If a matrix is not diagonalisable, we say that it is *deficient*. But, as we shall now see, given a deficient matrix, say A, we can find an invertible matrix S, such that

$$\mathsf{S}^{-1}\mathsf{A}\mathsf{S}=\mathsf{J},$$

where the matrix J is *almost* diagonal. In particular, we are going to find a matrix S which yields the *Jordan Normal Form* (or JNF) of A, i.e.

$$\mathsf{J} = \begin{bmatrix} \lambda_1 & * & 0 & 0 & \cdots & 0 & 0 \\ 0 & \lambda_2 & * & 0 & \cdots & 0 & 0 \\ 0 & 0 & \lambda_3 & * & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \lambda_{n-1} & * \\ 0 & 0 & 0 & 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

where the entries are as follows

- along the diagonal of J, i.e. the elements $(J)_{i,i}$ for $1 \le i \le n$, we have the eigenvalues of A,
- along the 'upper off-diagonal', i.e. the elements $(\mathsf{J})_{i,i+1}$ for $1 \leq i \leq n-1$, we have the '*'s each of which is either a zero or a one,
- every other entry, i.e. $(\mathsf{J})_{i,j}$ for $1 \leq i,j \leq n$ with $j \neq i,i+1$, is zero.

Clearly, this is *almost* diagonal since this matrix would be diagonal if it wasn't for the fact that some (or all) of the '*'s could be a one.

Let's consider a 3×3 matrix A and see how this would work. We have the following cases:

- A has three distinct eigenvalues, in which case A is diagonalisable.
- A has two distinct eigenvalues, say λ_1 and λ_2 , where $a_{\lambda_1} = 2$. In this case, we could have
 - $g_{\lambda_1} = 2$, in which case A is diagonalisable.
 - g_{λ1} = 1, in which case A is not diagonalisable and we seek the JNF of A. Let's call this Case 1.
- A has one distinct eigenvalue, say λ_1 , where $a_{\lambda_1} = 3$. In this case, we could have
 - $g_{\lambda_1} = 3$, in which case A is diagonalisable.
 - g_{λ1} = 2, in which case A is not diagonalisable and we seek the JNF of A. Let's call this Case 2.
 - $g_{\lambda_1} = 1$, in which case A is not diagonalisable and we seek the JNF of A. Let's call this **Case 3**.

Note that if A is diagonalisable, then all the '*'s will be zero in the JNF. In the other cases we find that...

Case 1: A has two eigenvalues, say $\lambda_1 \neq \lambda_2$, where $a_{\lambda_1} = 2$ and $g_{\lambda_1} = 1$.

Let v_1 and v_2 be the eigenvectors corresponding to λ_1 and λ_2 respectively, i.e.[†]

$$A \boldsymbol{v}_1 = \lambda_1 \boldsymbol{v}_1$$
 and $A \boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_2$,

where v_1 and v_2 are linearly independent. We seek a vector v'_1 which is related to v_1 according to[†]

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) v_1' = v_1$$
, or rearranging, $\mathsf{A} v_1' = v_1 + \lambda_1 v_1'$.

We now construct an invertible matrix S with the vectors v_1 , v'_1 and v_2 as its columns so that $S^{-1}AS$ yields the JNF of A. That is, we want AS = SJwhere J has the form described above. But, since AS gives

$$A \underbrace{\begin{bmatrix} | & | & | \\ v_1 & v_1' & v_2 \\ | & | & | \end{bmatrix}}_{\mathsf{S}} = \begin{bmatrix} | & | & | \\ \mathsf{A}v_1 & \mathsf{A}v_1' & \mathsf{A}v_2 \\ | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ \lambda_1v_1 & v_1 + \lambda_1v_1' & \lambda_2v_2 \\ | & | & | \end{bmatrix}$$

we take J to be such that

$$\mathsf{SJ} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \boldsymbol{v}_1 & \boldsymbol{v}_1' & \boldsymbol{v}_2 \\ & & & \end{vmatrix}} \underbrace{\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{bmatrix}}_{\text{required JNF!}} = \begin{bmatrix} \begin{vmatrix} & & & & & & \\ \lambda_1 \boldsymbol{v}_1 & \boldsymbol{v}_1 + \lambda_1 \boldsymbol{v}_1' & \lambda_2 \boldsymbol{v}_2 \\ & & & & & \end{vmatrix}$$

Aside 4.5.1 This means that v_1 is in the null space of $A - \lambda_1 I_3$. Notice that v_1 and v_2 are linearly independent since they are eigenvectors corresponding to distinct eigenvalues.

Aside 4.5.2 This means that v'_1 is not in the null space of $A - \lambda_1 I_3$ since

$$\mathsf{A} - \lambda_1 \mathsf{I}_3) \boldsymbol{v}_1' = \boldsymbol{v}_1 \neq \boldsymbol{0}.$$

As such, v_1 and v'_1 are linearly independent. We can also see that v'_1 and v_2 are linearly independent. (Why? See Exercise 1.) Thus we can guarantee the invertibility of the matrix S we are constructing.

Case 2: A has one eigenvalue, say λ_1 , where $a_{\lambda_1} = 3$ and $g_{\lambda_1} = 2$. Let v_1 and v_2 be the eigenvectors corresponding to λ_1 , i.e.

$$A \boldsymbol{v}_1 = \lambda_1 \boldsymbol{v}_1$$
 and $A \boldsymbol{v}_2 = \lambda_1 \boldsymbol{v}_2$,

where v_1 and v_2 are linearly independent. We take a vector $v_3 \notin \text{Lin}\{v_1, v_2\}$ and then find a vector, say v'_2 , such that[†]

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \mathbf{v}_3 = \mathbf{v}_2', \text{ or rearranging, } \mathsf{A} \mathbf{v}_3 = \mathbf{v}_2' + \lambda_1 \mathbf{v}_3.$$

We now construct an invertible matrix S with the vectors v_i (where we take v_i to be whichever of v_1 or v_2 is linearly independent of v'_2), v'_2 and v_3 as its columns[†] so that S⁻¹AS yields the JNF of A. That is, we want AS = SJ where J has the form described above. But, since AS gives

$$A \underbrace{\begin{bmatrix} | & | & | \\ \boldsymbol{v}_i & \boldsymbol{v}_2' & \boldsymbol{v}_3 \\ | & | & | \end{bmatrix}}_{\mathsf{S}} = \begin{bmatrix} | & | & | \\ \mathsf{A}\boldsymbol{v}_i & \mathsf{A}\boldsymbol{v}_2' & \mathsf{A}\boldsymbol{v}_3 \\ | & | & | \end{bmatrix}}_{\mathsf{S}} = \begin{bmatrix} | & | & | & | \\ \lambda_1\boldsymbol{v}_i & \lambda_1\boldsymbol{v}_2' & \boldsymbol{v}_2' + \lambda_1\boldsymbol{v}_3 \\ | & | & | & | \end{bmatrix}}$$

and so, we take J to be such that

$$\mathsf{SJ} = \begin{bmatrix} \begin{vmatrix} & & & \\ \mathbf{v}_i & \mathbf{v}_2' & \mathbf{v}_3 \\ & & & \end{vmatrix}} \underbrace{\begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{bmatrix}}_{\text{required JNF!}} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \lambda_1 \mathbf{v}_i & \lambda_1 \mathbf{v}_2' & \mathbf{v}_2' + \lambda_1 \mathbf{v}_3 \\ & & & \end{vmatrix}$$

Aside 4.5.3 This means that v_1 and v_2 form a basis for the null space of $A - \lambda_1 I_3$.

Aside 4.5.4 Notice that the vector v'_2 cannot be **0** as that would mean $v_3 \in \text{Lin}\{v_1, v_2\}!$ However, v'_2 will be in $\text{Lin}\{v_1, v_2\}$, i.e. it is also an eigenvector of A corresponding to the eigenvalue λ_1 . (Why? See Exercise 2.)

Aside 4.5.5 As $v_3 \notin \text{Lin}\{v_1, v_2\}$, we can see that v_i , v'_2 and v_3 are linearly independent. This is what guarantees the invertibility of the matrix S we are constructing.

Go to Example 2

Case 3: A has one eigenvalue, say λ_1 , where $a_{\lambda_1} = 3$ and $g_{\lambda_1} = 1$. Let v_1 be the eigenvectors corresponding to λ_1 , i.e.[†]

$$\mathsf{A}oldsymbol{v}_1 = \lambda_1oldsymbol{v}_1$$

We seek a vector v_1' which is related to v_1 according to[†]

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \boldsymbol{v}_1' = \boldsymbol{v}_1, \text{ or rearranging, } \mathsf{A} \boldsymbol{v}_1' = \boldsymbol{v}_1 + \lambda_1 \boldsymbol{v}_1',$$

and a vector v_1'' which is related to v_1' according to[†]

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \boldsymbol{v}_1'' = \boldsymbol{v}_1', \text{ or rearranging, } \mathsf{A} \boldsymbol{v}_1'' = \boldsymbol{v}_1' + \lambda_1 \boldsymbol{v}_1''$$

We now construct an invertible matrix S with the vectors v_1 , v'_1 and v''_1 as its columns so that $S^{-1}AS$ yields the JNF of A. That is, we want AS = SJwhere J has the form described above. But, since AS gives

$$A\underbrace{\begin{bmatrix} \begin{vmatrix} & & & & \\ v_1 & v_1' & v_1'' \\ & & & \end{vmatrix}}_{\mathsf{S}} = \begin{bmatrix} \begin{vmatrix} & & & & & \\ \mathsf{A}v_1 & \mathsf{A}v_1' & \mathsf{A}v_1'' \\ & & & & \end{vmatrix}}_{\mathsf{S}} = \begin{bmatrix} \begin{vmatrix} & & & & & & \\ \mathsf{A}v_1 & \mathsf{A}v_1' & \mathsf{A}v_1'' \\ & & & & \end{vmatrix}}_{\mathsf{S}} = \begin{bmatrix} \begin{vmatrix} & & & & & & \\ \mathsf{A}v_1 & \mathsf{A}v_1' & \mathsf{A}v_1'' \\ & & & & & \end{vmatrix}}_{\mathsf{S}}$$

we take J to be such that

$$\mathsf{SJ} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \boldsymbol{v}_1 & \boldsymbol{v}_1' & \boldsymbol{v}_1'' \\ & & & \end{vmatrix} \underbrace{\begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_1 & 1 \\ 0 & 0 & \lambda_1 \end{bmatrix}}_{\text{required JNF!}} = \begin{bmatrix} \begin{vmatrix} & & & & & & \\ \lambda_1 \boldsymbol{v}_1 & \boldsymbol{v}_1 + \lambda_1 \boldsymbol{v}_1' & \boldsymbol{v}_1' + \lambda_1 \boldsymbol{v}_1'' \\ & & & & \end{vmatrix}$$

Aside 4.5.6 This means that v_1 is in the null space of $A - \lambda_1 I_3$.

Aside 4.5.7 This means that v'_1 is not in the null space of $A - \lambda_1 I_3$ as $v_1 \neq 0$. As such, v_1 and v'_1 are linearly independent. But, notice that v''_1 is in the null space of $(A - \lambda_1 I_3)^2$ as

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3)^2 v_1' = (\mathsf{A} - \lambda_1 \mathsf{I}_3) v_1 = \mathbf{0},$$

since v_1 is in the null space of $A - \lambda_1 I_3$. **Aside 4.5.8** This means that v''_1 is not in the null space of $A - \lambda_1 I_3$ as $v_1 \neq 0$. Also, as

$$(\mathsf{A}-\lambda_1\mathsf{I}_3)^2 v_1'' = (\mathsf{A}-\lambda_1\mathsf{I}_3)v_1' = v_1 \neq \mathbf{0},$$

 v_1'' is not in the null space of $(A - \lambda_1 I_3)^2$. As such, v_1 , v_1' and v_1'' are linearly independent. This is what guarantees the invertibility of the matrix **S** we are constructing.

Go to Example 3

For example: To see how Case 1 works, consider the matrix

$$\mathsf{A} = \begin{bmatrix} 0 & 4 & 4 \\ 1 & 0 & -3 \\ -2 & 4 & 7 \end{bmatrix}$$

which has two eigenvalues $\lambda_1 = 2$ (with $a_2 = 2$) and $\lambda_2 = 3$ (with $a_3 = 1$) and corresponding linearly independent eigenvectors $\mathbf{v}_1 = [2, 1, 0]^t$ (i.e. $g_2 = 1$) and $\mathbf{v}_2 = [0, -1, 1]^t$ (i.e. $g_3 = 1$) respectively. Following the method above, we seek a vector \mathbf{v}'_1 such that $(\mathsf{A} - 2\mathsf{I}_3)\mathbf{v}'_1 = \mathbf{v}_1$. The easiest way to find such a vector is to find the components x, y and z of \mathbf{v}'_1 by solving the matrix equation

$$\begin{bmatrix} -2 & 4 & 4\\ 1 & -2 & -3\\ -2 & 4 & 5 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix} \implies x \begin{bmatrix} -2\\ 1\\ -2 \end{bmatrix} + y \begin{bmatrix} 4\\ -2\\ 4 \end{bmatrix} + z \begin{bmatrix} 4\\ -3\\ 5 \end{bmatrix} = \begin{bmatrix} 2\\ 1\\ 0 \end{bmatrix}$$

which, by inspection, has $v'_1 = [x, y, z]^t = [-5, 0, -2]^t$ as a solution.[†] Thus, we take our invertible matrix, S, and its associated JNF, J, to be

$$\mathsf{S} = \begin{bmatrix} 2 & -5 & 0 \\ 1 & 0 & -1 \\ 0 & -2 & 1 \end{bmatrix} \quad \text{and} \quad \mathsf{J} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

as you can verify by checking that AS = SJ.

Aside 4.5.9 There are other solutions since the three column vectors in the matrix $(A - 2I_3)$ are linearly dependent.

For example: To see how Case 2 works, consider the matrix

$$\mathsf{A} = \begin{bmatrix} -2 & 1 & 1\\ 1 & -2 & -1\\ -2 & 2 & 1 \end{bmatrix}$$

which has linearly independent eigenvectors $\boldsymbol{v}_1 = [1, 1, 0]^t$ and $\boldsymbol{v}_2 = [1, 0, 1]^t$ corresponding to its sole eigenvalue of -1 (i.e. here $a_{-1} = 3$ and $g_{-1} = 2$). Following the method above, We take a vector \boldsymbol{v}_3 , say $[0, 0, 1]^t$, which is not in $\text{Lin}\{[1, 1, 0]^t, [1, 0, 1]^t\}$ and find a vector \boldsymbol{v}_2' such that $(\mathsf{A} + \mathsf{I}_3)\boldsymbol{v}_3 = \boldsymbol{v}_2'$, i.e.

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -1 & -1 \\ -2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix},$$

Thus, we take our invertible matrix, S, and its associated JNF, J, to be

$$\mathsf{S} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \quad \text{and} \quad \mathsf{J} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

as you can verify by checking that AS = SJ.

For example: To see how Case 3 works, consider the matrix

$$\mathsf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & -3 \\ 0 & 1 & 3 \end{bmatrix}$$

which has one linearly independent eigenvector $\boldsymbol{v}_1 = [1, -2, 1]^t$ corresponding to its sole eigenvalue $\lambda_1 = 1$ (i.e. here $a_1 = 3$ and $g_1 = 1$). We seek a vector $\boldsymbol{v}'_1 = [x, y, z]^t$ such that $(\mathsf{A} - \mathsf{I}_3)\boldsymbol{v}'_1 = \boldsymbol{v}_1$, i.e.

$$\begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & -3\\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix} \implies x \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} + y \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} + z \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix} = \begin{bmatrix} 1\\ -2\\ 1 \end{bmatrix}$$

which, by inspection, has $v'_1 = [x, y, z]^t = [-1, 1, 0]^t$ as a solution.[†] We then seek a vector $v''_1 = [x, y, z]^t$ such that $(\mathsf{A} - \mathsf{I}_3)v''_1 = v'_1$ such that

$$\begin{bmatrix} -1 & 0 & 1\\ 1 & -1 & -3\\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} \implies x \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix} + y \begin{bmatrix} 0\\ -1\\ 1 \end{bmatrix} + z \begin{bmatrix} 1\\ -3\\ 2 \end{bmatrix} = \begin{bmatrix} -1\\ 1\\ 0 \end{bmatrix}$$

which, by inspection, has $v_1'' = [x, y, z]^t = [1, 0, 0]^t$ as a solution.[†] Thus, we take our invertible matrix, S, and its associated JNF, J, to be

$$\mathsf{S} = \begin{bmatrix} 1 & -1 & 1 \\ -2 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \quad \text{and} \quad \mathsf{J} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

as you can verify by checking that AS = SJ.

Aside 4.5.11 There are other solutions since the three column vectors in the matrix $(A - I_3)$ are linearly dependent.

Exercise 1: Consider a 3×3 matrix A which has two distinct eigenvalues λ_1 (with $a_{\lambda_1} = 2$) and λ_2 (with $a_{\lambda_2} = 1$) with corresponding eigenvectors \boldsymbol{v}_1 and \boldsymbol{v}_2 . If the vector \boldsymbol{v}'_1 is given by

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \boldsymbol{v}_1' = \boldsymbol{v}_1$$

show that the vectors v'_1 and v_2 are linearly independent.

Exercise 2: Consider a 3×3 matrix A which has one eigenvalue λ_1 (i.e. Return to where you came from. $a_{\lambda_1} = 3$) and corresponding linearly independent eigenvectors v_1 and v_2 . Go to the solution. If the vector $v'_2 \neq 0$ is given by

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \mathbf{v}_3 = \mathbf{v}_2',$$

where $v_3 \notin \operatorname{Lin}\{v_1, v_2\}$, show that v'_2 is in $\operatorname{Lin}\{v_1, v_2\}$.

Return to where you came from. Go to the solution. Solution to Exercise 1: We consider a 3×3 matrix A which has two distinct eigenvalues λ_1 (with $a_{\lambda_1} = 2$) and λ_2 (with $a_{\lambda_2} = 1$) with corresponding eigenvectors v_1 and v_2 . Given that the vector v'_1 is given by

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \boldsymbol{v}_1' = \boldsymbol{v}_1$$

we want to show that the vectors v_1' and v_2 are linearly independent.

To show this, we note that

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) v_1' = v_1 \implies \mathsf{A} v_1' = \lambda_1 v_1' + v_1,$$

and we assume that the vectors v'_1 and v_2 are linearly dependent, i.e. there is some non-zero scalar $\alpha \in \mathbb{R}$ such that $v'_1 = \alpha v_2$. If this was the case, we have

$$\mathsf{A}(\alpha \boldsymbol{v}_2) = \lambda_1(\alpha \boldsymbol{v}_2) + \boldsymbol{v}_1 \implies \alpha \mathsf{A} \boldsymbol{v}_2 = \alpha \lambda_1 \boldsymbol{v}_2 + \boldsymbol{v}_1 \implies \alpha \lambda_2 \boldsymbol{v}_2 = \alpha \lambda_1 \boldsymbol{v}_2 + \boldsymbol{v}_1,$$

as v_2 is an eigenvector of A corresponding to the eigenvalue λ_2 . Thus we have

$$\boldsymbol{v}_1 = \alpha(\lambda_2 - \lambda_1)\boldsymbol{v}_2,$$

i.e. the vectors v_1 and v_2 are linearly dependent too. But, this contradicts the fact that the eigenvectors v_1 and v_2 are linearly independent. Consequently, the vectors v'_1 and v_2 must be linearly independent, as required.

Solution to Exercise 2: We consider a 3×3 matrix A with one eigenvalue λ_1 (i.e. $a_{\lambda_1} = 3$) and corresponding linearly independent eigenvectors v_1 and v_2 . Given that the vector $v'_2 \neq 0$ is given by $(A - \lambda_1 I_3)v_3 = v'_2$, where $v_3 \notin \text{Lin}\{v_1, v_2\}$, we want to show that v'_2 is in $\text{Lin}\{v_1, v_2\}$.

To show this, we note that the set of vectors $\{v_1, v_2, v_3\}$ is a basis of \mathbb{R}^3 † and so we can write the vector $v'_2 \in \mathbb{R}^3$ as

$$v_2' = \sum_{i=1}^3 \alpha_i v_i \implies \alpha_3 v_3 = v_2' - \sum_{i=1}^2 \alpha_i v_i,$$

for some scalars $\alpha_1, \alpha_2, \alpha_3 \in \mathbb{R}$. Multiplying this by A yields

$$\alpha_3 \mathbf{A} \mathbf{v}_3 = \mathbf{A} \mathbf{v}_2' - \sum_{i=1}^2 \alpha_i \mathbf{A} \mathbf{v}_i = \mathbf{A} \mathbf{v}_2' - \sum_{i=1}^2 \alpha_i \lambda_1 \mathbf{v}_i = \mathbf{A} \mathbf{v}_2' - \lambda_1 \sum_{i=1}^2 \alpha_i \mathbf{v}_i,$$

since v_1 and v_2 are eigenvectors corresponding to the eigenvalue λ_1 . But,

$$(\mathsf{A} - \lambda_1 \mathsf{I}_3) \mathbf{v}_3 = \mathbf{v}_2' \implies \mathsf{A} \mathbf{v}_3 = \lambda_1 \mathbf{v}_3 + \mathbf{v}_2' \implies \alpha_3 \mathsf{A} \mathbf{v}_3 = \lambda_1 \alpha_3 \mathbf{v}_3 + \alpha_3 \mathbf{v}_2',$$

and so equating these two expressions for $\alpha_3 A v_3$ we get

$$\mathsf{A}\mathbf{v}_{2}^{\prime}-\lambda_{1}\sum_{i=1}^{2}\alpha_{i}\mathbf{v}_{i}=\alpha_{3}\lambda_{1}\mathbf{v}_{3}+\alpha_{3}\mathbf{v}_{2}^{\prime}\implies\mathsf{A}\mathbf{v}_{2}^{\prime}=\alpha_{3}\mathbf{v}_{2}^{\prime}+\lambda_{1}\sum_{i=1}^{3}\alpha_{i}\mathbf{v}_{i}=(\alpha_{3}+\lambda_{1})\mathbf{v}_{2}^{\prime}$$

Thus, α_3 must be zero (or else, as $v'_2 \neq 0$, we have *another* eigenvalue given by $\alpha_3 + \lambda_1$) and so $v'_2 = \alpha_1 v_1 + \alpha_2 v_2 \in \text{Lin}\{v_1, v_2\}$, as required. Aside 4.5.12 As the eigenvectors v_1 and v_2 are linearly independent, if we take a third vector $v_3 \notin \text{Lin}\{v_1, v_2\}$, we have three linearly independent vectors in \mathbb{R}^3 .