm

In this section we analyze the test in Figure 3.1 and prove Theorem 3.2. The

statistics rp, rq and s in Algorithm L2-Distance-Test are estimators for the self-

collision probability of p, of q, and of the collision probability between p and q,

respectively. If p and q are statistically close, then the self-collision probabilities

of each are close to the collision probability of the pair. These collision probabil-

ities are exactly the inner products of these vectors. In particular if the set Fp

of samples from p is given by {F 1
p , . . . , F

m
p } then for any pair i, j ∈ [m], i 6= j,

we have that Pr
[

F i
p = F j

p

]

= p · p = ‖p‖2. Similarly, if Op = {Q1
p, . . . , Q

m
p }

and Oq = {Q1
q , . . . , Q

m
q } are m samples from p and q, respectively, then for any

i, j ∈ [m], we have that Pr
[

Qi
p = Qj

q

]

= p · q. One distinction to make be-

tween self-collisions and p,q collisions is that for the self-collisions, we can only

consider samples for which i 6= j, but this is not necessary for p,q collisions. We

accommodate this in our algorithm by scaling rp and rq appropriately. By this

scaling and from the above discussion we see that E [s] = 2m2(p · q) and that

E [r − s] = m2(‖p‖2 + ‖q‖2 − 2(p · q)) = m2(‖p− q‖2).

A complication which arises from this scheme is that the pairwise samples are

not independent. To analyze our test, we use Chebyshev’s inequality. That is, for

any random variable A, and ρ > 0, the probability Pr [|A−E[A]| > ρ] is bounded

above by Var[A]
ρ2

. To use this theorem, we require a bound on the variance, which we

give in this section.

Our techniques extend the work of Goldreich and Ron [16], where self-collision

probabilities are used to estimate norm of a vector, and the deviation of a distribu-

tion from uniform. In particular, their work provides an analysis of the statistics rp

and rq above through the following lemma.

22

Lemma 3.4 (Goldreich Ron) Let A be one of rp or rq in algorithm L2-Distance-

Test. Then E [A] =
(

m
2

)

· ‖p‖2 and Var [A] ≤ 2(E [A])3/2

It turns out that the bound on the variance is not sufficiently tight for our

purposes. We extend their bounds and get a tighter analysis in terms of the infinity

norms of the of the distributions.

Lemma 3.5 There is a constant c such that Var [r − s] ≤ c(m3b2 + m2b), where

b = max(‖p‖∞, ‖q‖∞).

Proof: For (i, j) ∈ [m] × [m], define the indicator variable Ci,j = 1 if the ith

element of Qp and the jth element of Qq are the same. Then the variable from the

algorithm spq =
∑

i,j Ci,j. Also define the notation C̄i,j = Ci,j − E [Ci,j].

We can write Var
[
∑

F×F Ci,j
]

= E
[

(
∑

F×F C̄i,j)
2
]

, and unfold the summation

and use the linearity of expectation to get

Var [spq] = E





∑

i,j

(C̄i,j)
2 + 2

∑

(i,j)6=(k,l)

C̄i,jC̄k,l



 ≤ m2(p · q) + 2E





∑

(i,j)6=(k,l)

C̄i,jC̄k,l



 .

To analyze the last expectation, we use two facts. First, it is easy to see, by the

definition of covariance, that E
[

C̄i,jC̄k,l
]

≤ E [Ci,jCk,l]. Secondly, we note that Ci,j

and Ck,l are not independent only when i = k or j = l. Expanding the sum we get

E









∑

(i,j),(k,l)∈F×F

(i,j)6=(k,l)

C̄i,jC̄k,l









= E









∑

(i,j),(i,l)∈F×F

j 6=l

C̄i,jC̄i,l +
∑

(i,j),(k,j)∈F×F

i6=k

C̄i,jC̄k,j









≤ E









∑

(i,j),(i,l)∈F×F

j 6=l

Ci,jCi,l +
∑

(i,j),(k,j)∈F×F

i6=k

Ci,jCk,j









≤ cm3
∑

ℓ∈[n]

pℓq
2
ℓ + p2

ℓqℓ ≤ cm3b2
∑

ℓ∈[n]

qℓ ≤ cm3b2

23

for some constant c. In order to bound Var [r − s] we use Lemma 3.4. Since Var [r] ≤

cm2b and the variance is additive for independent random variables, we can write

Var [r − s] ≤ c(m3b2 +m2b). 2
Now using Chebyshev’s inequality, it follows that if we choose m = O(ǫ−4), we

can achieve an error probability less than 1/3. It follows from standard techniques

that with O(log 1
δ
) iterations we can achieve an error probability at most δ.

Lemma 3.6 For two distributions p and q such that b = max(‖p‖∞, ‖q‖∞) and

m = O((b2 + ǫ2
√
b)/ǫ4), if ‖p − q‖ ≤ ǫ/2, then L2-Distance-Test(p,q, m, ǫ, δ)

passes with probability at least 1 − δ. If ‖p − q‖ > ǫ, then the probability that L2-

Distance-Test(p,q, m, ǫ, δ) passes is less than δ. The running time is O(m log(1
δ
)).

Proof: For our statistic A = (r − s) we can say, using Chebyshev’s inequality,

that for some constant c,

Pr [|A− E [A]| > ρ] ≤ c(m3b2 +m2b)

ρ2

Then when ‖p− q‖ ≤ ǫ/2, for one iteration,

Pr [pass] = Pr [(r − s) < m2ǫ2/2]

≥ Pr [|(r − s) − E [r − s] | < m2ǫ2/4]

≥ 1 − 4c(m3b2+m2b)
m4ǫ4

It can be shown that this probability will be at least 2/3 whenever m > k(b2 +

ǫ2
√
b)/ǫ4 for some constant k. A similar analysis can be used to show the other

direction. 2
3.1.2 Testing closeness in L1 norm

The L1-closeness test proceeds in two stages. The first phase of the algorithm filters

out heavy elements (as defined in Definition 3.3) while estimating their contribu-

24

tion to the distance |p − q|. The second phase invokes the L2 test on the filtered

distribution, with closeness parameter ǫ
2
√
n
. The correctness of this subroutine call

is given by Lemma 3.6 with b = n−2/3. With these substitutions, the number of

samples m is O(ǫ−4n2/3). The choice of threshold n−2/3 for the weight of the heavy

elements arises from optimizing the running-time trade-off between the two phases

of the algorithm.

We need to show that by using a sample of size O(ǫ−2n2/3 log n), we can estimate

the weights of the heavy elements to within a multiplicative factor of O(ǫ).

Lemma 3.7 Let ǫ ≤ 1/2. In L1-Distance-Test, after performingM = O(n
2/3 logn
ǫ2

)

samples from a distribution p, we define p̄i = ℓpi /M . Then, with probability at least

1− 1
n
, the following hold for all i: (1) if pi ≥ ǫ2n−2/3 then |p̄i−pi| < ǫ

63
max(pi, n

−2/3),

(2) if pi < ǫ2n−2/3, p̄i < (1 − ǫ/63)n−2/3.

Proof: Using Chernoff bounds, one sees that for each i, with probability

at least 1 − 1
n2 , the following holds: (1a) If pi > n−2/3 then |p̄i − pi| < ǫpi/63.

(1b) If ǫ2n−2/3 < pi ≤ n−2/3 then |p̄i − pi| < ǫn−2/3/63. (2) If pi < ǫ2n−2/3 then

p̄i < 3ǫ2n−2/3. Since, for ǫ ≤ 1/2, 3ǫ2 ≤ (1 − ǫ/63), the lemma follows. 2
Once the heavy elements are identified, we use the following fact to prove the

gap in the distances of accepted and rejected pairs of distributions.

Fact 3.8 For any vector v, ‖v‖2 ≤ |v| · ‖v‖∞.

Theorem 3.9 L1-Distance-Test passes distributions p,q such that |p − q| ≤

max(ǫ2

32 3
√
n
, ǫ

4
√
n
), and fails when |p−q| > ǫ. The error probability is δ. The running

time of the whole test is O(ǫ−4n2/3 logn log(1
δ
)).

Proof: Suppose items (1) and (2) from Lemma 3.7 hold for all i, and for both p

and q. By Lemma 3.7, this event happens with probability at least 1 − 2
n
.

25

Let S = Sp∪Sq. By our assumption, all the heavy elements of both p and q are

in S, and no element with weight less than ǫ2n−2/3 (in either distribution) is in S.

Let ∆1 be the L1 distance attributed to the elements in S. Let ∆2 = |p′ − q′|

(in the case that S is empty, ∆1 = 0, p = p′ and q = q′).

Notice that ∆1 ≤ |p−q|. We can show that ∆2 ≤ |p−q|, and |p−q| ≤ 2∆1+∆2.

The algorithm estimates ∆1 in a brute-force manner to within an additive error

of ǫ/9. The error on the ith term of the sum is bounded by ǫ
63

(max(pi, n
−2/3) +

max(qi, n
−2/3)) ≤ ǫ

63
(pi + qi + 2n−2/3). Consider the sum over i of these error terms.

Notice that this sum is over at most 2n2/3/(1 − ǫ/63) elements in S. Hence, the

total additive error is bounded by

∑

i∈S

ǫ

63
(pi + qi + 2n−2/3) ≤ ǫ

63
(2 + 4/(1 − ǫ/63)) ≤ ǫ/9.

Note that max(‖p′‖∞, ‖q′‖∞) < n−2/3 + n−1. So, we can use the L2-Distance-

Test on p′ and q′ with m = O(ǫ−4n2/3) as shown by Lemma 3.6.

If |p−q| < ǫ2

32 3
√
n

then so are ∆1 and ∆2. The first phase of the algorithm passes

with probability at least 1 − (2/n). By Fact 3.8, ‖p′ − q′‖ ≤ ǫ
4
√
n
. Therefore, the

L2-Distance-Test passes with probability at least δ/2. Similarly, if |p − q| > ǫ

then either ∆1 > ǫ/4 or ∆2 > ǫ/2. Either the first phase of the algorithm or the

L2-Distance-Test will fail.

To get the running time, note that the time for the first phase is O(ǫ−2n2/3 log n)

and that the time for L2-Distance-Test is O(n2/3ǫ−4 log 1
δ
). It is easy to see that

our algorithm makes an error either when it makes a bad estimation of ∆1 or when

L2-Distance-Test makes an error. So, the probability of error is bounded by δ. 2
The next theorem improves this result by looking at the dependence of the

variance calculation in Section 3.1.1 on L∞ norms of the distributions separately.

26

Theorem 3.10 Given two black-box distributions p,q over [n], with ‖p‖∞ ≤ ‖q‖∞,

there is a test requiring O((n2‖p‖∞‖q‖∞ǫ−4 +
√
n‖p‖∞ǫ−2) log(1/δ)) samples that

(1) if |p − q| ≤ ǫ2
3
√
n
, it outputs PASS with probability at least 1 − δ and (2) if

|p− q| > ǫ, it outputs FAIL with probability at least 1 − δ.

Finally, by similar methods to the proof of Theorem 3.10 (in conjunction with

those of [16]), we can show the following (proof omitted):

Theorem 3.11 Given a black-box distribution p over [n], there is a test that takes

O(ǫ−4
√
n log(n) log (1/δ)) samples, outputs PASS with probability at least 1 − δ if

p = U[n], and outputs FAIL with probability at least 1 − δ if |p− U[n]| > ǫ.

3.1.3 Characterization of canonical algorithms for testing

properties of distributions

In this section, we characterize canonical algorithms for testing properties of distri-

butions defined by permutation-invariant functions. The argument hinges on the

irrelevance of the labels of the domain elements for such a function. We obtain

this canonical form in two steps, corresponding to the two lemmas below. The first

step makes explicit the intuition that such an algorithm should be symmetric, that

is, the algorithm would not benefit from discriminating among the labels. In the

second step, we remove the use of labels altogether, and show that we can present

the sample to the algorithm in an aggregate fashion.

Characterizations of property testing algorithms have been studied in other set-

tings. For example, using similar techniques, Alon et al. [1] show a canonical form

for algorithms for testing graph properties. Later, Goldreich and Trevisan [15] for-

mally prove the result by Alon et al. In a different setting, Bar-Yossef et al. [3] show

27

a canonical form for sampling algorithms that approximate symmetric functions of

the form f : An → B where A and B are arbitrary sets. In the latter setting,

the algorithm is given oracle access to the input vector and takes samples from the

coordinate values of this vector.

Definition 3.12 (Permutation of a distribution) For a distribution p over [n]

and a permutation π on [n], define π(p) to be the distribution such that for all i,

π(p)π(i) = pi.

Definition 3.13 (Symmetric Algorithm) Let A be an algorithm that takes sam-

ples from k discrete black-box distributions over [n] as input. We say that A is sym-

metric if, once the distributions are fixed, the output distribution of A is identical

for any permutation of the distributions.

Definition 3.14 (Permutation-invariant function) A k-ary function f on dis-

tributions over [n] is permutation-invariant if for any permutation π on [n], and

all distributions (p(1), . . . ,p(k)),

f(p(1), . . . ,p(k)) = f(π(p(1)), . . . , π(p(k))).

Lemma 3.15 Let A be an arbitrary testing algorithm for a k-ary property P defined

by a permutation-invariant function. Suppose A has sample complexity s(n), where

n is the domain size of the distributions. Then, there exists a symmetric algorithm

that tests the same property of distributions with sample complexity s(n).

Proof: Given the algorithm A, construct a symmetric algorithm A′ as follows:

Choose a random permutation of the domain elements. Upon taking s(n) samples,

apply this permutation to each sample. Pass this (renamed) sample set to A and

output according to A.

28

It is clear that the sample complexity of the algorithm does not change. We need

to show that the new algorithm also maintains the testing features of A. Suppose

that the input distributions (p(1), . . . ,p(k)) have the property P. Since the property

is defined by a permutation-invariant function, any permutation of the distributions

maintains this property. Therefore, the permutation of the distributions should be

accepted as well. Then,

Pr
[

A′ accepts (p(1), . . . ,p(k))
]

=
∑

perm. π

1

n!
Pr

[

A accepts (π(p(1)), . . . , π(p(k)))
]

,

which is at least 2/3 by the accepting probability of A.

An analogous argument on the failure probability for the case of the distributions

(p(1), . . . ,p(k)) that should be rejected completes the proof. 2
In order to avoid introducing additional randomness in A′, we can try A on all

possible permutations and output the majority vote. This change would not affect

the sample complexity, and it can be shown that it maintains correctness.

Definition 3.16 (Fingerprint of a sample) Let S1 and S2 be multisets of at most

s samples taken from two black-box distributions over [n], p and q, respectively. Let

the random variable Cij, for 0 ≤ i, j ≤ s, denote the number of elements that appear

exactly i times in S1 and exactly j times in S2. The collection of values that the

random variables {Cij}0≤i,j≤s take is called the fingerprint of the sample.

For example, let sample sets be S1 = {5, 7, 3, 3, 4} and S2 = {2, 4, 3, 2, 6}. Then,

C10 = 2 (elements 5 and 7), C01 = 1 (element 6), C11 = 1 (element 4), C02 = 1

(element 2), C21 = 1 (element 3), and for remaining i, j’s, Cij = 0.

Lemma 3.17 If there exists a symmetric algorithm A for testing a binary property

of distributions defined by a permutation-invariant function, then there exist an

29

algorithm for the same task that gets as input only the fingerprint of the sample that

A takes.

Proof: Fix a canonical order for Cij ’s in the fingerprint of a sample. Let us define

the following transformation on the sample: Relabel the elements such that the

elements that appear exactly the same number of times from each distribution (i.e.,

the ones that contribute to a single Cij in the fingerprint) have consecutive labels

and the labels are grouped to conform to the canonical order of Cij’s. Let us call

this transformed sample the standard form of the sample. Since the algorithm A is

symmetric and the property is defined by a permutation-invariant function, such a

transformation does not affect the output of A. So, we can further assume that we

always present the sample to the algorithm in the standard form.

It is clear that given a sample, we can easily write down the fingerprint of the

sample. Moreover, given the fingerprint of a sample, we can always construct a

sample (S1, S2) in the standard form using the following algorithm: (1) Initialize S1

and S2 to be empty, and e = 1, (2) for every Cij in the canonical order, and for

Cij = kij times, include i and j copies of the element e in S1 and S2, respectively,

then increment e. This algorithm shows a one-to-one and onto correspondence

between all possible sample sets in the standard form and all possible {Cij}0≤i,j≤s

values.

Consider the algorithm A′ that takes the fingerprint of a sample as input. Next,

by using algorithm from above, algorithm A′ constructs the sample in the standard

form. Finally, A′ outputs what A outputs on this sample. 2
Remark 3.18 Note that the definition of the fingerprint from Definition 3.16 can

be generalized for a collection of k sample sets from k distributions for any k. An

analogous lemma to Lemma 3.17 can be proven for testing algorithms for k-ary

30

properties of distributions defined by a permutation-invariant function. We fixed

k = 2 for ease of notation and because we will use this specific case later.

3.1.4 A lower bound on sample complexity of testing close-

ness

In this section, we give a proof of a lower bound on the sample complexity of testing

closeness in L1 distance as a function of the size, denoted by n, of the domain of

the distributions.

Theorem 3.19 Given any algorithm using only o(n2/3) samples from two discrete

black-box distributions over [n] for all sufficiently large n, there exist distributions

p and q with L1 distance 1 such that the algorithm will be unable to distinguish

the case where one distribution is p and the other is q from the case where both

distributions are p.

Proof: By Lemma 3.15, we restrict our attention to symmetric algorithms. Fix a

testing algorithm A that uses o(n2/3) samples from each of the input distributions.

Next, we define the distributions p and q from the theorem statement. Note that

these distributions do not depend on A.

Let us assume, without loss of generality, that n is a multiple of four and n2/3

is an integer. We define the distributions p and q as follows: (1) For 1 ≤ i ≤ n2/3,

pi = qi = 1
2n2/3 . We call these elements the heavy elements. (2) For n/2 < i ≤

3n/4, pi = 2
n

and qi = 0. We call these element the light elements of p. (3) For

3n/4 < i ≤ n, qi = 2
n

and pi = 0. We call these elements the light elements of q.

(4) For the remaining i’s, pi = qi = 0.

The L1 distance of p and q is 1. Now, consider the following two cases:

31

Case 1: The algorithm is given access to two black-box distributions: both

of which output samples according to the distribution p.

Case 2: The algorithm is given access to two black-box distributions: the

first one outputs samples according to the distribution p and the

second one outputs samples according to the distribution q.

We show that a symmetric algorithm with sample complexity o(n2/3) can not dis-

tinguish between these two cases. By Lemma 3.15, the theorem follows.

When restricted to the heavy elements, both distributions are identical. The

only difference between p and q comes from the light elements, and the crux of the

proof will be to show that this difference will not change the relevant statistics in

a statistically significant way. We do this by showing that the only really relevant

statistic is the number of elements that occur exactly once from each distribution.

We then show that this statistic has a very similar distribution when generated by

Case 1 and Case 2, because the expected number of such elements that are light

is much less than the standard deviation of the number of such elements that are

heavy.

We would like to have the frequency of each element be independent of the

frequencies of the other elements. To achieve this, we assume that algorithm A first

chooses two integers s1 and s2 independently from a Poisson distribution with the

parameter λ = s = o(n2/3). The Poisson distribution with the positive parameter

λ has the probability mass function p(k) = exp(−λ)λk/k!. Then, after taking s1

samples from the first distribution and s2 samples from the second distribution, A

decides whether to accept or reject the distributions. In the following, we show

that A cannot distinguish between Case 1 and Case 2 with success probability at

least 2/3. Since both s1 and s2 will have values larger than s/2 with probability at

32

least 1 − o(1) and we will show an upper bound on the statistical distance of the

distributions of two random variables (i.e., the distributions on the samples), it will

follow that no symmetric algorithm with sample complexity s/2 can.

Let Fi be the random variable corresponding to the number of times the element

i appears in the sample from the first distribution. Define Gi analogously for the

second distribution. It is well known that Fi is distributed identically to the Poisson

distribution with parameter λ = sr, where r is the probability of element i (cf.,

Feller ([11], p. 216). Furthermore, it can also be shown that all Fi’s are mutually

independent. Thus, the total number of samples from the heavy elements and the

total number of samples from the light elements are independent.

Recall the definition of the fingerprint of a sample from Section 3.1.3. The

random variable Cij, denotes the number of elements that appear exactly i times in

the sample from the first distribution and exactly j times in the sample from the

second distribution. For the rest of the proof, we shall assume that the algorithm

is only given the fingerprint of the sample. The theorem follows by Lemma 3.17.

The proof will proceed by showing that the distributions on the fingerprint when

the samples come from Case 1 or Case 2 are indistinguishable. The following lemma

shows that with high probability, it is only the heavy elements that contribute to

the random variables Cij for i+ j ≥ 3.

Lemma 3.20 (1) With probability 1 − o(1), at most o(s) of the heavy elements

appear at least three times in the combined sample from both distributions. (2) With

probability 1 − o(1), none of the light elements appear at least three times in the

combined sample from both distributions.

Proof: Fix a heavy element i of probability 1
2n2/3 . Recall that Fi and Gi denote

the number of times this element appears from each distribution. The sum of the

33

probabilities of the samples in which element i appears at most twice is

ρ = exp(−s/n2/3)(1 +
s

n2/3
+

s2

2n4/3
).

By using the approximation e−x = 1−x+x2/2, we can show that 1−ρ = O(s3/n2).

By linearity of expectation, we expect to have o(s) heavy elements that appear

at least three times. For the light elements, an analogous argument shows that

o(1) light elements appear at least three times. The lemma follows by Markov’s

inequality. 2
Let D1 and D2 be the distributions on all possible fingerprints when samples

come from Case 1 and Case 2, respectively. The rest of the proof proceeds as

follows. We first construct two processes T1 and T2 that generate distributions on

fingerprints such that T1 is statistically close to D1 and T2 is statistically close to

D2. Then, we prove that the distributions T1 and T2 are statistically close. Hence,

the theorem follows by the indistinguishability of D1 and D2.

Each process has two phases. The first phase is the same in both processes.

They randomly generate the frequency counts for each heavy element i using the

random variables Fi and Gi defined above. The processes know which elements are

heavy and which elements are light, although any distinguishing algorithm does not.

This concludes the first phase of the processes.

In the second phase, process Ti determines the frequency counts of each light

element according to Case i. If any light element is given a total frequency count

of at least three during this step, the second phase of the process is restarted from

scratch.

Since the frequency counts for all elements are determined at this point, both

process output the fingerprint of the sample they have generated.

34

Lemma 3.21 The output of T1, viewed as a distribution, has L1 distance o(1) to

D1. The output of T2, viewed as a distribution, has L1 distance o(1) to D2.

Proof: The distribution that Ti generates is the distribution Di conditioned on

the event that all light elements appear at most twice in the combined sample.

Since this conditioning holds true with probability at least 1− o(1) by Lemma 3.20,

|Ti −Di| ≤ o(1). 2
Lemma 3.22 |T1 − T2| ≤ 1/6.

Proof: By the generation process, the L1 distance between T1 and T2 can only

arise from the second phase. We show that the second phases of the processes do

not generate an L1 distance larger than 1/6.

For any variable Cij of the fingerprint, the number of heavy elements that con-

tribute to Cij is independent of the number of light elements that contribute to

Cij. Let H be the random variable denoting the number of heavy elements that

appear exactly once from each distribution. Let L be the random variable denoting

the number of light elements that appear exactly once from each distribution. In

Case 1, C11 is distributed identically to H+L, whereas, in Case 2, C11 is distributed

identically to H .

Let C def
= {Cij}i,j and C+ def

= C \ {C10, C11, C01, C00}. Since
∑

i,j Cij = n, without

loss of generality, we omit C00 in the rest of the discussion. Define C1∗ =
∑

j C1j

and C∗1 =
∑

i Ci1. We use the notation PrTi
[C′] to denote the probability that

Ti generates the random variable C′ (defined on the fingerprint). We will use the

fact that for any C+, C1∗, C∗1, PrT1 [C+, C1∗, C∗1] = PrT2 [C+, C1∗, C∗1] in the follow-

ing calculation. This fact follows from the conditioning that Ti generates on the

respective Di, namely, the condition that it is only the heavy elements that appear

35

at least three times. Thus, only the heavy elements contribute to the variables Cij,

for i+ j ≥ 3, so the distribution on this part of the fingerprint is identical in both

cases. The probability that a light element contributes to the random variable C20

conditioned on the event that it does not appear more than twice is exactly the

probability that it appears twice from the first distribution. Therefore, C20 is also

identically distributed (conditioned on Cij’s for i+ j ≥ 3) in both cases by the fact

that the contribution of the light elements to C20 is independent of that of the heavy

elements. An analogous argument applies to C02, C1∗ and C∗1. So, we get

|T1 − T2| =
∑

C
|PrT1 [C] − PrT2 [C]|

=
∑

C+,C1∗,C∗1

PrT1 [C+, C1∗, C∗1]

∑

h,k,l≥0

|PrT1 [(C11, C10, C01) = (h, k, l)|C+, C1∗, C∗1]

− PrT2[(C11, C10, C01) = (h, k, l)|C+, C1∗, C∗1]|

=
∑

C+,C1∗,C∗1

PrT1 [C+, C1∗, C∗1]

∑

h≥0

|PrT1 [C11 = h|C+, C1∗, C∗1] − PrT2 [C11 = h|C+, C1∗, C∗1]|

=
∑

h≥0

|Pr [H = h] − Pr [H + L = h] |

The third line follows since C10 and C01 are determined once C+, C1∗, C∗1, C11 are

determined. In the rest of the proof, we show that the fluctuations in H dominate

the magnitude of L.

Let ξi be the indicator random variable that takes value 1 when element i appears

exactly once from each distribution. Then, H =
∑

heavy i
ξi. By the assumption

about the way samples are generated, the ξi’s are independent. Therefore, H is

36

distributed identically to the binomial distribution on the sum of n2/3 Bernoulli

trials with success probability Pr [ξi = 1] = exp(−s/n2/3)(s2/4n4/3). An analogous

argument shows that L is distributed identically to the binomial distribution with

parameters n/4 and exp(−4s/n)(4s2/n2).

As n grows large enough, both H and L can be approximated well by normal

distributions. That is,

Pr [H = h] → 1√
2πσH

exp(−(h− E [H])2/2Var [H])

as n→ ∞. Therefore, by the independence of H and L, H+L is also approximated

well by a normal distribution.

Thus, Pr [H = h] = Ω(1/σH) over an interval I1 of length Ω(σH) = Ω(s/n1/3)

centered at E [H]. Similarly, Pr [H + L = h] = Ω(1/σH+L) over an interval I2 of

length Ω(σH+L) centered at E [H + L]. Since E [H + L]−E [H] = E [L] = O(s2/n) =

o(s/n1/3), I1 ∩ I2 is an interval of length Ω(σH). Therefore,

∑

h∈I1∩I2

|Pr [H = h] − Pr [H + L = h] | ≤ o(1)

because for h ∈ I1 ∩ I2, |Pr [H = h]−Pr [H + L = h] | = o(1/σH). We can conclude

that
∑

h |Pr [H = h] − Pr [H + L = h] | is less than 1/6 after accounting for the

probability mass of H and H + L outside I1 ∩ I2. 2
The theorem follows by Lemma 3.21 and Lemma 3.22. 2

3.1.5 An application of closeness test to Markov chains

In [5], we show that closeness tests in L1 norm can be used to test mixing properties

of Markov chains. We show how to test whether iterating a Markov chain for t

steps causes it to reach a distribution close to the stationary distribution. We then

investigate two notions of being close to a rapidly mixing Markov chain that fall

37

within the framework of property testing, and show how to test that a Markov chain

is close to a Markov chain that mixes in t steps by following only Õ(tn2/3) edges,

which is sublinear in the size of any reasonable representation of a Markov chain.

In the case of Markov chains that come from directed graphs and pass our test, our

theorems show the existence of a directed graph that is close to the original one and

rapidly mixing.

Goldreich and Ron [16] give a test which they conjecture can be used for testing

whether a regular graph is close to being an expander. By close, they mean that by

changing a small fraction of the edges one can turn it into an expander. Mixing and

expansion are known to be related [25], but our techniques only apply to the mixing

properties of random walks on directed graphs, since the notion of closeness we use

does not preserve the symmetry of the adjacency matrix. The conductance [25] of a

graph is also known to be closely related to expansion and rapid-mixing properties

of the graph [25, 18]. Frieze and Kannan [13] show that, given a graph G with

n vertices and α, one can approximate the conductance of G to within additive

error α in time O(n2Õ(1/α2)). Their techniques also yield an O(2poly(1/ǫ))-time test

which determines whether an adjacency matrix of a graph can be changed in at

most ǫ fraction of the locations to get a graph with high conductance. However,

for the purpose of testing whether an n-vertex, m-edge graph is rapid mixing, we

would need to approximate its conductance to within α = O(m/n2); thus only when

m = Θ(n2) would it run in O(n) time. Our test is more efficient than algorithms

whose behavior is mathematically justified at every sparsity level. For the technical

exposition and a more detailed discussion of related work, see [5].

38

3.2 Testing identity of distributions

In this section, we assume that the distributions p and q are over [n], where p is a

black-box distribution and q is explicitly given. The task is to distinguish the case

where p = q from the case |p − q| > ǫ using as few samples (from p) as possible.

We show that this can be done using Õ(
√
npoly(ǫ−1)) samples. Our algorithm (first

appeared in [4]) reads the explicit distribution q entirely. By the lower bound we

show in Section 3.2.1, this sample complexity optimal up to polylogarithmic factors.

The main technical idea is to use bucketing (Section 2.3) to reduce this problem

to that of testing that each of the restrictions of the input distribution is approxi-

mately uniform. We first bucket the given distribution q; recall that bucketing gives

a partition (R0, . . . , Rk) of the domain so that the distribution q is close to uniform

in each of the partitions Ri (Lemma 2.14). For each partition Ri, we sample p and

test if (p↓Ri) is close to uniform on Ri. This uniformity test on the restriction to

each Ri is accomplished using a similar argument to that of [16] that was presented

in Section 3.1.1.

Now, we give the complete algorithm to test if a black-box distribution p is close

to an explicitly specified distribution q.

Algorithm TestIdentity(p,q, n, ǫ)

(1) R def
= (R0, . . . , Rk) = Bucket(q, n, ǫ/2).

(2) Let M be a set of O(
√
nǫ−2 log n) samples from p.

(3) For each partition Ri do

(4) Let Mi = M ∩ Ri (preserving repetitions); let ℓi = |Mi| (counting also

repetitions).

(5) If q(Ri) ≥ ǫ/k then

39

(6) If ℓi < O(
√
nǫ−2) then FAIL.

(7) Estimate ‖(p↓Ri)‖2 using Mi.

(8) If ‖(p↓Ri)‖2 > (1 + ǫ2)/|Ri| then FAIL.

(9) If |(p〈R〉) − (q〈R〉)| > ǫ then FAIL.

(10) PASS.

Theorem 3.23 Algorithm TestIdentity(p,q, n, ǫ) is such that: (1) if |p − q| ≤
ǫ2

4
√
n logn

, it outputs PASS with constant probability and (2) if |p−q| > 6ǫ, it outputs

FAIL with constant probability. The algorithm uses Õ(
√
npoly(ǫ−1)) samples.

Proof: Step (9) can be done by using brute force to distinguish between |(p〈R〉)−

(q〈R〉)| > ǫ and |(p〈R〉) − (q〈R〉)| < 1
2
ǫ. This does not take a significant number of

additional samples, as k is logarithmic in n by the definition of bucketing.

Note that by Chernoff bounds, the probability of failing in step (6) can be made

sufficiently small, unless there is a large difference between p(Ri) and q(Ri) for some

i. Suppose that the algorithm outputs PASS. This implies that for each partition

Ri for which steps (6)-(8) were performed (which are those for which q(Ri) ≥ ǫ/k),

we have ‖(p↓Ri)‖2 ≤ (1 + ǫ2)/|Ri|. From Lemma 2.16 we get that for each of these

Ri, |(p↓Ri) − (q↓Ri)| ≤ 2ǫ.

We also have that the sum of q(Ri) over all Ri for which steps (6)-(8) were

skipped is at most ǫ. Also, |(p〈R〉) − (q〈R〉)| ≤ ǫ by step (9); so the total difference

between p and q over these partitions sums up to no more than 3ǫ. Adding this to

the 3ǫ difference over the partitions that were not skipped in steps (6)-(8) (given by

applying Lemma 2.12 with |(p↓Ri) − (q↓Ri)| ≤ 2ǫ and |(p〈R〉) − (q〈R〉)| ≤ ǫ), we get

that |p− q| ≤ 6ǫ.

On the other hand, suppose |p − q| < ǫ2

4
√
n logn

. Using Lemma 2.13 for all par-

titions Ri with q(Ri) ≥ ǫ/k, we have |(p↓Ri) − (q↓Ri)| < ǫ/(2
√
n). In terms of

40

‖ ·‖, this implies ‖(p↓Ri)− (q↓Ri)‖2 < ǫ2/(4n) < ǫ2/(4|Ri|). Since from Lemma 2.14,

‖(q↓Ri)−URi
‖2 < ǫ2/(4|Ri|), then by triangle inequality, ‖(p↓Ri)−URi

‖2 ≤ (‖(p↓Ri)−

(q↓Ri)‖ + ‖(q↓Ri) − URi
‖)2 ≤ ǫ2/|Ri|. So by Lemma 2.17, ‖(p↓Ri)‖2 = ‖(p↓Ri) −

URi
‖2 + ‖URi

‖2 ≤ (1 + ǫ2)/|Ri|. Therefore the algorithm will pass with high prob-

ability on all such partitions; it is also not hard to see that the algorithm will pass

step (9) as well.

The sample complexity is Õ(
√
nǫ−2) from step (2), which dominates the sample

complexity of step (9) (no other samples are taken throughout the algorithm). 2
3.2.1 A lower bound on sample complexity of testing iden-

tity

We prove a lower bound on sample complexity of testing identity in a special case,

namely, testing uniformity of a black-box distribution. The proof hinges on the

famous Birthday Problem.

Theorem 3.24 Given any algorithm using only o(
√
n) samples from a discrete

black-box distribution over [n] for all sufficiently large n, there exist distributions

p and q with L1 distance 1 such that the algorithm will be unable to distinguish the

case where the input distribution is p from the case where the input distribution is

q.

Proof: By Lemma 3.15, it suffices to consider only the symmetric algorithms. Let

A be a symmetric algorithm that uses s = o(
√
n) samples. Let distribution p be

the uniform distribution over [n], and let distribution q be the uniform distribution

over [n/2]. By the Birthday Problem, it is well know that there exist a constant

c < 1 such that the probability that we get same element twice before taking c
√
n

41

samples from a uniform distribution over [n] is at most c2. Using such an argument,

the probability of the existence of a repetition after taking s samples from q can be

upper bounded by

s
∑

t=1

t− 1

n/2
=

2

n

s
∑

t=1

(t− 1) =
2

n

(

s

2

)

= o(1).

A similar argument holds for samples taken from p as well. Therefore, s samples

from p or q will consist of s distinct elements with probability at least 1 − o(1).

Since the algorithm A is symmetric, we can conclude that A cannot distinguish p

and q with probability higher than 1
2

+ o(1). 2

Chapter 4

Testing independence of

distributions

Consider a joint distribution over the product space of two sets, where a sample from

this distribution is a pair. One might want to know whether the two components of a

sample from this distribution are correlated. In this chapter, we study the problem of

testing independence of a joint distribution over a product space using only samples

from the distribution. Namely, we want to test whether the distribution over the

first component is independent from the distribution over the second component

with no additional assumptions on the structure of the joint distribution.

For the sake of presentation, we abandon the vector notation to represent distri-

butions throughout this chapter and use capital letters to name the distributions and

the function notation to denote the probability density functions. The probability

density function of a distribution A is denoted by A(·, ·).

Checking independence of a joint distribution over [n]× [m]is a central question

in statistics and there exist many different techniques for attacking it (see [20]).

Classical tests such as the χ2 or Kolmogorov-Smirnoff work well when n and m are

42

43

small, but for large n,m these tests require more than n ·m samples.

We develop a general algorithm for testing independence problem (first appeared

in [4]) with sublinear sample complexity (in the size of [n] × [m]). This is the

first sublinear time test which makes no assumptions about the structure of the

distribution. Our test uses Õ(n2/3m1/3poly(ǫ−1)) samples, assuming without loss of

generality that n ≥ m, and distinguishes between the case that A = A1 × A2 and

that for all A1,A2, |A − A1 × A2| ≥ ǫ.1 Here, A1 and A2 are distributions over

[n] and [m], respectively. We also show this bound is tight up to polylogarithmic

factors.

4.1 Independence and approximate independence

Let A be a distribution over [n]×[m]. Then, πiA, for i ∈ {1, 2}, denote the marginal

distributions obtained by projecting A into the i-th component. We say that A is

independent if, the distributions π1A and π2A are independent, equivalently if for

all i ∈ [n] and j ∈ [m],

A(i, j) = (π1A)(i) · (π2A)(j)

or simply A = (π1A) × (π2A).

We say that A is ǫ-independent if there is a distribution B that is independent

and |A − B| ≤ ǫ. Otherwise, we say A is not ǫ-independent or ǫ-far from being

independent.

The following claim shows that an ǫ-independent distribution is close to the

independent distribution generated by the product of the marginal distributions.

1The notation B × C denotes the joint distribution obtained by choosing the first component

according to B and the second component according to C.

44

Claim 4.1 Let A,B be distributions over S × T . If B is independent, then

|A− (π1A) × (π2A)| ≤ 3|A− B|.

Claim 4.1 follows from the following lemmas.

Lemma 4.2 ([24]) Let A1,B1 be distributions over S and A2,B2 be distributions

over T . Then, |A1 ×B1 −A2 × B2| ≤ |A1 −B1| + |A2 − B2|.

Proof: Using the triangle inequality, we get

|A1 ×A2 − B1 × B2| =
∑

i∈S

∑

j∈T
|A1(i)A2(j) − B1(i)B2(j)|

≤
∑

i∈S

∑

j∈T
|A1(i)A2(j) − A1(i)B2(j)| +

∑

i∈S

∑

j∈T
|A1(i)B2(j) −B1(i)B2(j)|

=
∑

i∈S

∑

j∈T
A1(i) · |A2(j) − B2(j)| +

∑

i∈S

∑

j∈T
B2(j) · |A1(i) − B1(i)|

=
∑

j∈T
|A2(j) − B2(j)| +

∑

i∈S
|A1(i) − B1(i)|

= |A1 − B1| + |A2 −B2| 2
Lemma 4.3 Let A,B be distributions over S × T . Then, |π1A − π1B| ≤ |A − B|

and |π2A − π2B| ≤ |A −B|.

Proof: By unfolding the definitions of the marginal distributions and the triangle

inequality, we get

|π1A− π1B| =
∑

i∈S
|π1A(i) − π1B(i)|

=
∑

i∈S
|
∑

j∈T
A(i, j) −

∑

j∈T
B(i, j)|

=
∑

i∈S
|
∑

j∈T
(A(i, j) − B(i, j))|

≤
∑

i∈S

∑

j∈T
|A(i, j) − B(i, j)|

= |A− B|.

45

An analogous argument for the second part applies. 2
Proof: (of Claim 4.1) Since B is independent, B = (π1B) × (π2B). Using the

triangle inequality, Lemma 4.2 and Lemma 4.3, we get

|A − (π1A) × (π2A)| ≤ |A −B| + |B− (π1A) × (π2A)|

= |A −B| + |(π1B) × (π2B) − (π1A) × (π2A)|

≤ 3|A− B|. 2
Claim 4.1 shows that in order to test whether a joint distribution is independent,

one can use the marginal distributions as references. If the distribution is indepen-

dent, then it is clearly equal to the product of the marginal distributions. And, if it

is far from this product, then it is far from any independent distribution.

4.2 A filtering scheme

In Section 2.3, we introduce bucketing as a general tool which decomposes an ar-

bitrary probability distribution into a collection of distributions that are almost

uniform. Later, we used this tool in Section 3.2 to reduce the general problem

of testing identity to the special case of testing uniformity. Now, we introduce a

new tool, a filtering scheme, that will be used in conjunction with bucketing to

test independence of joint distributions. These two tools together will provide us a

reduction from the general problem of testing independence to the special case of

testing independence of a joint distribution that is close to the uniform distribution.

Informally, an (A,B)-filter is a (randomized) black-box sampler that can access

a black-box distribution A over S×T and can simulate a distribution B over S×T

such that certain ‘properties’ of B are related to ‘properties’ of A. We use the filter

46

in batch mode, i.e., given an input parameter t, we output t samples according to

B. The filter is free to use A however it wants — it can either sample A in a single

‘preprocessing’ stage and use these results or it can dynamically sample A or do

both.

An (A,B)-filter is specified in terms of the relationship between the properties

of B and those of A. For example, we will construct a filter which, under certain

conditions, produces a distribution B that is uniform when A is independent, and

is far from being uniform when A is far from being independent. This will allow us

to distinguish distributions that are independent from those that are far from being

independent. The other parameter of interest is the sample complexity of the filter,

which is the total number of samples from A it uses for a given t and S × T .

We first show that there is a filter that takes a distribution A over S × T for

which the first component is close to uniform, and produces a new distribution which

is close to the original one, and for which the first component is uniform. Moreover,

this filter preserves independence.

Lemma 4.4 There exists an (A,B)-filter for distributions over S×T such that for

any t, with high probability, (1) if A = (π1A) × (π2A) then B = US × (π2A), and

(2) if |π1A − US| ≤ ǫ/4 then |B − A| ≤ ǫ. The sample complexity of the filter is

O(max{|S|, t} log3 max{|S|, t}).

Proof: First, we describe the construction of the filter. Let t be given and let

ℓ = O(⌈t/|S|⌉ log |S| log t). The filter maintains a data structure which for every

i ∈ S, contains a list Li of ℓ elements of T . Each list starts out empty and is filled

according to the following steps:

(1) Obtain O(max{|S|, t} log3 max{|S|, t}) samples from A and for each sample

(i, j) from A, add j to Li if |Li| ≤ ℓ.

47

(2) For each i ∈ S, if |Li| < ℓ, then discard Li. In this case, obtain ℓ more

samples from A and for each sample (k, j) from A, add j to Li.

For i ∈ S, let Bi be distributed identically to π2(A
↓{i}×T) if Li was not discarded

in step (2) and identically to π2A otherwise. Thus, Li contains ℓ independent

samples of Bi.

Next, we describe the operation of the filter. Upon a sample request, the filter

generates a random i ∈R S. If |Li| > 0, then the filter picks the first element j in

Li, outputs (i, j), and deletes the first element in Li. If |Li| = 0, then the filter gets

a sample (i′, j′) from A and outputs (i, j′).

First, notice that with high probability (via a Chernoff bound), no Li becomes

empty in any of the t requests for samples. Also, it is clear that the output of the

filter is the distribution defined by generating a uniform i ∈ S and then simulating

the corresponding Bi. The exact distribution of B may depend on the outcome

of the preprocessing stage of the filter, but we show that with high probability B

satisfies the assertions of the lemma.

For the first assertion, note that if A = (π1A)× (π2A), then the second compo-

nent is independent of the first component. So, Bi = π2A for every i (regardless of

whether Li was filled by step (1) or (2)). Thus, B = US × (π2A).

To show the second assertion, let I = {i | π1A(i) ≥ 1/(2|S|)}. Another

application of the Chernoff bound shows that with high probability, for every i ∈ I,

Bi is distributed as π2((A
↓{i}×T)) (since Li would not be discarded in step (2)).

Thus, for every i ∈ I, Li contains ℓ independent samples of Bi = π2(A
↓{i}×T). Also,

48

since |π1(A) − US| ≤ ǫ/4, we have |S\I| ≤ ǫ|S|/2. We get

|A −B| =
∑

i∈I

∑

j∈T
|A(i, j) − B(i, j)| +

∑

i∈S\I

∑

j∈T
|A(i, j) − B(i, j)|

≤
∑

i∈I

∑

j∈T
|A(i, j) − B(i, j)| +

∑

i∈S\I

∑

j∈T
(A(i, j) + B(i, j))

=
∑

i∈I

∑

j∈T
π2(A

↓{i}×T)(j) ·
∣

∣

∣

∣

π1A(i) − 1

|S|

∣

∣

∣

∣

+
∑

i∈S\I
(π1A(i) + π1B(i))

≤
∑

i∈I

∣

∣

∣

∣

π1A(i) − 1

|S|

∣

∣

∣

∣

+
∑

i∈S\I
π1A(i) +

|S\I|
|S| ≤ 1

4
ǫ+

1

4
ǫ+

1

2
ǫ = ǫ 2

Filters can be composed, i.e., an (A,C)-filter can be combined with a (C,B)-

filter to give an (A,B)-filter. If the sample complexity of the (A,C)-filter is given

by the function f(t), and that of the (C,B)-filter is given by g(t), then the sample

complexity of the combined (A,B)-filter will be given by h(t) = f(g(t)).

Corollary 4.5 There exists an (A,B)-filter for distribution over S × T such that

if |π1A − US| ≤ ǫ/25, and |π2A − UT | ≤ ǫ/25, then with high probability, (1)

|B − A| ≤ (24/25)ǫ; (2) if A = (π1A) × (π2A) then B = US×T ; and (3) if A is

not ǫ-independent, then |B − US×T | ≥ (1/25)ǫ. The sample complexity of the filter

is O(max{|S| + |T |, t} log3 max{|S|, |T |, t}).

Proof: We apply the (A,C)-filter from Lemma 4.4 on the first component. Using

this filter we obtain a distribution C (with high probability) such that |C − A| ≤

4ǫ/25, π1C = US, and such that C is independent if A is independent.

Now, using Lemma 4.3, |π2C − π2A| ≤ 4ǫ/25 and since by our hypothesis,

|π2A − UT | ≤ ǫ/25, we get |π2C − UT | ≤ ǫ/5.

We now construct a (C,B)-filter from Lemma 4.4, only this time switching

components and filtering on the second component. Using this filter, we obtain a

distribution B (with high probability) such that |B− C| ≤ 20ǫ/25 and π2B = UT .

49

Moreover, according to Lemma 4.4 if A is independent (and thus so are C and

B) then π1B has the same distribution as π1C = US. Since π1B = US, π2B = UT

and they are independent, we get that B is uniform on S × T . Clearly, |B − A| ≤

|B− C| + |C −A| ≤ (24/25)ǫ.

If A is not ǫ-independent, then B, which is (24/25)ǫ-close to A, is (1/25)ǫ-far

from any independent distribution on S × T , in particular US×T . 2
4.3 An algorithm for testing independence

In this section, we give an algorithm for testing independence of a distribution A

over [n] × [m]. Without loss of generality, let n ≥ m. First of all, we present two

different approaches to testing independence. These two methods have different

samples complexities and are desirable in different situations.

(1) In the first method, we use the equivalence of testing independence to testing

whether A is close to π1A × π2A, which was shown by Claim 4.1. Since it is easy

to generate samples of π1A×π2A given samples of A, we can use the closeness test

presented in Chapter 3. This immediately gives us a test for independence that uses

Õ(n2/3m2/3) samples.

(2) In the second method, we reduce the problem of testing independence to

testing independence of many distributions that have the property that they are

almost uniform in each of the component. We then reduce the problem of testing

independence of such a distribution to testing independence of a distribution that

is uniform in each of the component. The first reduction is via bucketing (described

in Section 2.3) and the second reduction uses the filtering scheme described in Sec-

tion 4.2. To finish it off, testing the independence of a distribution that is uniform

in each of components is equivalent to testing whether the distribution is uniform

50

over both components — so we use the same techniques that we used to build the

algorithm for testing identity in Chapter 3. We show that for this method, the

overall sample complexity is Õ(n).

Then, we combine these two algorithms in an appropriate manner to exploit the

different behavior. In particular, we partition the elements of [n] as ‘light’ or ‘heavy’

based on their probability values in π1A.2 We apply method (1) to the light prefixes

and method (2) to the heavy prefixes. Finally, we ensure that the distributions

restricted to the heavy and light prefixes are consistent. This asymmetric approach

helps us achieve an optimal trade-off in the sample complexities, resulting in the

Õ(n2/3m1/3) sample complexity.

Let ǫ be the threshold parameter given to the algorithm such that the the al-

gorithm is expected to distinguish the independent distributions from distributions

that are ǫ-far from being independent. Let β be such that m = nβ and 0 < α < 1

be a parameter to be determined later. Let S ′ denote the set of prefixes with prob-

ability mass at least n−α; such prefixes are called heavy. All the other prefixes are

called light. Formally, let

S ′ = {i ∈ [n] | (π1A)(i) ≥ n−α}.

Using O(nαǫ−2 log n) samples, we can estimate (π1A)(i), for i ∈ S ′, by Ã1(i) to

within an ǫ/75 factor using Theorem 2.8. Let S̃ be the set of all i for which Ã1(i) ≥

n−α/2. Then S ′ ⊂ S̃ and S̃ does not contains any i for which (π1A)(i) ≤ n−α/2.

Our main idea is to first test that A is independent conditioned on the set of

heavy prefixes (Section 4.3.1) and then to test that A is independent conditioned

on the set of light prefixes (Section 4.3.2). To create these conditionings, we first

2We often refer to the first component of a sample from a joint distribution on pairs as the

prefix of the sample.

51

distinguish (using Õ(ǫ−1) samples) between (π1A)(S̃) ≥ ǫ and (π1A)(S̃) ≤ ǫ/2. If

the latter case occurs, then the distribution conditioned on the heavy prefixes cannot

contribute more than ǫ/2 to A’s distance from independence. Otherwise, if we are

guaranteed that the second case does not occur, we can simulate the distribution for

(A↓S̃×[m]) easily — we sample from A until we find a member of S̃ × [m] which we

output; this takes O(ǫ−1 log(nm)) queries with a high enough success probability.

We then apply an independence test that works well for heavy prefixes to (A↓S̃×[m]).

Next we distinguish between (π1A)([n]\S̃) ≥ ǫ and (π1A)([n]\S̃) ≤ ǫ/2. Again if

the latter occurs, then the distribution conditioned on light elements can contribute

at most ǫ/2 to the distance from independence. Otherwise, if the latter does not

occur, as before we simulate the distribution (A↓([n]\S̃)×[m]), and use it with a test

that works well for distributions restricted to light prefixes (they will still remain

light enough provided that (π1A)([n]\S̃) ≥ ǫ/2).

Finally, we obtain a test for independence (Section 4.3.3) by merging the testing

over light and heavy prefixes and using an additional application of Theorem 3.1 to

ensure the consistency of the distributions.

4.3.1 The heavy prefixes

We show that using filters, the heavy prefixes can be tested for independence using

roughly Õ((nα + m)poly(ǫ−1)) samples. In fact, the following theorem yields a

general algorithm for testing independence; it is just that the sample complexity is

particularly useful in the heavy prefix case. Note that in this case |S| = O(nα).

Theorem 4.6 There is an algorithm that given a black-box distribution A over

S × T : (1) if A is independent, it outputs PASS with high probability and (2) if

A is not 3ǫ-independent, it outputs FAIL with high probability. The algorithm uses

52

Õ((|S| + |T |)poly(ǫ−1)) samples.

Proof: Let Ã1 be an explicit distribution which approximates π1A. Consider the

following independence test:

Algorithm TestHeavyIndependence(A, Ã1 , ǫ)

(1) S def
= (S0, S1, . . . , Sk) = Bucket (Ã1, S, ǫ/75).

(2) Obtain an approximation Ã2 of π2A within an ǫ/75 factor,

on a T̃ which includes all j ∈ [m] which have probability at least (m logm)−1

(3) T def
= (T0, T1, . . . , Tℓ) =Bucket (Ã2, T̃ , ǫ); add T\T̃ to T0.

(4) For (Si, Tj), i ∈ [k], j ∈ [ℓ] do

(5) If A(Si × Tj) ≥ ǫ/(kℓ) then

(6) If (A↓Si×Tj) is not ǫ-independent, then FAIL.

(7) If (A〈S×T 〉) is not ǫ/2-independent, then FAIL.

(8) PASS.

Note that, if needed, Ã1 can be obtained using Õ|S|poly(ǫ−1) samples. After step

(2), S0 can be ignored (as usual). The independence test in step (7) can be done

by brute force, for instance, since the alphabet is only logarithmic in |S| and |T |.

Also, by bucketing, we know that |π1A − USi
| ≤ ǫ/25, ∀i ∈ [k] and |π2A − UTj

| ≤

ǫ/25, ∀j ∈ [ℓ]. For deciding in step (5) whether to execute step (6), we distinguish

between A(Si × Tj) ≥ ǫ/(kℓ) and A(Si × Tj) ≤ ǫ/(2kℓ), by taking Õ(kℓ/ǫ) many

samples of A and counting how many of them are in Si × Tj. Step (6) requires

sampling of (A↓Si×Tj); this is done by repeatedly sampling A until a member of

Si × Tj is found. As we are assured in step (6) that A(Si × Tj) > ǫ/(2kℓ), it

suffices to take O(ǫ−1 log3(nm)) samples of A in order to generate a single sample

of (A↓Si×Tj) (remember that k and ℓ are logarithmic in n and m).

53

We now present the independence test in step (6) which is used for each pair of

buckets from S and T .

Lemma 4.7 There is an algorithm that given a black-box distribution A over S×T

such that |π1A−US| ≤ ǫ/25, |π2A−UT | ≤ ǫ/25: (1) if A is independent, it outputs

PASS with high probability and (2) if A is not ǫ-close to US×T , it outputs FAIL with

high probability (in particular, only one of these cases can occur for a distribution

satisfying the above conditions). The algorithm uses Õ((|S|+|T |)poly(ǫ−1)) samples.

Proof: We apply the (A,B)-filter from Corollary 4.5. By its properties, if A is in-

dependent then B = US×T , and if A is not ǫ-close to US×T , then |B−US×T | ≥ ǫ/25

(because |A − B| ≤ 24
25
ǫ). We can distinguish between these cases using Theo-

rem 3.11, with Õ(ǫ−1
√

|S × T |) samples from the filter, which in itself takes less

than a total of Õ(ǫ−4(|S| + |T |) log6(ǫ−1(|S| + |T |))) samples from the distribution.2 Note that in the application of Lemma 4.7, its sampling estimate should be fur-

ther multiplied by O(ǫ−1 log3(nm)) to get the total number of samples made from

A, because it is applied separately to the restriction of A to each Si × Tj .

We now return to the proof of the theorem. If A is independent, then for

all i ∈ [k], j ∈ [ℓ], the restriction (A↓Si×Tj) is independent so steps (4)–(6) pass

(remember that Lemma 4.7 ensures that independent distributions pass step (6)).

In the above case, also (A〈S×T 〉) is independent, so step (7) and thus the entire

algorithm passes as well.

Conversely, if for each i ∈ [k] and j ∈ [ℓ] for which step (6) was performed

|(A↓Si×Tj) − USi×Tj
| ≤ ǫ (this step will not pass otherwise by Lemma 4.7), and

|(A〈S×T 〉) −D| ≤ 1
2
ǫ where D over [k] × [ℓ] is an independent distribution, then we

show that A is 3ǫ-independent. First note that A(T0) ≤ (1 − ǫ)/ log n. Now, we

define a new random variable B over S × T which is defined by first generating an

54

(i, j) ∈ [k] × [ℓ] according to D, and then generating (i′, j′) ∈ Si × Tj according to

USi×Tj
. It is easy to see that B is independent. Finally, by Lemma 2.12, |A−B| ≤

(3/2)ǫ+ ǫ+ (1 − ǫ)/ log n ≤ 3ǫ, where the second term comes for possibly ignoring

pairs i, j for which A(i, j) < ǫ/(kℓ) and the third term comes from ignoring A(T0).

The sample complexity of this algorithm is dominated by the complexity for each

pair of buckets going through the test of Lemma 4.7. It brings us to a total sample

complexity of Õ((|S| + |T |)poly(ǫ−1)) samples. 2
4.3.2 The light prefixes

We show that using the test for L1 distance between distributions, the light prefixes

can be tested for independence using roughly Õ((n2−2αm+n2/3)poly(ǫ−1)) samples.

Formally, we prove:

Theorem 4.8 There is an algorithm that given a black-box distribution A over

S× T with ‖π1A‖∞ ≤ 2ǫ−1|S|α such that: (1) if A is independent, it outputs PASS

with high probability and (2) if A is not 3ǫ-independent, it outputs FAIL with high

probability. It uses Õ((|S|2−2α|T | + |S|2/3)poly(ǫ−1)) many samples.

Proof: The following is the outline of the algorithm.

Algorithm TestLightIndependence(A, ǫ)

(1) Obtain an approximation Ã2 of π2A within an ǫ/75

factor, on a T̃ which includes all j ∈ [m] which

have probability at least (m logm)−1.

(2) T def
= {T0, T1, . . . , Tℓ} =Bucket (Ã2, T̃ , ǫ); add

T\T̃ to T0.

55

(3) For j = 1, . . . , ℓ do

(4) If A(S × Tj) is not small, then

(5) If |(A↓S×Tj) − (π1(A
↓S×Tj)) × (π2(A

↓S×Tj))| ≥ ǫ,

then FAIL.

(6) Let j′ be such that A(S × Tj′) > ǫ/(4ℓ).

(7) For j = 1, . . . , ℓ do

(8) If A(S × Tj) is not small, then

(9) If |(A↓S×Tj′) − (A↓S×Tj)| ≥ ǫ, then FAIL.

(10) PASS.

The decisions in step (4) and step (8) are done in a similar manner to what was

done in Theorem 4.6. We distinguish between A(S × Tj) ≥ ǫ/(2ℓ) and A(S ×

Tj) ≤ ǫ/(4ℓ) by taking Õ(ℓ/ǫ) samples of A. This guarantees that we need to take

O(poly(log(nm))ℓ/ǫ) samples of A for every sample of (A↓S×Tj) required in step

(5) and step (9), by re-sampling A until we obtain a member of the required set

(similarly step (6) guarantees this for sampling (A↓S×Tj′)).

The projections appearing in step (5) are sampled by sampling the respective

distribution and ignoring a coordinate. Obtaining the j′ in step (6) can be done for

example using a brute-force approximation of (A〈{S}×T 〉).

The test for the distribution difference in step (5) is done by using Theorem 3.10

with parameter ǫ and the distributions (A↓S×Tj) and (π1(A
↓S×Tj)) × (π2(A

↓S×Tj));

the bound on the L∞ norm of the distributions involved will be given below. The

test for the difference in step (9) is done similarly, but this time using Theorem 3.1

with parameter ǫ.

Notice that ‖(A↓S×Tj)‖∞ ≤ 2|S|−α/ǫ for every Tj (because of the bound on

‖π1A‖∞), and that ‖π2(A
↓S×Tj)‖∞ ≤ (1 + 3ǫ)|Tj |−1.

56

The total sample complexity for steps (3)–(5) is given by log |T | times the sam-

ple complexity for iteration j. The sample complexity of the latter is given by

Theorem 3.10, which is Õ((1 + 3ǫ) · (|S||Tj|)2 · |S|−α · |S|−α|Tj|−1 · ǫ−5), times the

Õ(ℓ/ǫ) for sampling from the restrictions to the buckets. This clearly dominates the

sample complexity for step (6), and the sample complexity for steps (7)–(9), which

is Õ(|S|2/3ǫ−5) by multiplying the estimate of Theorem 3.1, the sample complexity

of the restricted distributions, and the number of iterations. This completes the

estimate given in the statement of the theorem.

As for correctness, if A is independent then it readily follows that the algorithm

accepts, while on the other hand it is not hard to see that if the distribution pairs

compared in step (5) and step (9) are indeed all ǫ-close, then A is 3ǫ-independent.2
4.3.3 Putting them together

We now give the algorithm for the general case.

Theorem 4.9 There is an algorithm that given a distribution A over [n]× [m] and

an ǫ > 0: (1) if A is independent, it outputs PASS with high probability and (2) if

A is not 7ǫ-independent, it outputs FAIL with high probability. The algorithm uses

Õ(n2/3m1/3poly(ǫ−1)) samples.

Proof: The following is the outline of the algorithm.

Algorithm TestIndependence(A, n,m, ǫ)

(1) Let β be such that m = nβ, and set α = (2 + β)/3.

(2) Obtain an approximation Ã1 of π1A within an ǫ/75 factor,

on an S̃ which includes all i ∈ [n] which have probability at least n−α

57

and no i ∈ [n] which has probability at most n−α/2.

(3) If (π1A)(S̃) is not small then

(4) If TestHeavyIndependence((A↓S̃×[m]), (Ã
↓S̃×[m]
1), ǫ) fails then FAIL.

(5) If (π1A)([n]\S̃) is not small then

(6) If TestLightIndependence((A↓([n]\S̃)×[m]), ǫ) fails then FAIL.

(7) If both (π1A)(S̃) and (π1A)([n]\S̃) are not small then

(8) If π2(A
↓S̃×[m]) and π2(A

↓([n]\S̃)×[m]) are not ǫ-close, then FAIL.

(9) PASS.

In the above algorithm, steps (3), (5) and (7) use sampling to distinguish between

the cases where the respective quantities are at least ǫ and the cases where they are

at most ǫ/2. Step (4) (if required) is done by using Theorem 4.6, and step (6) is

done by using Theorem 4.8; by the choice of α in step (1), the number of queries in

both is Õ(n2/3m1/3poly(ǫ−1)) times the O(ǫ−1 log(nm)) queries required for filtering

the restricted distributions (a factor which does not change the above estimate).

For performing step (8) the two distributions are fed into Theorem 3.1, parame-

terized to guarantee failure if these distributions are more than ǫ-apart; this uses a

number of queries that is dominated by the terms in the rest of the algorithm.

It is clear that if A was independent, then the test will accept with high proba-

bility. We now prove that if the test accepts, then A is 7ǫ-independent.

If steps (4), (6) and (8) were performed and none of the above tests failed, then

by a final application of Lemma 2.12, where R = {S̃ × [m], ([n]\S̃) × [m]}, we get

that our distribution is at least 7ǫ-independent (because step (8) guarantees that the

coarsening is not more than ǫ-far from being independent). If steps (4) and (8) were

not performed, then A(S̃×[m]) < ǫ, so it contributes no more than ǫ to the farness of

A from being independent, and step (6) is sufficient to guarantee 4ǫ-independence.

58

Similarly 4ǫ-independence holds if steps (6) and (8) were not performed because of

A(([n]\S̃) × [m]) has small value. This covers all possible cases and concludes the

proof. 2
4.4 Lower bound on sample complexity of testing

independence

Theorem 4.10 For any algorithm A using o(n2/3m1/3) samples whenever n ≥ m,

there exist two joint distributions over [n]×[m] for any sufficiently large n ≥ m, with

one of them being independent and the other not being (1/6)-independent, such that

A cannot distinguish between these two joint distributions with probability greater

than 2/3.

Proof: Fix an algorithm A using o(n2/3m1/3) samples. We first define two

joint distributions A0 and B0 over [n] × [m]. Let β = lognm and α = (2 + β)/3.

Pr [A0 = (i, j)] =























1
2nαm

if 1 ≤ i ≤ nα

1
mn

n/2 < i ≤ n

0 otherwise

Pr [B0 = (i, j)] =







































1
2nαm

if 1 ≤ i ≤ nα

2
mn

if
n/2 < i ≤ n and

j ∈ [1, . . . , m/2]

0 otherwise

We now define two joint distributions A and B such that A, B modify A0

and B0 by randomly relabeling each element in [n] and [m]. First choose random

permutations σ0 of [n] and σ1, . . . , σn of [m]. Define A to be the distribution such

59

that

Pr [A = (σ0(i), σi(j))] = Pr [A0 = (i, j)] .

Likewise define B to be the distribution such that

Pr [B = (σ0(i), σi(j))] = Pr [B0 = (i, j)] .

Note that A and B are actually families of distributions (indexed by the per-

mutations). Throughout the rest of the proof, we will refer to A and B, with an

abuse of notation, as individual distributions in these families. Since we fixed the

algorithm A, we could choose the permutations σ0, . . . , σn to obtain the members

of these families that maximizes the error probability of the algorithm A.

The distribution A is independent whereas the distribution B is 1
6
-far from in-

dependent. This follows from B being 1
2
-far from π1B × π2B and Proposition 4.1.

The distributions π1A and π1B are identical, and they give half the weight to a

small number, namely nα, of the elements, and distribute the remaining weight to

half of the elements. The distribution π2A is uniform over its domain independent

of the value of π1A. The distribution π2B, however, is uniform over its domain only

when π1B outputs an element with the higher weight, otherwise, conditioned on the

event that π1B takes on a value with the lower probability, π2B is uniform only on

a subset of its domain that is half the size. The choice of σi’s makes the distribution

π2B uniform on its domain.

Definition 4.11 For a pair (i, j) ∈ [n] × [m], i is the prefix. An element (i, j) ∈

[n] × [m] such that Pr [A (or B) takes on value (i, j)] = 1
2nαm

is called a heavy

element. The prefix i of a heavy element (i, j) is called a heavy prefix. Elements

and prefixes with non-zero probabilities that are not heavy are called light.

60

When restricted to the heavy prefixes, both joint distributions are identical. The

only difference between A and B comes from the light prefixes, and the crux of the

proof will be to show that this difference will not change the relevant statistics in

a statistically significant way. We do this by showing that the only really relevant

statistic is the number of prefixes that occur exactly twice and each time with

different suffix. We then show that this statistic has a very similar distribution

when generated by A and B because the expected number of such prefixes that are

light is much less than the standard deviation of the number of such prefixes that

are heavy.

Next, we describe an aggregate representation of the samples that A takes. We

then prove that we can assume without loss of generality that A is given this rep-

resentation of the samples as input instead of the samples themselves. Then, we

conclude the proof by showing that distributions on the fingerprint when the samples

are taken from A or B are indistinguishable.

Definition 4.12 Fix a set of samples S = {(x1, y1), . . . , (xs, ys)} from distribution

A over [n]× [m]. Say the pattern of prefix xi is ~c where cj is the number of y’s such

that (xi, y) appears exactly j times in S. Define the function dS(~c) to be the number

of prefixes x for which the pattern of x is ~c. We refer to dS as the fingerprint of

S. We will just use d(~c) when S is clear from context.

Note that the definition of the fingerprint in this section is different from the

one given in Section 3.1.3 due to the difference in the two settings. The next claim

shows that the fingerprint of the sample is just as useful as the samples themselves

to distinguish between A and B.

Claim 4.13 Given algorithm A which for joint distributions chosen from the family

A or B, correctly distinguishes whether the distribution is independent or ǫ-far from

61

independent, there exists algorithm A′ which gets as input only the fingerprint of the

generated sample and has the same correctness probability as A.

Proof: Note that one can view a sample of size s chosen from the distribution

A (respectively B) as first picking s samples from A0 (respectively, B0), then picking

a set of random permutations of the element labels and outputting the random

relabeling of the samples. Thus the randomness used to generate the sample can be

divided into two parts: the first set of coins φ = (φ1, . . . , φu) are the coins used to

generate the sample from A0 (B0) and the second set of coins ψ = (ψ1, . . . , ψv) are

the coins used to generate the random permutations of the element labels.

The main idea behind the proof is that given the fingerprint of a sample from

A0 (respectively B0), the algorithm A′ can generate a labeled sample with the same

distribution as A (respectively, B) without knowing which part of the fingerprint is

due to heavy or light elements or whether the sample is from A or B. In particular,

given the fingerprint, assign d(~b) distinct labels from [n] to each pattern ~b. Suppose

that x~b is assigned to pattern ~b. Then create a sample which includes i copies of

(x~b, yj) for each nonzero bi and distinct yj for 1 ≤ j ≤ bi . Then choose random

permutations σ0, σ1, . . . , σn of [n] and [m] and use them to relabel the prefixes and

suffixes of the sample accordingly.

Thus, A′ generates a sample from the fingerprint and feeds it to A as input.

For each choice of the sample from A0 according to random coins φ, we have that

Prψ[A′ correct] = Prψ[A correct]. Therefore, Prφ,ψ[A′ correct] = Prφ,ψ[A correct].2
The following lemma shows that it is only the heavy prefixes, which have iden-

tical distributions in both A and B, that contribute to most of the entries in the

fingerprint.

62

Lemma 4.14 The expected number of light prefixes that occur at least three times

in the sample such that at least two of them are the same element is o(1) for both

A and B.

Proof: For a fixed light prefix, the probability that at least three samples will

land in this prefix and two of these samples will collide is o(n−1). Since there are

n/2 light prefixes, by the linearity of expectation, the expected number of such light

prefixes in the sample is o(1). 2
We would like to have the pattern of each prefix be independent of the patterns

of the other prefixes. To achieve this we assume that algorithm A first chooses an

integer s1 from the Poisson distribution with the parameter λ = s = o(n2/3m1/3).

The Poisson distribution with the positive parameter λ has the probability mass

function p(k) = exp(−λ)λk/k!. Then, after taking s1 samples from the input dis-

tribution, A decides whether to accept or reject the distribution. In the following,

we show that A cannot distinguish A from B with success probability at least 2/3.

Since s1 will have a value larger than s/2 with probability at least 1 − o(1) and

we will show an upper bound on the statistical distance of the distributions of two

random variables (i.e., the distributions on the fingerprints), it will follow that no

symmetric algorithm with sample complexity s/2 can distinguish A from B.

Let Fij be the random variable that corresponds to the number of times that

the element (i, j) appears in the sample. It is well known that Fij is distributed

identically to the Poisson distribution with parameter λ = srij , where rij is the

probability of element (i, j) (cf., Feller [11], p. 216). Furthermore, it can also be

shown that all Fij ’s are mutually independent. The random variable Fi
def
=

∑

j Fij

is distributed identically to the Poisson distribution with parameter λ = s
∑

j rij.

63

Let DA and DB be the distributions on all possible fingerprints when samples are

taken from A and B, respectively. The rest of the proof proceeds as follows. We first

construct two processes PA and PB that generate distributions on fingerprints such

that PA is statistically close to DA and PB is statistically close to DB. Then, we

prove that the distributions PA and PB are statistically close. Hence, the theorem

follows by the indistinguishability of DA and DB.

Each process has two phases. The first phase is the same in both processes.

They randomly generate the prefixes of a set of samples using the random variables

Fi defined above. The processes know which prefixes are heavy and which prefixes

are light, although any distinguishing algorithm does not. For each heavy prefix, the

distribution on the patterns is identical in A and B and is determined by choosing

samples according to the uniform distribution on elements with that prefix. The

processes PA and PB use the same distribution to generate the patterns for each

heavy prefix. For each each light prefix i that appears k times for k 6= 2, both PA

and PB will determine the pattern of the prefix to be (k,~0). This concludes the first

phase of the processes.

In the second phase, PA and PB determine the entries of the patterns for the

light prefixes that appear exactly twice. These entries are distributed differently

in PA and PB. There are only two patterns to which these remaining prefixes can

contribute: (2,~0) and (0, 1,~0). For each light prefix that appears exactly twice, PA

sets the pattern to be (2,~0) with probability 1 − (1/m) and (0, 1,~0) otherwise. For

such light prefixes, PB sets the pattern to be (2,~0) with probability 1 − (2/m) and

(0, 1,~0) otherwise.

Since the patterns for all prefixes are determined at this point, both process

output the fingerprint of the sample they have generated.

64

Lemma 4.15 The output of PA, viewed as a distribution, has L1 distance o(1) to

DA. The output of PB, viewed as a distribution, has L1 distance o(1) to DB.

Proof: The distribution that PA generates is the distribution DA conditioned on

the event that all light prefixes has one of the following patterns: (k,~0) for k ≥ 0

or (0, 1,~0). Since this conditioning holds true with probability at least 1 − o(1) by

Lemma 4.14, |PA −DA| ≤ o(1). The same argument applies to PB and DB. 2
Lemma 4.16 Distributions PA and PB have L1 distance at most 1/6.

Proof: Given the number of times a prefix appears in the sample, the pattern of

that prefix is independent of the patterns of all the other prefixes. By the generation

process, the L1 distance between PA and PB can only arise from the second phase.

We show that the second phases of the processes do not generate an L1 distance

larger than 1/6.

Let G (respectively, H) be the random variable that corresponds to the values

d(2,~0) when the input distribution is A (respectively, B). Let d′ be the part of the

fingerprint excluding entries d(2,~0) and d(0, 1,~0). We will use the fact that for any

d′, Pr [PA gen. d′] = Pr [PB gen. d′] in the following calculation.

65

|PA − PB| =
∑

d

|Pr [PA gen. d] − Pr [PB gen. d] |

=
∑

d′

Pr [PA gen. d′]
∑

k≥0

|Pr
[

PA gen. d(2,~0) = k|d′
]

−

Pr
[

PB gen. d(2,~0) = k|d′
]

|

=
∑

C≥0

Pr [PA gen. C prefixes twice]
∑

0≤k≤C

|Pr
[

PA gen. d(2,~0) = k|C
]

−

Pr
[

PB gen. d(2,~0) = k|C
]

|

= |G−H|

Consider the composition of G and H in terms of heavy and light prefixes. In

the case of A, let Gh be the number of heavy prefixes that contribute to d(2,~0)

and Gl be the number of such light prefixes. Hence, G = Gh + Gl. Define Hh, Hl

analogously. Then, Gh and Hh are distributed identically. In the rest of the proof,

we show that the fluctuations in Gh dominate the magnitude of Gl.

Let ξi be the indicator random variable that takes value 1 when prefix i has the

pattern (2,~0). Then, Gh =
∑

heavy i ξi. By the assumption about the way samples

are generated, the ξi’s are independent. Therefore, Gh is distributed identically to

the binomial distribution on the sum of nα Bernoulli trials with success probability

Pr [ξi = 1] = exp(−s/2nα)(s2/8n2α)(1 − (1/m)). An analogous argument shows

that Gl is distributed identically to the binomial distribution with parameters n/2

and exp(−s/n)(s2/2n2)(1 − (1/m)). Similarly, Hl is distributed identically to the

binomial distribution with parameters n/2 and exp(−s/n)(s2/2n2)(1 − (2/m)).

66

As n and m grow large enough, both Gh and Gl can be approximated well

by normal distributions. Therefore, by the independence of Gh and Gl, G is also

approximated well by a normal distribution. Similarly, H is approximated well by

a normal distribution. That is,

Pr [G = t] → 1√
2πσG

exp(−(t− E [G])2/2Var [G])

as n→ ∞.

Thus, Pr [G = t] = Ω(1/σG) over an interval I1 of length Ω(σG) centered at

E [G]. Similarly, Pr [H = t] = Ω(1/σH) over an interval I2 of length Ω(σH) centered

at E [H]. Since E [G] − E [H] = E [Gl] − E [Hl] = exp(−s/n)(s2/4n)(1/m) = o(σG),

I1 ∩ I2 is an interval of length Ω(σGh
). Therefore,

∑

t∈I1∩I2

|Pr [G = t] − Pr [H = t] | ≤ o(1)

because for t ∈ I1 ∩ I2, |Pr [G = t] − Pr [H = t] | = o(1/σG). We can conclude that

∑

t |Pr [G = t] − Pr [H = t] | is less than 1/6 after accounting for the probability

mass of G and H outside I1 ∩ I2. 2
The theorem follows by Lemma 4.15 and Lemma 4.16. 2

Chapter 5

Approximating the entropy

The (Shannon) entropy is a measure of randomness of a distribution. Formally, for

a distribution p over [n], the entropy of p is defined as

H(p)
def
= −

n
∑

i=1

pi log pi

(all the logarithms are base 2). The notion of entropy plays a central role in statis-

tics, physics, information theory, and data compression. For example, knowing the

entropy of a random source can shed light on the compressibility of data produced

by such a source.

The question of measuring the entropy of a discrete black-box distribution has

been considered in both the statistics and physics communities (cf., [17, 27, 21, 26]).

None of these works provides a rigorous analysis of the computational efficiency

and sample complexity. Furthermore, to the best of our knowledge, the only algo-

rithms which do not require superlinear (in the domain size) sample complexity are

those presented in [21, 26]. The algorithms in [21, 26] use estimates of the collision

probability to give a reasonable lower bound estimate of the entropy.

A straight-forward algorithm for approximating the entropy of a black-box dis-

67

68

tribution takes Õ(n) samples from the distribution. These samples allow one to

estimate the probability of any element that has Ω(n−1) probability mass. The re-

maining elements have total weight of o(1); thus, they have negligible entropy. It

can be shown that the individual probability estimates give a good approximation

to the total entropy when plugged into the entropy definition in place of the real

values. Note that the sample complexity of this algorithm is superlinear regardless

of the approximation ratio desired.

In this chapter, we show that the entropy can be approximated well in sublinear

time. In particular, we show that a γ-multiplicative approximation to the entropy

can be obtained in time Õ(n(1+ζ)/γ2
), where n is the size of the domain of the distri-

bution and ζ is an arbitrarily small positive constant, provided that the distribution

has sufficiently high entropy. We show that one cannot get a multiplicative approx-

imation to the entropy in general. Even for the class of distributions to which our

upper bound applies, we show a lower bound of Ω(n1/(2γ2)) samples.

For a set S ⊆ [n], we define wp(S)
def
=

∑

i∈S pi. We define the entropy restricted

to the set S as

HS(p)
def
= −

∑

i∈S
pi log pi.

Notice that HS(p) +H[n]\S(p) = H(p).

Similar to the previous chapters, we will classify the domain elements based on

their probability values according to the input distribution p. Although we still use

the heavy–light terminology for this classification, the threshold probability value

that determines the boundary of heavy and light elements is determined by the

approximation ratio γ. For a distribution p, we define a set of indices that have

high probabilities. Formally, we let

Bα(p)
def
= {i ∈ [n] | pi ≥ n−α}.

69

Given γ > 1, we say that A is a γ-approximation algorithm for the entropy, if

for every input distribution p, A outputs A(p) such that H(p)/γ ≤ A(p) ≤ γH(p)

with probability at least 2/3.

We present an γ-approximation algorithm for the entropy that takes sublinear

number of samples. Moreover, the sample complexity of our algorithm depends

on the approximation ratio desired, therefore, the sample complexity reduces as

one aims for a weaker approximation ratio. In particular, we prove the following

theorem:

Theorem 5.1 For any γ > 1, 0 < ǫo < 1/2, there exists an algorithm that can

approximate the entropy of a distribution within a multiplicative factor of (1+2ǫo)γ

with probability at least 2/3 in Õ(n
1

γ2 /ǫ2o) time where n is the size of the domain of

the distribution, provided that the entropy of the distribution is at least 3γ
2ǫo(1−2ǫo)

.

Given ζ > 0 and γ′ > 1, one can choose ǫo small enough and set γ = γ′/(1+2ǫo)

in Theorem 5.1 to yield a γ′-approximation algorithm which runs in Õ(n
1+ζ

(γ′)2) time.

Note that choosing ζ small affects both the running time and the set of distributions

to which the algorithm can be applied.

To obtain a multiplicative approximation to the entropy of the black-box dis-

tribution p, we classify elements in [n] as heavy or light based on whether they

belong to Bα(p) for a carefully chosen α. We then approximate the contribution

of the entropy of the heavy and light elements separately. We use the approach of

the straight-forward algorithm described above for the heavy elements. Then, we

estimate of the total probability mass of the light elements. We prove upper and

lower bounds on the entropy of the light elements in terms of their total weight and

obtain an approximation for their entropy. Finally, we add up the approximations

obtained for the entropy of the heavy and the light elements to get an approximation

70

to the entropy of the distribution.

Section 5.1 shows how to approximate the entropy of the heavy elements, Sec-

tion 5.2 shows how to approximate the entropy of the light elements, and Section

5.3 combines these approximations to yield Theorem 5.1. In Section 5.4, we present

results regarding lower bounds on sample complexity of approximating entropy.

5.1 Approximating the entropy of the heavy ele-

ments

The essential idea of estimating the entropy of the heavy elements is to estimate the

probability of each of the heavy elements. We show that if we take enough samples,

we can estimate the probability of each heavy element from the frequency of samples

of that element. Then, we prove that the entropy of a set elements such that we

know an estimate of the probability of each member can be approximated using the

estimated values in the definition of the entropy.

Lemma 5.2 For every 0 < α, ǫo ≤ 1 and sufficiently large n, there is an algorithm

that uses O((nα/ǫ2o) · log n) samples from p and outputs q such that with probability

at least 1 − n−1, the following hold for all i:

1. if i ∈ Bα(p), then |pi − qi| ≤ ǫopi,

2. if pi ≤ 1−ǫo
1+ǫo

n−α, then qi ≤ (1 − ǫo)n
−α.

Proof: Let m = O((nα/ǫ2o) · log n). Fix element i and let Xj be the indicator

variable that indicates jth sample is i. Let qi =
∑

Xj/m. By Chernoff bounds, if

pi ≥ n−α, then

Pr [qi > (1 + ǫo)pi] ≤ exp(−ǫ2opim/3) ≤ exp(−ǫ2on−αm/3) ≤ n−2.

71

Using a similar argument for the other direction, we can bound the probability that

any element i such that pi ≥ n−α is not estimated within 1 + ǫo. Using Chernoff

bounds again, we can show that for i such that pi <
1−ǫo
1+ǫo

n−α,

Pr
[

qi > (1 − ǫo)n
−α] ≤ n−2.

Hence, if i ∈ Bα(p) then |pi− qi| ≤ ǫopi. Now, (1) and (2) of the lemma follow from

a union bound over all i. 2
The following lemma shows that the entropy of elements in Bα(p) can be ap-

proximated well using q (from the statement of Lemma 5.2) instead of p.

Lemma 5.3 If for each i ∈ B, |pi − qi| ≤ ǫopi, then

|HB(q) −HB(p)| ≤ ǫoHB(p) + 2ǫowp(B).

Proof: For i ∈ B, let qi = (1 + εi)pi such that |εi| ≤ ǫo. Then,

HB(q) −HB(p) = −
∑

(1 + εi)pi log((1 + εi)pi) +
∑

pi log pi

= −
∑

(1 + εi)pi log pi −
∑

(1 + εi)pi log(1 + εi) +
∑

pi log pi

= −
∑

εipi log pi −
∑

(1 + εi)pi log(1 + εi).

By the triangle inequality,

|HB(q) −HB(p)| ≤ |
∑

εipi log(1/pi)| + |
∑

(1 + εi)pi log(1 + εi)
−1|

≤
∑

|εi|pi log pi +
∑

pi|(1 + εi) log(1 + εi)|

≤ ǫoHB(p) + 2ǫowp(B).

The last step above uses the fact that for |ε| ≤ ǫo ≤ 1, |(1+ε) log(1+ε)| ≤ 2|ε| ≤ 2ǫo.2

72

5.2 Approximating the entropy of the light ele-

ments

Now, we obtain an approximation of the entropy of the light elements. Suppose

set S is such that S ⊆ [n] \ Bα(p). Although it may be hard to estimate the

probability of any single element in S, the total probability mass of S, wp(S), can

be estimated when it is not too light. Note that if wp(S) ≤ n−α, the contribution

of entropy from S is below any constant and can be ignored. So, we can assume

without loss of generality that wp(S) ≥ n−α. In this case, by considering the set S

as a single element and using a similar argument to that in the proof of Lemma 5.2,

the following holds with probability at least 1 − n−2: (1 − ǫo)wp(S) ≤ wq(S) ≤

(1 + ǫo)wp(S).

The following lemma shows upper and lower bounds on the value of the entropy

of light elements. A geometric mean of these bounds give an approximation to the

entropy of light elements.

Lemma 5.4 αwp(S) logn ≤ HS(p) ≤ wp(S) logn + 1/e.

Proof: Observe that HS(p) is a symmetric concave function of p1, . . . , pn. To

find the maximum value of HS(p) subject to the constraint that
∑

i∈S pi = wp(S),

we use Lagrange multipliers. Let u(p, λ) = HS(p) + λ((
∑

i∈S pi) − wp(S)). The

maximum is attained when ∂u/∂pi = − log pi− (ln 2)−1 +λ = 0 for i = 1, . . . , n and

∂u/∂λ =
∑

i∈S pi − wp(S) = 0, which yields pi = wp(S)/|S|, ∀i. This concludes the

proof of the upper bound, since HS(p) = wp(S) log(|S|/wp(S)) = wp(S) log |S| −

wp(S) logwp(S) ≤ wp(S) logn+ 1/e for these values of pi’s.

Since HS(p) is a symmetric concave function it will take its minimum value when

the as many as possible of its variables are are at their extreme points, namely,

73

0 and 1. This follows from the following: for f(x)
def
= −x log x, f(a) + f(b) ≤

f(a+ ξ) + f(b− ξ) when a < a+ ξ < b− ξ < b and consequently, the entropy value

of light elements could be reduced further when they are not on one of their extreme

points. So, HS(p) will take its minimum value when nαwp(S) of pi’s have the value

n−α, and the rest is 0. In this case, HS(p) = αwp(S) logn. 2
5.3 Putting it together

In this section, we describe our approximation algorithm to H(p) and prove The-

orem 5.1. Our algorithm uses the results in the previous sections to get approxi-

mations to the entropy of the heavy and the light elements. By adding up these

approximations, an approximation to the entropy of the distribution is obtained.

We refer to the ratio of the number of times an element appears in the sample to

the total number of samples as a normalized frequency. Suppose we are seeking a

γ-approximation to the entropy.

Algorithm ApproximateEntropy(γ, ǫo)

1. Set α = 1/γ2.

2. Take Õ(nα/ǫ2o) samples from p.

3. Let q be the normalized frequencies of [n] in the sample

4. Let B = {i | qi > (1 − ǫo)n
−α} (Bα(p) ⊆ B) and S = [n] \B.

5. Output HB(q) + wq(S) logn

γ
.

We now prove Theorem 5.1.

74

Proof: (of Theorem 5.1) Using Lemma 5.3 and Lemma 5.4, we have

HB(q) +
wq(S) logn

γ
≤ (1 + ǫo)HB(p) + 2ǫo +

1 + ǫo
γ

wp(S) logn

≤ (1 + ǫo)(HB(p) + γHS(p)) + 2ǫo

≤ (1 + ǫo)γH(p) + 2ǫo

≤ (1 + 2ǫo)γH(p),

if H(p) ≥ 2/γ. Similarly,

HB(q) +
wq(S) logn

γ
≥ (1 − ǫo)HB(p) − 2ǫo +

1 − ǫo
γ

wp(S) logn

≥ (1 − ǫo)(HB(p) +
(HS(p) − e−1)

γ
) − 2ǫo

= (1 − ǫo)(HB(p) +HS(p)/γ) − 1 − ǫo
γ

e−1 − 2ǫo

≥ H(p)/((1 + 2ǫo)γ),

if H(p) ≥ 3γ
2ǫo(1−2ǫo)

≥ 2/γ. The theorem follows. 2
5.4 Lower bounds for approximating the entropy

In this section, we prove two lower bounds on the number of samples needed to

approximate the entropy of a distribution within a multiplicative factor of γ. Both

of our lower bounds are shown by giving pairs of distributions with entropy ratio

γ2 that are hard to distinguish. The lower bounds follow since an algorithm which

approximates the entropy would allow one to distinguish the distributions.

The first thing we show (Lemma 5.5) is that because distributions could have

zero entropy, there is no algorithm which can γ-approximate the entropy of every

distribution. Thus, we restrict our attention to distributions with non-zero entropy;

75

we show (Theorem 5.6) a lower bound of Ω(n
1

2γ2) samples to γ-approximate the

entropy for any distribution with entropy at least (log n)/γ2.

Lemma 5.5 For γ > 1, there is no algorithm which γ-approximates the entropy of

every distribution.

Proof: Assume that A is an algorithm which approximates the entropy of any

distribution. For some small constant 0 < c < 1, let cnα be an upper bound on

the runtime of A on distributions over [n]. Consider the two distributions p and q

where p = (1, 0, . . . , 0) and q = (1 − n−α, n−α−1, . . . , n−α−1). Any algorithm which

uses only cnα samples is unlikely to distinguish between p and q. Since the entropy

of p is 0, any algorithm which gives a multiplicative approximation should output

0. On the other hand, any algorithm which approximates the entropy of q to within

a multiplicative factor of γ should output a value which is at least 1
γ
αn−α log n > 0.

Thus, any algorithm which γ-approximates the entropy would be able to distinguish

between p and q. 2
Theorem 5.6 Any algorithm which gives a γ-approximation of the entropy for any

distribution in D(log n)/γ2 must use Ω(n
1

2γ2) samples.

Proof: Consider two distributions p and q on n elements where p is uniform on

the set [n] and q is uniform on a set S which is a randomly chosen subset of [n] of

size n
1
ρ for some ρ to be determined later. The entropy ratio of p,q is ρ. By the

analysis of the birthday problem, with probability 1/3, we do not see any repetitions

in the sample before we take δn
1
2ρ samples from either distribution for some constant

δ < 1. Hence, Ω(n
1
2ρ) samples are needed to distinguish these distributions. The

theorem follows by using ρ = γ2, which ensures that H(q)γ < H(p)/γ. 2

76

5.5 Some remarks

5.5.1 Entropy estimation via collisions

Several earlier works in statistical physics community [21, 26], suggest the use of the

collision probability (‖ · ‖2
2) to estimate the entropy. In fact, given a bound on the

maximum probability, one can show the following lemma (proof omitted), relating

the collision probability and the entropy.

Lemma 5.7 Suppose α = 1/γ and ‖p‖∞ ≤ n−α. Then, the value of − log ‖p‖2 is

a γ-approximation to H(p).

The following example, however, illustrates the limitations of using collision

probability for entropy estimation: Let p be a distribution such that pi = 1/n

for i = 1, . . . n/2, and pi = n−α for i = n/2 + 1, . . . , n/2 + nα/2.

Then H(p) = 1+α
2

log n. On the other hand,

− log ‖p‖2 = log
2n

n1−α + 1
< 1 + α log n.

Therefore, the ratio

H(p)

− log ‖p‖2
≈ 1 + α

2α
.

In order for (1 + α)/2α to be at most γ, α has to be greater than 1/(2γ − 1). This

implies that in order to use this estimate of the entropy contribution of the light

elements along with the estimate of the entropy contribution of the large elements

from Section 5.1, we need identify all elements with probability higher than n−α.

Thus, using this approach we need Ω(n
1

2γ−1) samples for a γ-approximation. On

the other hand, our algorithm yields a better sample complexity of O(n
1+ζ

γ2) for

arbitrarily small positive ζ .

77

5.5.2 Uniform distributions over subsets of [n]

Consider distributions Ek which are uniform over some subset K ⊂ [n] with |K| =

k. The entropy of this class of distributions is clearly log k. Given a black-box

distribution which is promised to be Ek for some k, the objective is to find k.

Lemma 5.8 There exists an algorithm that when given black-box access to a distri-

bution p ∈ Ek outputs l such that k/2 ≤ l ≤ 2k with probability at least 1/5 using

an expected number O(
√
k) of samples.

Proof: The algorithm is as follows: Sample until you see some element twice (a

collision), say at the tth sample. Output t2.

In order to prove the lemma, we need to show that both the probability of getting

a collision before
√

k/2 samples and the probability not seeing a collision after
√

2k

samples is less than 2/5.

Pr [No collisions after t samples] =
t

∏

i=1

(1 − i− 1

k
).

For t ≤
√

k/2,

t
∏

i=1

(1 − i− 1

k
) ≥ 1 − 1

k

t−1
∑

i=0

i ≥ 1 − t2

k
≥ 1 − 1

4
= 3/4 > 3/5

For t ≥
√

2k,

t
∏

i=1

(1 − i− 1

k
) ≤ (1 − t

2k
)t ≤ e−t

2/2k ≤ e−1 < 2/5. 2

Chapter 6

Future directions

We study several properties of distributions, and give methods for testing these

properties. We focus on the sample complexity of these tasks. In almost all cases,

we show lower bounds on the sample complexity that matches the upper bounds

we present up to polylogarithmic factors. Thus, the sample complexities of testing

closeness, identity, and independence of distributions are characterized tightly. The

lower and upper bounds we show for approximating entropy have a polynomially

large gap. The sample complexity of approximating entropy remains to be settled.

We use the L1 norm as a measure of statistical distance. Although this is a

common choice, one can imagine other measures being used. For example, the angle

between the vectors describing the distributions is one such measure. Our methods

do not immediately apply when this measure is used instead.

There are several open problems related to testing independence. One general-

ization of our setting would be to consider joint distributions on k-tuples. Another

generalization to testing independence can be formulated as testing t-wise indepen-

dence of tuples. Although our independence test can be used to obtain straight-

forward algorithms of these problems immediately, one might be able to improve

78

79

the sample complexity by taking advantage of some carefully chosen trade offs.

Other properties of interest can be formulated. For example, the mutual in-

formation is defined on pairs of distributions. It is related to both independence

and entropy. Estimating the value of the mutual information of two distributions

from samples is a direction that may combine techniques we used in both of these

problems.

This line of work can be extended to other properties of distributions. In this

work, we make no assumptions about the input distribution. One can imagine that

making some assumption about the input distributions could simplify the problem

and reduce the sample complexity. Assuming that the input distribution comes from

an interesting subclass of all distributions or making assumptions about the method

used to generate the distribution would be interesting directions.

We notice that the alteration in the problem setting from testing closeness to

testing identity provably reduced the sample complexity. Changing the representa-

tion of one of the distributions yielded a simpler problem. One interesting question

we can ask is in what other ways the testing algorithm can be provided with some

extra help. In a model similar to that of probabilistic proof systems, one can study

the testing problems defined on distributions. For example, how much does it help

for testing independence if the marginal distributions are given but not trusted?

The problem definitely becomes easier, because it reduces to the problem of testing

identity.

Bibliography

[1] N. Alon, M. Krivelevich, E. Fischer, and M. Szegedy. Efficient testing of large
graphs. In IEEE, editor, 40th Annual Symposium on Foundations of Computer
Science: October 17–19, 1999, New York City, New York,, pages 656–666, 1109
Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1999. IEEE Computer
Society Press.

[2] N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating
the frequency moments. JCSS, 58, 1999.

[3] Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Sampling algorithms: Lower
bounds and applications. In Proceedings of 33th Symposium on Theory of Com-
puting, Crete, Greece, 6–8 July 2001. ACM.

[4] Tuğkan Batu, Lance Fortnow, Eldar Fischer, Ravi Kumar, Ronitt Rubinfeld,
and Patrick White. Testing random variables for independence and identity. In
Proceedings of 42nd FOCS. IEEE, 2001.

[5] Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick
White. Testing that distributions are close. In Proceedings of 41th FOCS.
IEEE, 2000.

[6] A. Broder, M. Charikar, A. Frieze, and M. Mitzenmacher. Min-wise indepen-
dent permutations. JCSS, 60, 2000.

[7] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley
Series in Telecommunications. John Wiley & Sons, 1991.

[8] N. Cressie and P.B. Morgan. Design considerations for Neyman Pearson and
Wald hypothesis testing. Metrika, 36(6):317–325, 1989.

[9] I. Csiszár. Information-type measures of difference of probability distributions
and indirect observations. Studia Scientiarum Mathematicarum Hungarica,
1967.

[10] J. Feigenbaum, S. Kannan, M. Strauss, and M. Viswanathan. An approximate
L1-difference algorithm for massive data streams (extended abstract). In FOCS
40, 1999.

80

81

[11] William Feller. An Introduction to Probability Theory and Applications, vol-
ume 1. John Wiley & Sons Publishers, New York, NY, 3rd ed., 1968.

[12] J. Fong and M. Strauss. An approximate Lp-difference algorithm for massive
data streams. In Annual Symposium on Theoretical Aspects of Computer Sci-
ence, 2000.

[13] Alan Frieze and Ravi Kannan. Quick approximation to matrices and applica-
tions. COMBINAT: Combinatorica, 19, 1999.

[14] Phillip B. Gibbons and Yossi Matias. Synopsis data structures for massive data
sets. In SODA 10, pages 909–910. ACM-SIAM, 1999.

[15] O. Goldreich and L. Trevisan. Three theorems regarding testing graph prop-
erties. Technical Report ECCC-10, Electronic Colloquium on Computational
Complexity, January 2001.

[16] Oded Goldreich and Dana Ron. On testing expansion in bounded-degree
graphs. Technical Report TR00-020, Electronic Colloquium on Computational
Complexity, 2000.

[17] Bernard Harris. The statistical estimation of entropy in the non-parametric
case. Colloquia Mathematica Societatis János Bolyai, 16:323–355, 1975. Topics
in Information Theory.

[18] R. Kannan. Markov chains and polynomial time algorithms. In Shafi Gold-
wasser, editor, Proceedings: 35th Annual Symposium on Foundations of Com-
puter Science, November 20–22, 1994, Santa Fe, New Mexico, pages 656–671,
1109 Spring Street, Suite 300, Silver Spring, MD 20910, USA, 1994. IEEE
Computer Society Press.

[19] Sampath Kannan and Andrew Chi-Chih Yao. Program checkers for probability
generation. In Javier Leach Albert, Burkhard Monien, and Mario Rodŕıguez-
Artalejo, editors, ICALP 18, volume 510 of Lecture Notes in Computer Science,
pages 163–173, Madrid, Spain, 8–12 July 1991. Springer-Verlag.

[20] E. L. Lehmann. Testing Statistical Hypotheses. Wadsworth and Brooks/Cole,
Pacific Grove, CA, second edition, 1986. [Formerly New York: Wiley].

[21] S-K. Ma. Calculation of entropy from data of motion. Journal of Statistical
Physics, 26(2):221–240, 1981.

[22] J. Neyman and E.S. Pearson. On the problem of the most efficient test of
statistical hypotheses. Philos. Trans. Royal Soc. A, 231:289–337, 1933.

[23] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-
knowledge. In Proceedings of the 38th Annual Symposium on the Foundations
of Computer Science, pages 448–457. IEEE, 20–22 October 1997.

82

[24] Amit Sahai and Salil Vadhan. Manipulating statistical difference. In Panos
Pardalos, Sanguthevar Rajasekaran, and José Rolim, editors, Randomization
Methods in Algorithm Design (DIMACS Workshop, December 1997), volume 43
of DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 251–270. American Mathematical Society, 1999.

[25] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation
and rapidly mixing Markov chains. Information and Computation, 82(1):93–
133, July 1989.

[26] S.P. Strong, R. Koberle, R. de Ruyter von Steveninck, and W. Bialek. Entropy
and information in neural spike trains. Physical Review Letters, 80:197–200,
1998.

[27] D. Wolpert and D. R. Wolf. Estimating functions of probability distributions
from a finite set of samples. part I: Bayes estimators and the shannon entropy.
Physical Review E, 52(6):6841–6854, 1995.

[28] Kenji Yamanishi. Probably almost discriminative learning. Machine Learning,
18(1):23–50, 1995.

