If a matrix is not diagonalisable, we say that it is deficient. But, as we shall now see, given a deficient matrix, say A, we can find an invertible matrix S, such that

$$
\mathrm{S}^{-1} \mathrm{AS}=\mathrm{J}
$$

where the matrix J is almost diagonal. In particular, we are going to find a matrix S which yields the Jordan Normal Form (or JNF) of A, i.e.

$$
\mathbf{J}=\left[\begin{array}{ccccccc}
\lambda_{1} & * & 0 & 0 & \cdots & 0 & 0 \\
0 & \lambda_{2} & * & 0 & \cdots & 0 & 0 \\
0 & 0 & \lambda_{3} & * & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & \lambda_{n-1} & * \\
0 & 0 & 0 & 0 & \cdots & 0 & \lambda_{n}
\end{array}\right]
$$

where the entries are as follows

- along the diagonal of J , i.e. the elements $(\mathrm{J})_{i, i}$ for $1 \leq i \leq n$, we have the eigenvalues of A ,
- along the 'upper off-diagonal', i.e. the elements $(\mathrm{J})_{i, i+1}$ for $1 \leq i \leq$ $n-1$, we have the ' $*$'s each of which is either a zero or a one,
- every other entry, i.e. $(\mathrm{J})_{i, j}$ for $1 \leq i, j \leq n$ with $j \neq i, i+1$, is zero. Clearly, this is almost diagonal since this matrix would be diagonal if it wasn't for the fact that some (or all) of the ' $*$'s could be a one.

Let's consider a 3×3 matrix A and see how this would work. We have the following cases:

- A has three distinct eigenvalues, in which case A is diagonalisable.
- A has two distinct eigenvalues, say λ_{1} and λ_{2}, where $a_{\lambda_{1}}=2$. In this case, we could have
- $g_{\lambda_{1}}=2$, in which case A is diagonalisable.
- $g_{\lambda_{1}}=1$, in which case A is not diagonalisable and we seek the JNF of A. Let's call this Case 1.
- A has one distinct eigenvalue, say λ_{1}, where $a_{\lambda_{1}}=3$. In this case, we could have
- $g_{\lambda_{1}}=3$, in which case A is diagonalisable.
- $g_{\lambda_{1}}=2$, in which case A is not diagonalisable and we seek the JNF of A. Let's call this Case 2.
- $g_{\lambda_{1}}=1$, in which case A is not diagonalisable and we seek the JNF of A. Let's call this Case 3.

Note that if A is diagonalisable, then all the ' $*$'s will be zero in the JNF. In the other cases we find that...

Case 1: A has two eigenvalues, say $\lambda_{1} \neq \lambda_{2}$, where $a_{\lambda_{1}}=2$ and $g_{\lambda_{1}}=1$.
Let \boldsymbol{v}_{1} and \boldsymbol{v}_{2} be the eigenvectors corresponding to λ_{1} and λ_{2} respectively, i.e. \dagger

$$
\boldsymbol{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1} \quad \text { and } \quad \mathrm{A} \boldsymbol{v}_{2}=\lambda_{2} \boldsymbol{v}_{2},
$$

where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly independent. We seek a vector $\boldsymbol{v}_{1}^{\prime}$ which is related to \boldsymbol{v}_{1} according to \dagger

$$
\left(\mathrm{A}-\lambda_{1} \boldsymbol{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}, \quad \text { or rearranging, } \quad \mathrm{A} \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}+\lambda_{1} \boldsymbol{v}_{1}^{\prime} .
$$

We now construct an invertible matrix S with the vectors $\boldsymbol{v}_{1}, \boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} as its columns so that $\mathrm{S}^{-1} \mathrm{AS}$ yields the JNF of A . That is, we want $\mathrm{AS}=\mathrm{SJ}$ where J has the form described above. But, since AS gives

$$
\mathrm{A} \underbrace{\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{1}^{\prime} & \boldsymbol{v}_{2} \\
\mid & \mid & \mid
\end{array}\right]}_{\boldsymbol{c}}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathrm{A} \boldsymbol{v}_{1} & \mathrm{~A} \boldsymbol{v}_{1}^{\prime} & \mathrm{A} \boldsymbol{v}_{2} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{1} & \boldsymbol{v}_{1}+\lambda_{1} \boldsymbol{v}_{1}^{\prime} & \lambda_{2} \boldsymbol{v}_{2} \\
\mid & \mid & \mid
\end{array}\right]
$$

Aside 4.5.1 This means that \boldsymbol{v}_{1} is in the null space of $\mathrm{A}-\lambda_{1} I_{3}$. Notice that \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly independent since they are eigenvectors corresponding to distinct eigenvalues.

Aside 4.5.2 This means that $\boldsymbol{v}_{1}^{\prime}$ is not in the null space of $\mathrm{A}-\lambda_{1} \mathrm{I}_{3}$ since

$$
\left(\mathrm{A}-\lambda_{1} I_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1} \neq \mathbf{0} .
$$

As such, \boldsymbol{v}_{1} and $\boldsymbol{v}_{1}^{\prime}$ are linearly independent. We can also see that $\boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} are linearly independent. (Why? See Exercise 1.) Thus we can guarantee the invertibility of the matrix S we are constructing.
we take J to be such that

$$
\mathrm{SJ}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{1} & \boldsymbol{v}_{1}^{\prime} & \boldsymbol{v}_{2} \\
\mid & \mid & \mid
\end{array}\right] \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & 1 & 0 \\
0 & \lambda_{1} & 0 \\
0 & 0 & \lambda_{2}
\end{array}\right]}_{\text {required JNF! }}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{1} & \boldsymbol{v}_{1}+\lambda_{1} \boldsymbol{v}_{1}^{\prime} & \lambda_{2} \boldsymbol{v}_{2} \\
\mid & \mid & \mid
\end{array}\right]
$$

Case 2: A has one eigenvalue, say λ_{1}, where $a_{\lambda_{1}}=3$ and $g_{\lambda_{1}}=2$. \dagger
Let \boldsymbol{v}_{1} and \boldsymbol{v}_{2} be the eigenvectors corresponding to λ_{1}, i.e.

$$
\mathrm{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1} \quad \text { and } \quad \mathrm{A} \boldsymbol{v}_{2}=\lambda_{1} \boldsymbol{v}_{2},
$$

where \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly independent. We take a vector $\boldsymbol{v}_{3} \notin \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$ and then find a vector, say $\boldsymbol{v}_{2}^{\prime}$, such that \dagger

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}, \quad \text { or rearranging, } \quad \text { A } \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}+\lambda_{1} \boldsymbol{v}_{3} .
$$

We now construct an invertible matrix S with the vectors \boldsymbol{v}_{i} (where we take \boldsymbol{v}_{i} to be whichever of \boldsymbol{v}_{1} or \boldsymbol{v}_{2} is linearly independent of $\left.\boldsymbol{v}_{2}^{\prime}\right), \boldsymbol{v}_{2}^{\prime}$ and v_{3} as its columns \dagger so that $\mathrm{S}^{-1} \mathrm{AS}$ yields the JNF of A . That is, we want $A S=S J$ where J has the form described above. But, since AS gives

$$
\mathrm{A} \underbrace{\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{i} & \boldsymbol{v}_{2}^{\prime} & \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]}_{\mathrm{S}}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\mathrm{A} \boldsymbol{v}_{i} & \mathrm{~A} \boldsymbol{v}_{2}^{\prime} & \mathrm{A} \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{i} & \lambda_{1} \boldsymbol{v}_{2}^{\prime} & \boldsymbol{v}_{2}^{\prime}+\lambda_{1} \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

and so, we take J to be such that

$$
\mathbf{S J}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\boldsymbol{v}_{i} & \boldsymbol{v}_{2}^{\prime} & \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right] \underbrace{\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{1} & 1 \\
0 & 0 & \lambda_{1}
\end{array}\right]}_{\text {required JNF! }}=\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\lambda_{1} \boldsymbol{v}_{i} & \lambda_{1} \boldsymbol{v}_{2}^{\prime} & \boldsymbol{v}_{2}^{\prime}+\lambda_{1} \boldsymbol{v}_{3} \\
\mid & \mid & \mid
\end{array}\right]
$$

Aside 4.5.4 Notice that the vector $\boldsymbol{v}_{2}^{\prime}$ cannot be $\mathbf{0}$ as that would mean $\boldsymbol{v}_{3} \in \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}!$ However, $\boldsymbol{v}_{2}^{\prime}$ will be in $\operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, i.e. it is also an eigenvector of A corresponding to the eigenvalue λ_{1}. (Why? See Exercise 2.)
Aside 4.5.5 As $\boldsymbol{v}_{3} \notin \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, we can see that $\boldsymbol{v}_{i}, \boldsymbol{v}_{2}^{\prime}$ and \boldsymbol{v}_{3} are linearly independent. This is what guarantees the invertibility of the matrix S we are constructing.

Case 3: A has one eigenvalue, say λ_{1}, where $a_{\lambda_{1}}=3$ and $g_{\lambda_{1}}=1$.
Let \boldsymbol{v}_{1} be the eigenvectors corresponding to λ_{1}, i.e. \dagger

$$
\mathbf{A} \boldsymbol{v}_{1}=\lambda_{1} \boldsymbol{v}_{1}
$$

Aside 4.5.6 This means that \boldsymbol{v}_{1} is in the null space of $\mathrm{A}-\lambda_{1} I_{3}$.

Aside 4.5.7 This means that $\boldsymbol{v}_{1}^{\prime}$ is not in the null space of $A-\lambda_{1} I_{3}$ as $\boldsymbol{v}_{1} \neq \mathbf{0}$. As such, \boldsymbol{v}_{1} and $\boldsymbol{v}_{1}^{\prime}$ are linearly independent. But, notice that $\boldsymbol{v}_{1}^{\prime \prime}$ is in the null space of $\left(\mathrm{A}-\lambda_{1} 1_{3}\right)^{2}$ as

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right)^{2} \boldsymbol{v}_{1}^{\prime}=\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{1}=\mathbf{0}
$$

since \boldsymbol{v}_{1} is in the null space of $\mathrm{A}-\lambda_{1} I_{3}$.
Aside 4.5.8 This means that $v_{1}^{\prime \prime}$ is not in the null space of $A-\lambda_{1} I_{3}$ as $\boldsymbol{v}_{1} \neq \mathbf{0}$. Also, as
$\left(\mathrm{A}-\lambda_{1} I_{3}\right)^{2} \boldsymbol{v}_{1}^{\prime \prime}=\left(\mathrm{A}-\lambda_{1} I_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1} \neq \mathbf{0}$, $\boldsymbol{v}_{1}^{\prime \prime}$ is not in the null space of (A $\left.\lambda_{1} I_{3}\right)^{2}$. As such, $\boldsymbol{v}_{1}, \boldsymbol{v}_{1}^{\prime}$ and $\boldsymbol{v}_{1}^{\prime \prime}$ are linearly independent. This is what guarantees the invertibility of the matrix S we are constructing.

For example: To see how Case 1 works, consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 4 & 4 \\
1 & 0 & -3 \\
-2 & 4 & 7
\end{array}\right]
$$

which has two eigenvalues $\lambda_{1}=2\left(\right.$ with $\left.a_{2}=2\right)$ and $\lambda_{2}=3$ (with $a_{3}=1$) and corresponding linearly independent eigenvectors $\boldsymbol{v}_{1}=[2,1,0]^{t}$ (i.e. $g_{2}=1$) and $\boldsymbol{v}_{2}=[0,-1,1]^{t}$ (i.e. $g_{3}=1$) respectively. Following the method above, we seek a vector $\boldsymbol{v}_{1}^{\prime}$ such that $\left(\mathrm{A}-2 \boldsymbol{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}$. The easiest way to find such a vector is to find the components x, y and z of $\boldsymbol{v}_{1}^{\prime}$ by solving the matrix equation

$$
\left[\begin{array}{ccc}
-2 & 4 & 4 \\
1 & -2 & -3 \\
-2 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \Longrightarrow x\left[\begin{array}{c}
-2 \\
1 \\
-2
\end{array}\right]+y\left[\begin{array}{c}
4 \\
-2 \\
4
\end{array}\right]+z\left[\begin{array}{c}
4 \\
-3 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right]
$$

which, by inspection, has $\boldsymbol{v}_{1}^{\prime}=[x, y, z]^{t}=[-5,0,-2]^{t}$ as a solution. \dagger Thus, we take our invertible matrix, S, and its associated JNF, J, to be

$$
S=\left[\begin{array}{ccc}
2 & -5 & 0 \\
1 & 0 & -1 \\
0 & -2 & 1
\end{array}\right] \quad \text { and } \quad J=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]
$$

Aside 4.5.9 There are other solutions since the three column vectors in the matrix $\left(A-2 I_{3}\right)$ are linearly dependent.
as you can verify by checking that $\mathrm{AS}=\mathrm{SJ}$.

For example: To see how Case 2 works, consider the matrix

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & -1 \\
-2 & 2 & 1
\end{array}\right]
$$

which has linearly independent eigenvectors $\boldsymbol{v}_{1}=[1,1,0]^{t}$ and $\boldsymbol{v}_{2}=[1,0,1]^{t}$ corresponding to its sole eigenvalue of -1 (i.e. here $a_{-1}=3$ and $g_{-1}=2$). Following the method above, We take a vector \boldsymbol{v}_{3}, say $[0,0,1]^{t}$, which is not in $\operatorname{Lin}\left\{[1,1,0]^{t},[1,0,1]^{t}\right\}$ and find a vector $\boldsymbol{v}_{2}^{\prime}$ such that $\left(\mathrm{A}+\mathrm{I}_{3}\right) \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}$, i.e.

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & -1 \\
-2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right]
$$

Thus, we take our invertible matrix, S, and its associated JNF, J, to be

$$
S=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 2 & 1
\end{array}\right] \quad \text { and } \quad J=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

as you can verify by checking that $\mathrm{AS}=\mathrm{SJ}$.

For example: To see how Case 3 works, consider the matrix

$$
A=\left[\begin{array}{ccc}
0 & 0 & 1 \\
1 & 0 & -3 \\
0 & 1 & 3
\end{array}\right]
$$

which has one linearly independent eigenvector $\boldsymbol{v}_{1}=[1,-2,1]^{t}$ corresponding to its sole eigenvalue $\lambda_{1}=1$ (i.e. here $a_{1}=3$ and $g_{1}=1$). We seek a vector $\boldsymbol{v}_{1}^{\prime}=[x, y, z]^{t}$ such that $\left(\mathrm{A}-\mathrm{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}$, i.e.

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & -3 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] \Longrightarrow x\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+y\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+z\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right]
$$

which, by inspection, has $\boldsymbol{v}_{1}^{\prime}=[x, y, z]^{t}=[-1,1,0]^{t}$ as a solution. \dagger We then seek a vector $\boldsymbol{v}_{1}^{\prime \prime}=[x, y, z]^{t}$ such that $\left(\mathrm{A}-\mathrm{I}_{3}\right) \boldsymbol{v}_{1}^{\prime \prime}=\boldsymbol{v}_{1}^{\prime}$ such that

$$
\left[\begin{array}{ccc}
-1 & 0 & 1 \\
1 & -1 & -3 \\
0 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \Longrightarrow x\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+y\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]+z\left[\begin{array}{c}
1 \\
-3 \\
2
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]
$$

which, by inspection, has $\boldsymbol{v}_{1}^{\prime \prime}=[x, y, z]^{t}=[1,0,0]^{t}$ as a solution. \dagger Thus, we take our invertible matrix, S , and its associated JNF, J, to be

$$
S=\left[\begin{array}{ccc}
1 & -1 & 1 \\
-2 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \quad \text { and } \quad J=\left[\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Aside 4.5.10 There are other solutions since the three column vectors in the matrix $\left(A-I_{3}\right)$ are linearly dependent.

Aside 4.5.11 There are other solutions since the three column vectors in the matrix $\left(A-I_{3}\right)$ are linearly dependent.
as you can verify by checking that $\mathrm{AS}=\mathrm{SJ}$.

Exercise 1: Consider a 3×3 matrix A which has two distinct eigenvalues Return to where you came from. λ_{1} (with $a_{\lambda_{1}}=2$) and λ_{2} (with $a_{\lambda_{2}}=1$) with corresponding eigenvectors Go to the solution. \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. If the vector $\boldsymbol{v}_{1}^{\prime}$ is given by

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}
$$

show that the vectors $\boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} are linearly independent.
Exercise 2: Consider a 3×3 matrix A which has one eigenvalue λ_{1} (i.e. Return to where you came from. $a_{\lambda_{1}}=3$) and corresponding linearly independent eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Go to the solution. If the vector $\boldsymbol{v}_{2}^{\prime} \neq \mathbf{0}$ is given by

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}
$$

where $\boldsymbol{v}_{3} \notin \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, show that $\boldsymbol{v}_{2}^{\prime}$ is in $\operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.

Solution to Exercise 1: We consider a 3×3 matrix A which has two distinct eigenvalues λ_{1} (with $a_{\lambda_{1}}=2$) and λ_{2} (with $a_{\lambda_{2}}=1$) with corresponding eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Given that the vector $\boldsymbol{v}_{1}^{\prime}$ is given by

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1}
$$

we want to show that the vectors $\boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} are linearly independent.
To show this, we note that

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{1}^{\prime}=\boldsymbol{v}_{1} \quad \Longrightarrow \quad \mathrm{~A} \boldsymbol{v}_{1}^{\prime}=\lambda_{1} \boldsymbol{v}_{1}^{\prime}+\boldsymbol{v}_{1}
$$

and we assume that the vectors $\boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} are linearly dependent, i.e. there is some non-zero scalar $\alpha \in \mathbb{R}$ such that $\boldsymbol{v}_{1}^{\prime}=\alpha \boldsymbol{v}_{2}$. If this was the case, we have
$\mathrm{A}\left(\alpha \boldsymbol{v}_{2}\right)=\lambda_{1}\left(\alpha \boldsymbol{v}_{2}\right)+\boldsymbol{v}_{1} \Longrightarrow \alpha \mathrm{~A} \boldsymbol{v}_{2}=\alpha \lambda_{1} \boldsymbol{v}_{2}+\boldsymbol{v}_{1} \Longrightarrow \alpha \lambda_{2} \boldsymbol{v}_{2}=\alpha \lambda_{1} \boldsymbol{v}_{2}+\boldsymbol{v}_{1}$, as \boldsymbol{v}_{2} is an eigenvector of A corresponding to the eigenvalue λ_{2}. Thus we have

$$
\boldsymbol{v}_{1}=\alpha\left(\lambda_{2}-\lambda_{1}\right) \boldsymbol{v}_{2}
$$

i.e. the vectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly dependent too. But, this contradicts the fact that the eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly independent. Consequently, the vectors $\boldsymbol{v}_{1}^{\prime}$ and \boldsymbol{v}_{2} must be linearly independent, as required.

Solution to Exercise 2: We consider a 3×3 matrix A with one eigenvalue λ_{1} (i.e. $a_{\lambda_{1}}=3$) and corresponding linearly independent eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Given that the vector $\boldsymbol{v}_{2}^{\prime} \neq \mathbf{0}$ is given by $\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}$, where $\boldsymbol{v}_{3} \notin \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, we want to show that $\boldsymbol{v}_{2}^{\prime}$ is in $\operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$.

To show this, we note that the set of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ is a basis of $\mathbb{R}^{3} \dagger$ and so we can write the vector $\boldsymbol{v}_{2}^{\prime} \in \mathbb{R}^{3}$ as

$$
\boldsymbol{v}_{2}^{\prime}=\sum_{i=1}^{3} \alpha_{i} \boldsymbol{v}_{i} \quad \Longrightarrow \quad \alpha_{3} \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime}-\sum_{i=1}^{2} \alpha_{i} \boldsymbol{v}_{i}
$$

for some scalars $\alpha_{1}, \alpha_{2}, \alpha_{3} \in \mathbb{R}$. Multiplying this by A yields

$$
\alpha_{3} \mathrm{~A} \boldsymbol{v}_{3}=\mathrm{A} \boldsymbol{v}_{2}^{\prime}-\sum_{i=1}^{2} \alpha_{i} \mathrm{~A} \boldsymbol{v}_{i}=\mathrm{A} \boldsymbol{v}_{2}^{\prime}-\sum_{i=1}^{2} \alpha_{i} \lambda_{1} \boldsymbol{v}_{i}=\mathrm{A} \boldsymbol{v}_{2}^{\prime}-\lambda_{1} \sum_{i=1}^{2} \alpha_{i} \boldsymbol{v}_{i}
$$

since \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are eigenvectors corresponding to the eigenvalue λ_{1}. But,

$$
\left(\mathrm{A}-\lambda_{1} \mathrm{I}_{3}\right) \boldsymbol{v}_{3}=\boldsymbol{v}_{2}^{\prime} \Longrightarrow \mathrm{A} \boldsymbol{v}_{3}=\lambda_{1} \boldsymbol{v}_{3}+\boldsymbol{v}_{2}^{\prime} \Longrightarrow \alpha_{3} \mathrm{~A} \boldsymbol{v}_{3}=\lambda_{1} \alpha_{3} \boldsymbol{v}_{3}+\alpha_{3} \boldsymbol{v}_{2}^{\prime}
$$

and so equating these two expressions for $\alpha_{3} \mathrm{~A} \boldsymbol{v}_{3}$ we get
$\mathrm{A} \boldsymbol{v}_{2}^{\prime}-\lambda_{1} \sum_{i=1}^{2} \alpha_{i} \boldsymbol{v}_{i}=\alpha_{3} \lambda_{1} \boldsymbol{v}_{3}+\alpha_{3} \boldsymbol{v}_{2}^{\prime} \Longrightarrow \mathrm{A} \boldsymbol{v}_{2}^{\prime}=\alpha_{3} \boldsymbol{v}_{2}^{\prime}+\lambda_{1} \sum_{i=1}^{3} \alpha_{i} \boldsymbol{v}_{i}=\left(\alpha_{3}+\lambda_{1}\right) \boldsymbol{v}_{2}^{\prime}$
Thus, α_{3} must be zero (or else, as $\boldsymbol{v}_{2}^{\prime} \neq \mathbf{0}$, we have another eigenvalue given by $\left.\alpha_{3}+\lambda_{1}\right)$ and so $\boldsymbol{v}_{2}^{\prime}=\alpha_{1} \boldsymbol{v}_{1}+\alpha_{2} \boldsymbol{v}_{2} \in \operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, as required.

Aside 4.5.12 As the eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2} are linearly independent, if we take a third vector $\boldsymbol{v}_{3} \notin$ $\operatorname{Lin}\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}$, we have three linearly independent vectors in \mathbb{R}^{3}.

