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432018 PHILOSOPHY OF PHYSICS (Spring 2002)
Lecture 3: The Quantum Description of Reality
Reading: Preliminary reading: Sklar, pp. 164-72.

In Lecture 2, we considered some of the experiments which lead physicists to question the adequacy of
the ‘classical’ view of the world. In this lecture, we shall consider some more experiments, namely the
double-slit experiment and the Stern-Gerlach experiment, which start to reveal just how mysterious
the ‘quantum world’ really is. Along the way, we shall start to familiarise ourselves with some
aspects of the formalism of this theory and see the problems associated with some of the initial,
pseudo-classical, interpretations of it. In the next lecture, we shall use some of this material to gain
a deeper insight into the formalism of QM.

1 The double-slit experiment

To initiate our study of the double-slit experiment, we shall study the outcome of performing the
experiment with bullets (i.e. classical particles) and water waves (i.e. classical waves).! We shall then
compare and contrast this with what we observe when we perform the experiment with electrons
(i.e. quantum objects) and try and see how we should account for the results. (A more detailed
explanation of these experiments is available in Feynman et al [1], pp. 1-1 to 1-5.) In particular, this
will lead us to our first explanations of what is happening in QM and we shall consider why these
initial attempts at an explanation are inadequate.

1.1 Bullets

Imagine the experimental set-up illustrated in Figure 1 (a). We have a machine-gun that fires bullets
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Figure 1: The double-slit experiment for bullets. (Taken from [1], p. 1-2.)

in a random direction over a fairly large angular spread. These bullets travel in straight-lines until
they reach a wall which has two holes (labelled 1 and 2) in it, at which point: some of them pass
right through a hole; some scatter off the sides of a hole? and others miss the holes completely and
just become embedded in the wall. Beyond the wall there is a movable ‘bullet detector’ which can
be moved up and down (in the z-direction) and we use this to measure the number of bullets that

We use water waves since they are an unashamedly classical phenomena. Perhaps everyone would be happier if
we used light ‘waves’ since their behaviour in a double-slit experiment can be described in a classical manner using
Maxwell’s [classical] theory of electromagnetism. However, light is really a ‘quantum object’ — i.e. we sometimes want
to talk about photons instead of light waves — and so we don’t use it here to avoid any possible classical/quantum
confusion.

2The scattering makes the bullets change direction, but after they have been scattered in this way, they continue to
travel in a straight-line.
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reach the backstop for a given value of x (where x = 0 is located on the line that goes through the
line of symmetry of the apparatus).

With this device in the appropriate place, we can experimentally answer the question: ‘What is
the probability that a bullet which passes through the holes in the wall will arrive at the backstop at
a distance z from the centre?’ Note that here, we talk about probability for only one reason, namely
that the gun fires bullets in random directions and so we cannot predict the direction in which a
given bullet will travel. So here, the probability is epistemic, it’s a measure of our ignorance about
some aspect of the gun. Thus, by ‘probability’, we mean the chance that a bullet will arrive at the
detector and, by placing the detector at the appropriate value of z, this can be measured in one of
two ways, namely:

1. count the number of bullets that hit the detector in a given time interval and then divide this
by the total number of bullets that reached the backdrop during this time interval.

2. assuming that the gun fires at a constant rate during the experiment, the probability is pro-
portional to the number that reach the detector in some given time interval.

But, in order for this all to work nicely, we must assume that the experiment is somewhat idealised,
that is, we must assume that the bullets are indestructible. In essence, this means that when we
‘detect’ bullets we are always detecting whole bullets of some fixed shape and size which is completely
independent of the rate at which the gun fires. Let’s face it, this isn’t a great leap of the imagination
since bullets rarely break and whatever rate the gun fires at, the bullets are all pretty much the same.

Now, we run the experiment and measure the probability as defined above as a function of z. The
outcome of the experiment is sketched in Figure 1 (¢) where the z-axis points upwards and is aligned
with the corresponding values of x in Figure 1 (a) and the ‘measured’ probabilities are drawn on a
scale that goes to the right. We call this probability distribution Py since it tells us the probability
that a bullet is detected at a given value of x if the bullets are free to go through either hole 1 or
hole 2.

This result is pretty much what we expect. In particular, we expect that:

e Pj5 gets smaller as x gets larger (in magnitude) since the scattering which is required for a
bullet to reach such large values of x is quite rare, and

e Pj5 is quite large around the values of x that correspond to ‘line-of-sight’ shots through either
of the holes.

However, we may be surprised that Pjs takes its maximum value at x = 0, especially since bullets
can only reach this point if they are scattered in a certain way by one of the two holes. But, we
can see why this is the case if we repeat the experiment with hole 2 (hole 1) covered, yielding the
probability distribution P; (P3) sketched in Figure 1 (b).?> In these experiments we find that Py
and P, are both symmetric about their respective maxima and, importantly, we find that our three
probability distributions are related by the simple formula:

Py =P + P,

i.e. the probabilities just add together. Thus, Pis peaks at x = 0 since P; and P, are both suitably
large when =z = 0.

The important lesson here is that the probability distribution due to both holes being open is just
the sum of the probability distributions due to either one or the other hole being open. When this
simple rule for combining probability distributions applies we will say that there is no interference
and we will see why later.? This is pretty much how we would expect all classical particles to behave
in such experiments: they behave as localised ‘wholes’ and their probability of arrival at a certain
point shows no interference.

3Notice that, in this experiment, P (P2) takes on its largest values around the values of x that correspond to
‘line-of-sight’ shots through hole 1 (2).

4In the language of statistics, when such a rule applies we say that the events ‘bullet passing through hole 1’ and
‘bullet passing through hole 2’ are statistically independent.
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1.2 Water waves

Imagine the experimental set-up illustrated in Figure 2 (a). This is very similar to the apparatus in

=
=
NN

% = ool
-
-
~

W2 =
MW
| !),-'|
e 1,
Y7
-f'/_/ 7
WALL ABSORBER T, = |hf®  I=Ih+n,l°
Iz=|"'ﬂe
(a) (b) ()

Figure 2: The double-slit experiment for water waves. (Taken from [1], p. 1-3.)

Figure 1 (a), but in this case, the apparatus is immersed in a shallow trough of water. And, instead
of a gun we have a wave source, which moves ‘up and down’ (perpendicular to the plane of the paper)
in a regular manner generating circular waves that radiate away from it uniformly in all directions
as shown. To the right of this source, we have a wall which has two holes (labelled 1 and 2) in it
and an absorber — both of which must be made of a material that stops the waves ‘dead’ (i.e. the
waves can’t be reflected by the wall or the absorber) unless they happen to pass through one of the
two holes. The detector is now a device that measures the intensity of the wave a given point, i.e.
the amount of energy per unit time that the wave is carrying from the source to the detector.?

Firstly, notice that the intensity can have any size. Unlike the ‘whole bullets’ we detected in the
previous experiment, we can vary the height of the up and down motion of the wave source so that,
at a given point, the intensity can be made as small or large as we please. To put it another way, in
this case the intensity can take any non-negative real value whereas in the previous experiment we
could only get certain non-negative integer values for the number of bullets detected.

Secondly, notice that when we run the experiment and measure the intensity at lots of different
values of z, we get the intensity distribution I;2 sketched in Figure 2 (c¢), and this is very different
from what we saw in the previous experiment. Those of you who have done some physics will
recognise this as the wave phenomenon known as diffraction, i.e. holes 1 and 2 act like sources of
waves themselves and the waves from these two pseudo-sources interfere in such a way to produce
the pattern sketched in Figure 2 (c).

In particular, notice that if I; (I2) is the intensity distribution obtained when we run the exper-
iment with hole 2 (hole 1) covered, we find that we obtain the intensity distributions sketched in
Figure 2 (b). In these cases, there is only one pseudo-source of waves and so there is no interference
since there are no other waves for them to interfere with.® Clearly then, I}, is not the sum of I; and I
— the former case includes interference effects which are absent from the latter. This is pretty much
how we would expect all classical waves to behave in such experiments: they behave as non-localised
wholes and their intensity distributions can’t simply be added together due to interference effects.”

®In fact, in this experiment, the intensity is just proportional to the square of the amplitude of the wave at that
point.

51n fact, these intensity distributions have a maximum when the distance between the pseudo-source and the absorber
is minimised. Then, as this distance increases, the intensity decreases due to the fact that water waves lose energy as
they travel — the further they travel, the less energy they have at the absorber.

"However, there is a relationship between these three intensity distributions. A discussion of this, and how interfer-
ence phenomena come about, can be found in [1] pp. 1-3 to 1-4. Or, indeed, any good A-Level physics textbook.
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1.3 Electrons

Imagine the experimental set-up illustrated in Figure 3 (a). This is very similar to our first exper-
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Figure 3: The double-slit experiment for electrons. (Taken from [1], p. 1-4.)

iment, but instead of a gun that fires bullets we have a gun that fires electrons. Moreover, instead
of a bullet detector we have an electron detector, say a Geiger counter, that makes a clicking sound
when an electron hits it.®

Now, when we do the experiment we only hear ‘whole’ clicks. That is, a click corresponds to the
arrival of an electron at the detector and so, like bullets, electrons are ‘whole’ when they reach the
detector. Indeed, we notice that:

e if we change the rate at which the electron gun fires out electrons, then we only observe a
change in the rate at which we hear the clicks.

e if we have two detectors and fire one electron from the gun, we will only only hear one click
from one of the detectors.

e if we run the experiment twice, then provided that we allow it to run for a sufficiently long
period of time, we find that the number of electrons which we detect is [pretty much] the same.

And, as such, the electrons seem to be behaving like particles. Thus, like in the bullet case, we
use the detector to measure the probability that an electron passing through the holes in the wall
will arrive at the backstop at a distance = from the centre. But, unlike in the bullet case, we get
the probability distribution given in Figure 3 (c), which is reminiscent of what we found with water
waves. Strange indeed!

But, note that unlike the water wave case, this is a variation in the average rate at which the clicks are
heard, i.e. we do not observe electrons spread out like waves, just ‘whole’ electrons. So, electrons seem
to be behaving likes waves (they exhibit interference phenomena) and particles (they are detected as
‘wholes’).

Electrons interfere with one another?

When we detect electrons, we detect ‘whole’ electrons. So, despite the weird behaviour observed
in Figure 3 (c), we may feel that we can still explain this phenomena. For example, since we only
observe ‘whole’ electrons, they are like bullets and either go through hole 1 or hole 2. That is, we
could claim that:

(A) Each electron either goes through hole 1 or it goes through hole 2.

8This is only a representation of the experiment that we would have to do for several reasons. But, for simplicity,
we will not discuss these since such details are not essential.
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If this is true, then every detected electron is either an electron that went through hole 1, or an
electron that went through hole 2. However, if we repeat the experiment with hole 2 (hole 1) covered
we get the probability distribution P; (P») sketched in Figure 3 (b). This seems reasonable, if
electrons are like bullets then this is what we would expect. However, if (A) is true, then Pj2 should
just be the sum of P; and P», just as we found with the bullets. But, this is clearly not the case —
ie. (A) is false. In fact, by analogy with our water wave experiment, we seem forced to conclude
that there is interference of some kind taking place due to the presence of holes 1 and 2.

1.4 Another experiment with electrons

Imagine the experimental set-up illustrated in Figure 4(a). This is very similar to our last experiment,
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Figure 4: The modified double-slit experiment for electrons. (Taken from [1], p. 1-7.)

except now we have a very strong light source just behind the wall. The thinking is, that since
electrons scatter light, if an electron goes through hole 2 we will see a little flash of light in the
vicinity of the point marked A in Figure 4 (a). Similarly, if an electron goes through hole 1, we will
see a flash of light near that hole. Presumably, if the electron can go through both holes we will see
two flashes of light, one in the vicinity of each of the holes, at pretty much the same time.

But, when we perform the experiment we find that every click of the detector is preceded by a
flash of light which is either near hole 1 or near hole 2. That is, we never observe a flash of light
in the vicinity of both holes. Thus, in this case, we observe that (A) is true. Indeed, if we run this
experiment with hole 2 (hole 1) covered we get the probability distribution P; (Pj) sketched in Figure
4 (b) which are similar to what we found for P; and P, in the previous electron experiment. But
now, if we run the experiment with both holes open we find that we get the probability distribution
P/, given in Figure 4 (c), which looks suspiciously like what we found in the bullet experiment, and
is in fact just the sum of P| and Pj! Thus, in this experiment, where we use a light source to see
which holes the electrons are going through, we find that:

P{Q = P{ + P2I7
i.e. we have no interference. So, it would seem that the addition of the light source which allowed
us to observe which hole the electrons were going through changed the outcome of the experiment!
1.5 Conclusions from our experiments
In summary then, we can see that:

e Bullets (i.e. classical particles) are localised and go through either hole 1 or hole 2 (i.e. (A) is
true for them). In this case there is no interference in the probability distributions.

e Water waves (i.e. classical waves) are not localised and each wave has a part that goes through
both holes (i.e. (A) is not true for them). In this case the parts of a wave that go through
different holes interfere with each other.
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e Electrons (i.e. quantum objects) are neither classical particles nor classical waves. In fact,
depending on the experiment we perform we see that:

— If we don’t observe which hole the electrons go through, we find that the probability
distribution indicates that there is interference. That is, the electrons seem to be acting
a bit like waves (at least, before they are detected).

— If we do observe which hole the electrons go through, we find that the probability distri-
bution indicates that there is no interference. That is, the electrons seem to be acting a
bit like particles.

So, electrons seem to act like particles or waves depending on what experiments we perform on
them. This is called wave-particle duality and it is a phenomenon which is observed with all
quantum objects.?

For a further discussion of these experiments, especially the ones involving the electrons (including
why some other ‘plausible’ explanations don’t work), you are strongly encouraged to read [1] pp. 1-1
to 1-9.

2 The wavefunction and its initial interpretation

We saw in the last lecture that light, which at the end of the nineteenth century was considered to be
an electromagnetic wave, could also act like a particle. In 1924, this prompted the physicist Louis de
Broglie to conjecture that particles may, under circumstances, also act like waves. Clearly, this idea
gains some plausibility when we consider the first of our electron experiments — the electrons appear
to be interfering with each other, and so they do seem to be acting like waves in this experiment.

This idea lead Erwin Schrédinger to develop a mathematical theory that would explain this
phenomena. This is the formalism of QM that is usually referred to as wave mechanics. Within this
theory, each electron is described by a wavefunction, and the way the behaviour of the electron is
governed by the Schrodinger equation. This is called wave mechanics since the wavefunction looks
a bit like a function that describes a wave and the Schrodinger equation looks a bit like a wave
equation.

The initial interpretation of this theory closely followed de Broglie’s idea that in the quantum
world, objects that we commonly thought of as particles could act like waves. That is, when the
object acts like a wave it is described by the wavefunction which was thought to represent the object
as a physically real non-localised wave — i.e. a matter wave. For example, the ¢1, ¢2 and ¢12 in
Figure 3 (b) and (c) are the wavefunctions of an electron and they should be treated in a way which
is analogous to the treatment of the functions hi, hs and hio which describe the water waves in
Figure 2 (b) and (c).

However, this proposed interpretation has some severe problems. Firstly, we have the intuitive
problems:

e What, exactly, is acting like a wave? Is it the electron? Are we seriously saying that the
electron is non-localised enough so that a single electron can act like a wave going through
both holes and hence interfere with itself? If not, what?

e When we try and locate electrons (say using our detectors) we always find them concentrated
in a small physical region. How can we reconcile this with the claim that an electron should be
identified with a physically real spread out wave?

and, secondly, we have the problems for this interpretation which appear due to the formalism:

e We can only interpret the non-localised wavefunction (which describes an electron) as a wave in
physical space and time if we have one electron. That is, if we want to describe the behaviour
of many (say n > 2) electrons, the wavefunctions only look like waves in an abstract 3n-
dimensional space.'?

9From a classical perspective, we would want to say that this is absurd, classical objects are either particles or waves,
but this just goes to show how different the classical and quantum worlds are!
10Tn which, incidentally, the positions of all the electrons at a given time is treated as a single point.
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e The wavefunction takes on complex values whereas we can only interpret real values physically.
How can we make physical sense of a function that can take on complex values?!!

Thus, even though this interpretation may sound plausible, we can’t adopt it.

3 Born’s interpretation of the wavefunction

Despite the fact that the initial interpretation of the wavefunction failed, the wavefunction and the
description of its behaviour using the Schrédinger equation does provide a very good description of
what happens in the quantum world. So, we want to keep the formalism and find a new interpretation.
In 1926, Max Born suggested that:

The intensity, |¢|?, of the wavefunction ¢ should be interpreted as a probability.

Thus, the wavefunction itself is a probability representer and not a physical wave in the world. So,
in the above electron experiments we find that:

The intensity of the wavefunction represents the probability with which a physical ob-
servable (such as the position of an electron) would be found to have a given value if an
appropriate measurement were made (by, say, using the detector or a light source).

In particular, this gives us a way of reconciling the localised nature of particles and the non-localised
nature of the wavefunction, i.e.

The wavefunction does not represent an actual spread out particle, but it does allow us
to calculate the probability of finding the particle in a given region of space.

which seems to tally with what we were actually trying to measure in our electron experiments.
However, there is a problem with this interpretation too — it doesn’t account for the interference
phenomena. To see why, notice that:

e Suppose that we the obtain an outcome, with a given probability, in two causally independent
ways. For instance, let P(O|A) and P(O|B) be the probabilities of getting the outcome O given
A and B (the two ways in which O can be obtained) respectively. By the rules of probability,
since A and B are independent, the probability of O obtaining due to either A or B, i.e.
P(O|A or B), is then just the sum of these two probabilities.

e So, suppose that we perform the first electron experiment and let O, S and S3 be the propo-
sitions ‘the electron is detected at a given point’, ‘the electron went through hole 1" and ‘the
electron went through hole 2’ respectively. According to the probability rule given above, this

means that we have:
P(O|Sl or SQ) = P(O|Sl) + P(O|S2).

(Cf. the way the probabilities worked in the bullet experiment.) But, this is not what happens!
There is an interference phenomenon which is absent from this simple probability interpretation.

So, following Born, we do want the intensity of the wavefunction to represent a probability, but a
simple probabilistic interpretation like the one above is not going to work. So the question is: If
the wavefunction is a probability representer, and not a physical wave, how can such interference
happen?

"Notice that we do sometimes describe physical waves using complex valued functions. But, when we do this, it is
a mathematical convenience that can be avoided. In the case of wavefunctions, there is no way of avoiding the use of
complex valued functions.
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4 Heisenberg’s wave mechanics

So far, we have a good formalism for making predictions about what happens in experiments involving
quantum phenomena. We have wavefunctions which are governed by the Schrodinger equation and
we interpret the intensity of the wavefunction as a probability (but not in the simplistic way shown
above). But, in 1924, Werner Heisenberg developed an alternative formalism for QM called matriz
mechanics. This formalism is equally good at making predictions and yet it says nothing about
particles sometimes being waves. In brief, this alternative formalism discusses the evolution of a
quantum system by describing how the state of the system changes over time. So, for example,
within this formalism, unless we are explicitly studying the ‘position states’ of an electron (i.e. the
states that tell us where it is) the [spatial] trajectory of an electron need not even be defined. In fact,
it is easier to discuss QM using this formalism and so from now on we will tend to use this.'? To get
an idea of what happens in matrix mechanics we will start by considering another set of experiments.
Then, in the next lecture, we will introduce the postulates of QM using this formalism and illustrate
the use of these postulates and this formalism in the context of these experiments.

5 The Stern-Gerlach experiment

The Stern-Gerlach experiment, first performed in 1922, involved passing a stream of silver atoms
through a non-uniform magnetic field. The details of the experiment don’t really concern us, but a
schematic illustration of the apparatus is provided in Figure 5 and to further simplify our discussion
we will consider a stream of electrons rather than silver atoms. The surprising thing about this

electrons with many
‘ B different ‘spins’
? Expected (‘classical’) result
‘ .
< > 'spin-up’ electrons
<> ‘spin-down’ electrons
(6] S M D Observed (‘quantum’) result

Figure 5: On the left-hand side we have a schematic illustration of the Stern-Gerlach experiment. O
(for ‘oven’) represents the source of the electrons, S is a screen with a slit in it, M is the magnet and
D is the detecting device. The ‘arrowed-line’ represents the trajectory of the electrons. The vector B
represents the direction of the magnetic field inside the magnet M. On the right-hand side we have
a schematic illustration of the expected and observed results of the experiment.

experiment is that Stern and Gerlach were expecting to find a continuous ‘classical’ distribution
of electrons like the one in the top right-hand corner of Figure 5, but they actually observed a
distribution like the one in the bottom right-hand corner of Figure 5. It turns out that the observed
‘two part’ distribution is indicative of a new quantum phenomena,'® namely that electrons have an
intrinsic magnetic moment or spin and this property of electrons is quantised. That is, the spin of
an electron can only take on one of two distinct values which are normally referred to as ‘spin-up’
and ‘spin-down’ — see Figure 6.

Due to the fact that the spin of an electron can only take two values it is particularly useful
when investigating the bizarre behaviour of quantum systems. In particular, we note that in the
Stern-Gerlach experiment the electrons which we classified as spin-up and spin-down moved ‘up’ or
‘down’ in the direction of the magnetic field described by the vector B in Figure 5. As such, an
electron’s spin is always found to be spin-up or spin-down in a specified direction. In particular,
we will now consider using Stern-Gerlach-like apparatus to measure the spin of an electron in two
mutually perpendicular directions which, for convenience, we label the x and y-directions.!* So,

21 fact, wave mechanics and matrix mechanics are mathematically equivalent and so we are not actually questioning
the validity of either formalism. It just so happens that there is less ‘conceptual baggage’ in the latter formalism, i.e.
there is nothing in it which suggests that we should be talking about particles or waves.

3Which, incidentally, has no classical analogue.

1 That is, one will have B pointing in the z-direction and the other will have B pointing in the y-direction. To see
why we label the directions in this way, think of a Cartesian coordinate system.
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Figure 6: One way of thinking about an electron’s spin is to think of an electron as a ‘little sphere’.
In (a) we think of this ‘little sphere’ as rotating about an axis that points in the x-direction and take
the state of anticlockwise (clockwise) rotation around this axis to correspond to what we have called
‘spin-up’ (‘spin-down’). But, as seen in (b), this way of thinking about things is seriously flawed as
such a ‘little sphere’ could be construed as rotating around an axis which is at an angle to the x and
y-axis (say), i.e. we would get ‘intermediate’ values of spin in those directions (denoted by ‘?’s in the
figure), and this never happens.

using this phenomenon, let’s consider another set of experiments that are indicative of the weirdness
of quantum mechanics.
Stern-Gerlach experiments and states

We shall represent the Stern-Gerlach experiments that we are using schematically, as in Figure 7. In

) U—= up—Xx . u——=up-y
" SGX 4 . down- " SGY . down-
— down-—x — y
(a) (b)

Figure 7: Schematically, we have electrons in some ‘unknown’ spin state entering ‘in’ to a Stern-
Gerlach apparatus. (a) for an SGX-box, electrons leaving through the ‘u’ (‘d’) hole are in the
‘up-z-spin’ (‘down-x-spin’) state. (b) for an SGY-box, electrons leaving through the ‘u’ (‘d’) hole are
in the ‘up-y-spin’ (‘down-y-spin’) state.

particular, we shall utilise Stern-Gerlach apparatus that are aligned in two mutually perpendicular
directions, let’s call them the x and y-directions, so that we can see how two mutually perpendicular
sets of spin states are related. For simplicity, we shall use a

e Stern-Gerlach apparatus with its B-field aligned in the z-direction, schematically indicated by
the SGX-box in Figure 7 (a), to measure the spin of the incident electrons in the z-direction.
Due to the nature of this apparatus, those electrons leaving through the ‘u’ (‘d’) hole are in
the ‘up-z-spin’ (‘down-z-spin’) state.

e Stern-Gerlach apparatus with its B-field aligned in the y-direction, schematically indicated by
the SGY-box in Figure 7 (b), to measure the spin of the incident electrons in the y-direction.
Due to the nature of this apparatus, those electrons leaving through the ‘u’ (‘d’) hole are in
the ‘up-y-spin’ (‘down-y-spin’) state.

Indeed, notice that after the electrons have left a Stern-Gerlach experiment via one of the holes, all
we know about them is their spin state.

Stern-Gerlach experiments are ‘repeatable’

To ensure that we are not wasting our time, we want to be sure that the results of our Stern-Gerlach
experiments are ‘good’ or ‘reliable’. In particular, we want to be sure that once we have ascertained
which spin state an electron is in, another Stern-Gerlach experiment would agree with this result. To
show that this is the case, consider the situation illustrated in Figure 8. Here, we pass some electrons
in an ‘unknown’ spin state into an SGX-box and take those that come out of the ‘u’ hole, i.e. those
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Figure 8: Schematically, the fact that Stern-Gerlach experiments give us ‘good’ measurements can
be seen by passing the ‘up-z-spin’ electrons from one SGX-box into another SGX-box. As one would
expect from a ‘good’ measurement, the second SGX-box agrees that all of the electrons entering it
are in the ‘up-z-spin’ state. Obviously, checking the result of an ‘down-z-spin’ measurement or a
‘y-spin’ measurement in this way would proceed along similar lines.

that the Stern-Gerlach experiment assures us are in the up-z-spin state, and pass these (and only
these) electrons through another SGX-box. Reassuringly, the second measurement on these electrons
(due to the second SGX-box) sees them all coming out of the ‘u’ hole confirming that they are, as
we initially expected, all in the up-x-spin state.

Indeed, as long as we don’t ‘tamper’ with the electrons whilst they are between the two SGX-
boxes (see below), this always works. Indeed, it also works if we look at the electrons which leave
the first SGX-box by the ‘d’ hole, or if we consider the electrons that leave an SGY-box through the
‘u’ or ‘d’ holes.

How are z and y-spin states related I — ‘statistical independence’

Now, at this point you may be wondering why we are bothering to consider both the z and y-spin
states of an electron. Well, the reason is that, classically, we may expect the spin of an electron in
these two mutually perpendicular directions to be related in some way. Let’s see if they are statistically
related in some obvious manner. For example, we may expect up-z-spin electrons to yield more up-
y-spin electrons and, such a relationship could reveal itself through a correlation between the number
of up-z-spin electrons entering an SGY-box and the number of up-y-spin electrons leaving it.

So, to look for such a relationship, we take a set of electrons which are in the up-z-spin state,
for example a set of electrons that have just left the ‘u’ hole of an SGX-box, and we pass these
electrons through an SGY-box — see Figure 9. Now, if the  and y-spins of these electrons are

u— up-y (half)

up—x (all}— sSGY |
d—— down-y (half

Figure 9: Passing up-x-spin electrons through an SGY-box yields an equal number of up-y-spin and

down-y-spin electrons. As such, there appears to be no correlation which allows us to decide whether

an up-z-spin electron is more likely to leave the SGY-box as an up-y-spin or a down-y-spin electron.

related, we would expect to see some correlation between the fact that all the incident electrons are
spin-up in the z-direction and the results of the y-spin measurement performed by the SGY-box.
But, on performing the experiment, we find that one half of the electrons go through the ‘u’ hole of
the SGY-box and other half go through the ‘d’ hole of the SGY-box. That is, the fact that all of
the incident electrons were spin-up in the z-direction doesn’t seem to influence the outcome of the
y-spin measurement. As such, since we observe no correlations, we infer that the  and y-spins are
statistically independent, i.e. each up-z-spin electron is equally likely to emerge from an SGY-box
as an up-y-spin or a down-y-spin electron.

How are z and y-spin states related II — ‘disturbance’

However, you may still feel that there is some relationship between the x and y-spin states. For
example, you might like to think that the absence of a correlation is just a coincidence along the
lines of ‘it just so happens that every set of up-z-spin electrons is just a half-half mizture of up-y-spin
and down-y-spin electrons, and that’s why we don’t see any correlations’. If this was the case, the
experiment in Figure 10 (a) would take only the up-z-spin electrons from the first SGX-box and then
pass them through the SGY-box. As such, looking at the electrons which issued from the ‘u’ hole
of this latter box we would have electrons which were both up-z-spin electrons (as they were before
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Figure 10: In (a), what do you expect to happen? In (b), what actually happens. Clearly, passing
an up-z-spin electron through an SGY-box makes it ‘forget’ that it initially had such a spin in the x-
direction. That is, an SGY-box affects an electron’s x-spin in such a way that further measurements
by an SGX-box have a 50-50 chance of yielding an electron which is up-z-spin or down-z-spin.

entering the SGY-box) and up-y-down electrons (as they are after leaving the SGY-box), i.e. the
SGX and SGY boxes are just sorting these electrons out from the ‘randomly oriented’ set of electrons
that were initially passed into the experiment. So, doing this experiment, the result we would expect
from the second SGX-box (the ‘?’) would be a stream of up-z-spin electrons (coming out of the ‘u’
hole) and no electrons coming out of the ‘d’ hole.

But, on running the experiment — see Figure 10 (b) — what we actually observe is half the
electrons coming out of the ‘u’ hole and the other half coming out of the ‘d” hole. That is, the
up-z-spin electrons which entered into the SGY-box have emerged from this experiment as a 50-50
mixture of up-z-spin and down-z-spin electrons. So, there is still no correlation and furthermore,
the measurement of the y-spin of these electrons has altered their xz-spin. Thus, we say that a
measurement of the y-spin of an electron disturbs its x-spin.

This may prompt you to ask two questions:

1. Could we build the SGY-box less crudely? That is, couldn’t we build an SGY-box which doesn’t
affect the z-spin of the electrons?

2. For the SGY-box that we have been using (i.e. the crudely built one), what is it that determines
precisely which electrons have their z-spin affected?

and there are two answers:

1. We can build SGY-boxes in different, less crude, ways. But, they all give results which are
consistent with those that we have been discussing! What’s important here is not that we can’t
build SGY-boxes that don’t disturb the z-spin of an electron, but that however we construct
an SGY-box we always get the same distribution of up-z-spin and down-z-spin at the end of
such experiments. Thus, so long as the SGY-box fulfils the definitional requirements of such
a piece of apparatus'® it will always completely randomise the z-spins of the electrons that
go through it! As such, it appears that the answer to this question is no, i.e. two apparently
indistinguishable up-z-spin electrons can leave the experiment in different z-spin states!

2. Currently, there are no [observable] correlations between the up-z-spin state of an electron and
the states of an SGY-box which will allow us to determine which of the initially up-z-spin
electrons will have their z-spin changed and those which won’t! So, this question seems to have
no answer. . .

Out of desperation, you may ask a third question, namely:

3. Couldn’t we avoid this problem by building a device that measures both the z and y-spin of
electrons?

to which one would get the reply:

15That is, so long as it is a device which we can reliably use to determine the y-spin of an electron.
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3. How could we build such a device? Surely it would need to contain both an SGX and an SGY-
box, but the former would affect the output from the latter, and vice versa, leading to unreliable
information about the x and y-spins of the electrons. So, since we have no conceivable way of
constructing such a device, it seems to be fundamentally beyond our means!

This last point is actually an example of the quantum mechanical uncertainty principle,'® i.e. mea-
surable physical properties like z and y-spin are said to be incompatible with one another since
measurements of one will (as far as we know) always disrupt the other.

How are z and y-spin states related III — ‘superpositions’

We end this discussion of Stern-Gerlach experiments and the strange nature of electron spin by
discussing the most bizarre set of experiments. In Figure 10 we took the up-z-spin electrons from an
SGX-box and then passed them through an SGY-box. We then took the up-y-spin electrons from
this SGY-box and observed what happened when we put them through another SGX-box. Notice
that, since we only took the up-y-spin electrons from the SGY-box we made a measurement at this
point, i.e. prior to passing these electrons through the second SGX-box we knew that they were all
in the up-y-spin state. And, at the end of the experiment we observed that half of these electrons
were in an up-z-spin state and the other half were in a down-z-spin state.

Now, let’s consider what would happen if we passed both the up and down-y-spin electrons from
the SGY-box through the second SGX-box. In fact, as illustrated in Figure 11 (a), let’s count the
number of electrons that come out of the SGY-box in the up and down-y-spin state. If we do this, we

‘counters’
haf) ————
) ‘ u—- ug—ﬂl u—= up—x (half)
In—  SGX d‘ SGY d‘ SGX d‘ d _x (half
‘ ‘| ‘ ‘ Pl —— down-x (ha
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) ‘ u—- u— u—= up—x (all)
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Figure 11: The effect of measuring the spin. In (a) we count the number of electrons that leave the
SGY-box (and, as such, gain information about their y-spin). In (b) we don’t. Clearly, making such
a measurement has an effect on the electrons since these two experiments give different results.

find (unsurprisingly given the experiment in Figure 9) that half of the electrons are found in each of
these two states. And, passing these ‘counted’ electrons through the second SGX-box we find (again,
unsurprisingly given the results of the experiment in Figure 10) that half of the electrons leave the
experiment in the up-z-spin state and the other half are in the down-z-spin state.

However, what happens if we run this experiment again, but this time we don’t count (or observe
in any other way) the electrons that leave the SGY-box? That is, we know that the electrons leaving
the first SGX-box are all up-z-spin electrons (since we don’t allow the down-z-spin electrons to
leave this apparatus), but we don’t make any attempt to observe the state of the electrons leaving
the SGY-box. This experiment — illustrated in Figure 11 (b) — has a rather surprising outcome,
namely that (unlike in the previous experiment) we now observe that all of the electrons leave this
experiment in the up-x-spin state. That is, in this experiment, the SGY-box seems to have had no
effect on the x-spin of the electrons entering into it!

Consequently, as hinted at above, it is not the SGY-box itself that affects the z-spin of the
electrons, but the fact that up until now we have always been observing the results of passing electrons
through an SGY-box. Indeed, compare this with the different results we got when we ran the electron
double-slit experiment with a way of observing which hole the electrons went through'” and without
such an observational aid. The fact that making or not making a measurement can have such an

16Something which we have taken great pains to avoid in this course!
1"Recall that we did this with a ‘strong light source’ positioned between the holes and the ‘backstop’.
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extreme effect on the outcome of an experiment is, perhaps, the key to trying to understand the
weirdness of QM. '8
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18Note: although this all revolves around the term ‘observation’, it seems clear that this is observation qua ‘making a
measurement using some physical apparatus’ and not observation qua ‘coming to know the outcome of a measurement’.
That is, these effects do not seem to be epistemic, they appear to be real physical effects that would occur even in the
absence of a conscious entity who would actually ‘observe’ the results of such measurements. (Although, as we shall
see, some interpretations of QM disagree with this!)



