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432018 PHILOSOPHY OF PHYSICS (Spring 2002)

Lecture 4: The postulates of QM and the Copenhagen interpretation

Reading: Preliminary reading: Sklar, pp. 172-9.

We now turn our attention to the postulates of QM as formulated by von Neumann and we shall
discuss these in terms of the formalism devised by Heisenberg. To do this we will start by listing the
‘core’ postulates of QM which are commonly accepted and then we shall introduce the last, and most
controversial postulate. We shall then outline how the formalism is generally used, starting with a
general schema for its application and then [briefly] considering an actual example which will allow us
to describe the results of the Stern-Gerlach experiments discussed in the previous lecture. Then, we
shall consider the ‘orthodox’ interpretation of QM, namely the Copenhagen interpretation of Bohr
and Heisenberg, since this will provide a context for our discussion of more recent interpretations in
the next few lectures.

NOTE: It is not necessary for you to fully understand the mathematical aspects of the material
covered in this lecture. You just need to understand the basic physical and philosophical points that
are being made.

1 The ‘core’ postulates of QM

Quantum Mechanics is usually formulated in terms of the following, commonly accepted, postulates:

1. Physical states: The state of a system allows us to represent what the system is doing at a
given time. In QM, we represent them in the following way:

• Every physical system is associated with a particular Hilbert space.

• The possible physical states of the system correspond to [normalised, or unit,] vectors in
its associated Hilbert space, these are denoted by ‘kets’, e.g. |A〉 represents the state A.
The state of the system is completely represented by the corresponding vector.

• Every vector picks out a state and every state corresponds to a vector.

• Superpositions of states are themselves states of the system, i.e. any linear combination
of vectors is also a vector and as such represents a state.

2. Measurable properties: Observables, i.e. properties of the system that we can find by
measurement, are represented by linear Hermitian operators acting on the Hilbert space. In
particular:

• If the state |A〉 is an eigenstate of an Hermitian operator Â, i.e. Â|A〉 = a|A〉 where a ∈ R
is the corresponding eigenvalue, then we say that a measurement on the system which is
in state |A〉 yields the value a when me measure the property of the system represented
by the operator Â.1

• If we have a superposition of two states, say |V 〉 and |W 〉, then we have

Â (α|V 〉+ β|W 〉) = αÂ|V 〉+ βÂ|W 〉,

since the operators we use to represent observables are linear.

3. Dynamics: The dynamics describes how the state of a system changes with time.

• Given the vector that represents the state of the system and information about how it is
interacting with other systems, the dynamics allows us to calculate the state of the system
at a later time.

1Notice that we choose Hermitian operators to represent observable properties since they always give real values as
the result of a measurement.
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• This evolution is governed by Schrödinger’s equation, and as such this evolution is con-
tinuous, causal and deterministic — i.e. given the state and the interactions there is only
one state that the system can evolve to at a later time and it gets there in a continuous
manner.

4. Connection with experiment: When we perform an experiment, we expect to get different
outcomes with different probabilities. This comes into the formalism in the following way:

• If the system is in a state represented by the vector |A〉 and this is an eigenstate of
the operator Â used to represent the measurement, then we can predict with certainty
the outcome of the measurement. That is, if Â|A〉 = a|A〉, then the outcome of the
measurement will [certainly] be a.2

• If a system is in a state represented by the vector |V 〉 and this is not an eigenstate of the
operator Â used to represent the measurement, then we can find the probability that the
outcome of the experiment will be a given eigenvalue (corresponding to an eigenstate of
the system) using Born’s rule.3

2 Von Neumann’s ‘projection’ (or ‘collapse’) postulate

The postulates for QM that we saw above can’t be the whole story about how the states of a system
change over time. Mainly because, as we will see when we discuss our earlier Stern-Gerlach exper-
iments, making a measurement appears to cause the state of the system to change discontinuously.
That is, if prior to a measurement the system is in a superposition of the relevant eigenstates, then
on measurement we will find that the state of the system has ‘collapsed’ so that it is, in fact, found
to be in only one of the eigenstates that were in the initial superposition. Indeed, not only does this
change of state upon measurement seem discontinuous, it also appears to be indeterministic since we
only have the probability that a given outcome will manifest itself as a result of such a measurement.
But, unfortunately, this kind of discontinuous and random behaviour can not be described by the
Schrödinger equation (see Postulate 3). So, let’s see how von Neumann tried to resolve this problem
by invoking a further postulate in his formalism of QM.

Basically, in von Neumann’s formalism, the Schrödinger equation (i.e. Postulate 3) only applies
when no measurements are being made. The effect of a measurement is then captured in the following
postulate:

5. Collapse: The effect of a measurement is to change the state of the measured system. This
change is normally called collapse since the state changes discontinuously into an eigenstate of
the operator representing the observable being measured. Moreover, this collapse is the only
place where randomness (or ‘pure chance’) enters into the formalism, i.e. collapse is the only
mechanism by which the state vector of the system can evolve probabilistically.

Thus, the collapse postulate accommodates the randomness which the probabilities in Postulate 4
are supposed to describe. That is, notice that, unlike the other four postulates there is nothing here
for us to calculate.

3 How QM is done I — a schema

In summary then, a quantum mechanical calculation normally proceeds as follows:
2And, as such, the post-measurement state will still be |A〉.
3In particular, we can decompose the state |V 〉 in terms of the eigenstates |Ai〉 of the operator Â, i.e. if

|V 〉 =

nX
i=1

ci|Ai〉,

where for each i we have assumed that
Â|Ai〉 = ai|Ai〉,

then the probability that the measurement will yield the outcome ai is given by |ci|2.
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• Identify the Hilbert space associated with the system in question and then associate operators
with the measurable properties. (Postulates 1 and 2.)

• Given the present state of the system, the dynamics (i.e. the Schrödinger equation) gives us a
way of calculating the state at any future time. Note that this evolution is continuous, causal
and deterministic. (Postulate 3.)

• Using Born’s rule, we can calculate the probabilities associated with the different outcomes of
a measurement. (Postulate 4.)

• The effect of such a measurement on the system, i.e. the discontinuous, indeterministic and
seemingly non-causal collapse of the state into one of the eigenstates of the operator representing
the measurement, is accommodated by the collapse principle. (Postulate 5.)

Let’s now see how the formalism and this schema allow us to describe the results of our Stern-Gerlach
experiments from the previous lecture.

4 How QM is done II — an example

So, we start by looking at the schema, i.e. we see what we will need to describe the Stern-Gerlach
experiments from the previous lecture.

Setting up — Postulates 1, 2 and 3

We start by [briefly] identifying the Hilbert space and the operators which are associated with the
property that we are trying to measure with the Stern-Gerlach experiments, namely spin in either
the x or y-direction. To do this, we need to find the relevant operators and their eigenstates, i.e.

• An SGX-box measures the x-spin of an electron and the operator representing this property is
denoted by Ŝx. The eigenstates of this operator are what we have been calling up-x-spin and
down-x-spin and we denote these by | ↑x〉 and | ↓x〉 respectively. When we make a measurement
of the x-spin of an electron which is in the former of these two eigenstates the formalism tells
us that

Ŝx| ↑x〉 = +
~
2
| ↑x〉,

where ~/2 is the eigenvalue of this operator corresponding to this state, whereas if the electron
is in the latter of these two states we have

Ŝx| ↓x〉 = −~
2
| ↓x〉,

where −~/2 is the eigenvalue of this operator corresponding to this state.

• Similarly, an SGY-box measures the y-spin of an electron and the operator representing this
property is denoted by Ŝy. The eigenstates of this operator are what we have been calling
up-y-spin and down-y-spin and we denote these by | ↑y〉 and | ↓y〉 respectively. When we make
a measurement of the y-spin of an electron which is in the former of these two eigenstates the
formalism tells us that

Ŝy| ↑y〉 = +
~
2
| ↑y〉,

where ~/2 is the eigenvalue of this operator corresponding to this state, whereas if the electron
is in the latter of these two states we have

Ŝy| ↓y〉 = −~
2
| ↓y〉,

where −~/2 is the eigenvalue of this operator corresponding to this state.
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Think of an eigenvalue as the value of the spin when it is in a particular eigenstate. That is, when
we have an electron in the state | ↑x〉, its spin in the x-direction is given by the number ~

2 in the
appropriate units. Similarly, an electron in the state | ↓x〉, has a spin in the x-direction given by
the number −~2 in the appropriate units where the ‘−’ indicates that this spin is in the opposite
direction. (Cf. Figure 6 (a) in the previous handout.)

NOTE: Rather ironically, perhaps, we are not really interested in the values of the spin in this or that
direction, but the state of the electron that corresponds to the electron having such a spin value. As
such, we won’t really talk about the spin values any more, concentrating instead on the corresponding
spin states of the electron.

Another important thing that we get from the formalism is that the x-spin states and the y-spin
states are related. In particular, we can see that the x-spin states are superpositions (or linear
combinations) of the y-spin states, i.e.

| ↑x〉 =
1√
2

(
| ↑y〉+ | ↓y〉

)
and | ↓x〉 =

1√
2

(
| ↑y〉 − | ↓y〉

)
,

and, similarly, the y-spin states are superpositions of the x-spin states, i.e.

| ↑y〉 =
1√
2

(
| ↑x〉+ | ↓x〉

)
and | ↓y〉 =

1√
2

(
| ↑x〉 − | ↓x〉

)
,

where the factors of 1/
√

2 in these expressions guarantee that the vectors are normalised. As such,
by Postulate 1, these superpositions are also spin states of the system. In particular, an electron
which is in an x-spin eigenstate (say up-x-spin) is in a y-spin state represented by a superposition of
the y-spin eigenstates.

Lastly, we notice that the dynamics given in Postulate 3 tells us that if we don’t make any measure-
ments, then the [temporal] evolution of the state of the system will be described by the Schrödinger
equation. As far as we are concerned, this means that the evolution of the system will be continuous,
causal and deterministic. Or, more basically, if the system is in a superposition of eigenstates and
no measurements are being made, it will stay in a superposition!

Making measurements — Postulates 4 and 5

However, when we make a measurement, things start to get a bit weird. And, it is the remaining
two postulates of QM (i.e. 4 and 5) which are needed to account for this. The key point to bear
in mind in QM is that when we make a measurement, we only observe outcomes where the system
is in an eigenstate of the operator corresponding to the measurement. This is, perhaps, the crux of
all the weirdness in QM, we have systems in states which are superpositions of eigenstates, but we
never observe superpositions, we just observe the post-measurement eigenstate of the system. So, to
explain what is happening with these postulates let’s try and see what the formalism tells us about
our earlier set of Stern-Gerlach experiments.

We only observe eigenstates — Figure 3.7

This is, pretty much what is being illustrated in Figure 3.7 (a). Whatever the x-spin state of the
electrons entering the SGX-box, we will only ever get up-x-spin or down-x-spin electrons coming out.
In particular, given that we are considering an SGX-box, which makes measurements corresponding
to the operator Ŝx discussed above, an electron entering ‘in’ to the apparatus could be in

• a particular eigenstate of Ŝx. That is, it could be in the state | ↑x〉 or the state | ↓x〉. In
this case, as described by Postulate 4, the electron will stay in this eigenstate and leave the
SGX-box by the appropriate hole.

• a superposition of the eigenstates | ↑x〉 and | ↓x〉 of Ŝx. For example, it could be in the state
| ↑y〉 which, as we saw above, is such a superposition as far as x-spin states are concerned. In
this case, as described by Postulate 4, although the electron will leave the SGX-box by one of
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the holes, we can only assess the probability that this electron will leave the SGX-box through
the up-x-spin or down-x-spin hole. Indeed, if the electron leaves in the up-x-spin (down-x-spin)
state, using Postulate 5, we say that the superposition that initially described the x-spin state
of this electron has collapsed into the up-x-spin (down-x-spin) state.

And, of course, a similar account holds for what is happening due to the SGY-box in Figure 3.7 (b).

Spin measurements are repeatable — Figure 3.8

Notice that this first point means that, once an electron has been found to be in a particular eigen-
state, say we have used an SGX-box to determine that it is in the up-x-spin state, then (provided there
is no ‘tampering’, see below) a second measurement of its x-spin will agree with this measurement
— see Figure 8 in the previous handout.

The ‘statistical independence’ of x and y-spins — Figure 3.9

Now, using an SGY-box to perform a y-spin measurement on an up-x-spin electron, we know from
above that performing this experiment on any given electron we will find that

• the experiment will yield an electron in either an up-y-spin state or a down-y-spin state as these
are the only two possible outcomes of such an experiment. As such, we invoke postulate 5 since
in this measurement the superposition will collapse into one of these two available states, i.e.
as a result of the measurement an electron in the up-x-spin state, a superposition of up-y-spin
and down-y-spin states, collapses into either the up-y-spin or the down-y-spin state.

• we can see that the coefficients of the y-spin states on the right-hand-side of the expression for
| ↑x〉 tell us, using Born’s rule (postulate 4), that the probability of obtaining one or the other
of these outcomes is a half.4

This is why, when we measure the y-spin of many up-x-spin electrons (as illustrated in Figure 3.9) the
SGY-box tells us that half of them are in an up-y-spin state and the other half are in the down-y-spin
state.

Why SGY-boxes ‘disturb’ x-spin states — Figure 3.10

Now, we need to be clear about how a superposition of states, like the one discussed above, behaves.
In particular, we want to distinguish superpositions from mixtures of different states and this is,
pretty much, the point of Figure 3.10. So, just to clarify in case you haven’t already realised, a
superposition of the up-x-spin and down-x-spin eigenstates does not represent a situation where we
have a set of electrons, some of which are in the former state and the rest of which are in the latter
state. The superposition is the x-spin state of the electrons, but we only ever observe electrons in
one of these x-spin eigenstates.

So, to see what is happening here, we note that the up-y-spin electrons leaving the SGY-box are
in a state which is a superposition of the x-spin eigenstates | ↑x〉 and | ↓x〉. Thus, by discovering
that an electron is now in an up-y-spin state, it is no longer in an ‘observable’ x-spin state since it is
in a superposition as far as these latter states are concerned. As such, if we now try to measure the
x-spin of a large number of electrons we will find that, as above,

• the experiment will yield an electron in either an up-x-spin state or a down-x-spin state as these
are the only two possible outcomes of such an experiment. As such, we invoke postulate 5 since
in this measurement the superposition will collapse into one of these two available states, i.e.
s a result of the measurement an electron in the up-y-spin state, a superposition of up-x-spin
and down-x-spin states, collapses either in to the up-x-spin state or the down-x-spin state.

4Since, in this case, the probability of a given outcome is just the square of the appropriate coefficient in the linear
combination of eigenstates that represents the superposition. See footnote 3.
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• we can see that the coefficients of the x-spin states on the right-hand-side of the expression for
| ↑y〉 tell us, using Born’s rule (postulate 4), that the probability of obtaining one or the other
of these outcomes is a half.

This is why, when we now measure the x-spin of many up-y-spin electrons (as illustrated in Figure
3.10) the SGX-box tells us that half of them are in an up-x-spin state and the other half are in the
down-x-spin state. That is, passing the electrons through the SGY-box ‘disturbed’ their x-spin state.

Why ‘measurement’ is so important — Figure 3.11

To round this discussion of our earlier Stern-Gerlach experiments off, we look at the final experiment.
Clearly, given our earlier discussion, it should be clear why we get the results illustrated in Figure
3.11 (a), the fact that we ‘count’ the electrons after they leave the SGY-box means that we have
ascertained which of the two y-spin eigenstates they are in. As such, when the electrons enter into
the second SGX-box, they are in a superposition of the x-spin states giving the result that we would
expect from our discussion of Figure 3.10.

However, what is happening in Figure 3.11 (b)? Well, although the electrons pass through
the SGY-box, we do not use this device to make any measurement of their y-spin. As such, the
superposition of y-spin states given by the up-x-spin state of the electrons which are incident on the
SGY-box does not collapse since, by Postulate 5, collapse only occurs when a measurement is made.
Consequently, when the electrons reach the second SGX-box they are still in the up-x-spin state and
the outcome of this measurement, that they are all indeed in such a state, is what we observe.

Clearly, this is very weird, and accounting for the fact that it is observing the result of passing
electrons through a measuring apparatus is what makes an interpretation of QM so difficult to find.
So difficult, in fact, that many of the interpretations of QM that we will consider in the coming
lectures will seem very bizarre. However, now that we have seen the formalism that physicists use,
let’s have a look at what has been the most enduring interpretation of it.

5 The Copenhagen Interpretation of QM

The Copenhagen interpretation is largely due to Bohr, whose model of the atom we considered in
Lecture 2. This interpretation is, at least prima facie, the orthodox interpretation of QM amongst
physicists. I say prima facie since what is standardly taught in undergraduate QM courses pays a
great deal of lip service to what Bohr proposed without actually giving any clear account of what
Bohr said. This assertion is justified by the fact that Bohr’s writing are almost impenetrable and
the position preached by physicists is a remarkably simplistic synopsis of what he may or may not
have been trying to say.

Bohr’s position is usually taken to be operationalist, instrumentalist and positivist, although a
closer inspection of his work seems to show that his position is not quite so clear cut. Indeed, in this
section we shall try and develop a more charitable reading of Bohr’s subtle position, although the
inherent vagueness of his writings won’t let us get very far!

Essentially, Bohr’s Copenhagen interpretation requires three things:

1. At the most fundamental level, quantum phenomena are inherently indeterministic.

2. It is impossible for us to give an event-by-event causal representation of quantum phenomena
within a continuous space-time arena. (In particular, building on Heisenberg’s uncertainty
results, Bohr accepted that the transition of an atomic system from one state to another
during an interaction could be discontinuous.)

3. A notion of complementarity. This is the most impenetrable aspect of Bohr’s interpretation
and so all we can do is give examples of the use of the term:

• Examples of complementarity: the wave and particle aspects of a quantum system are
complementary, as our its position and momentum and its spin in the x and y-directions.
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• In classical physics, a system has both a definite position and a definite momentum. But,
in QM, although both of these complementary aspects of the system are necessary for its
full characterisation, it is impossible to describe the system simultaneously in terms of
both of these complementary features.5

• ‘Complementarity: any given application of classical concepts precludes the simultaneous
use of other classical concepts which in a different connection are equally necessary for the
elucidation of the phenomena.’ [Bohr, 1934]6

• ‘. . . atomic phenomena under different experimental conditions must be termed comple-
mentary in the sense that each is well defined and that together they exhaust all definable
knowledge about the objects concerned. The quantum-mechanical formalism . . . gives
. . . an exhaustive complementary account of a very large domain of experience.’ [Bohr,
1958]

• The wave-particle dualism results from the complementary nature of the wave and particle
descriptions of quantum phenomena. These descriptions are mutually exclusive and jointly
exhaustive.7

Indeed, going deeper into Bohr’s writings on complementarity we find that this concept starts to get
quite ‘mystical’.

Further reading: N. Bohr, Atomic Theory and the Description of Nature (CUP, 1934) and Atomic
Theory and Human Knowledge (Wiley, 1958).

Bohr collaborated closely with Heisenberg when developing the Copenhagen interpretation. Heisen-
berg’s take on the Copenhagen interpretation runs as follows:

• The concepts and language of classical physics, while limited by the uncertainty principle, are
essential for the description of experimental results and cannot be improved upon. The proba-
bilities in QM play an ineliminable role due to the uncertainty relations, but these probabilities
are of a fundamentally different type to those encountered in classical physics.

• There is complementarity. But, Heisenberg’s examples are different to Bohr’s and he thinks that
it is the ‘space-time’ and ‘deterministic’ descriptions of atomic events that are complementary.

• Reality becomes definite only when an experimental observation is made. So, prior to ex-
periment, the probabilities give a complete description of what is happening. Thus, from the
completeness of the probability function, it follows that electrons (say) do not have any partic-
ular position (say) when they are not being observed.

which, although it seems to be saying much the same sort of thing as Bohr, it doesn’t seem to be
quite so vague.

Further reading: W. Heisenberg, Physics and Philosophy: the Revolution in Modern Science
(Harper and Row, 1962).

6 The perceived consequences of QM amongst philosophers and
physicists

The Copenhagen interpretation was largely accepted by physicists as the best account of what was
going on. There was, of course, some disagreement at the time and, in particular, as we shall see
in a few weeks, Einstein put up stiff resistance to Bohr’s claims. But, in the debate between Bohr
and Einstein, Bohr was perceived to be the victor by the scientific community and the Copenhagen
interpretation became the orthodoxy. So, bearing in mind what we have seen above, this is a quick
summary of what the orthodox reading of the Copenhagen interpretation says:

5So, we can never give a full description of a quantum system?
6But, if this is right, how can a description of both features be the only way of characterising the system correctly?
7How can mutually exclusive descriptions both be true of a system?
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1. We can find no deeper theory that will explain what is going on, we just have to accept that
the quantum world is mysterious.

2. In the quantum world there is no fact of the matter until a measurement is made.

3. For quantum systems it is impossible to know the values of two complementary properties at
the same time.8

4. The quantum world is fundamentally indeterministic.

Or, more philosophically, we could say that:

1. QM is instrumentalist: We can only use it to make predictions, it does not tell us what there
is or exactly what is happening.

2. QM is positivist: We only know the truth or falsity of propositions when we can assess their
truth or falsity by measurement.

3. QM is operationalist: The only quantities that we can ascribe values to our those that we
can measure in a given experimental set-up.

4. QM is indeterministic: We cannot predict the outcome of a measurement in advance.

Needless to say, if this is how you are taught QM, it is no wonder that you never question it. The
prevailing opinion nowadays amongst physicists and philosophers who think seriously about QM is
that the Copenhagen interpretation managed to stifle conceptual innovation in this area of physics
for a very long time. It is only now that alternative interpretations are being seriously considered
and these are what we shall start looking at in the next lecture.

James Ward (e-mail: j.m.ward@lse.ac.uk)
8Technically, i.e. in the quantum mechanical formalism, complementary properties are those that are represented

by non-commuting operators. For example, the operators Ŝx and Ŝy which we used in our analysis of the x and y-spin
Stern-Gerlach experiments.


