If a matrix is not diagonalisable, we say that it is deficient. But, as
we shall now see, given a deficient matrix, say A, we can find an invertible
matrix S, such that

S7IAS = J,

where the matrix J is almost diagonal. In particular, we are going to find
a matrix S which yields the Jordan Normal Form (or JNF) of A, i.e.

AL % 0 0 - 0 0]
0 A * 0 =~ 0 0
0 0 X3 # =~ 0 0
J=1. . . . . : .
0 0 0 0 A1 *
0 0 0 0 0 An.

where the entries are as follows

e along the diagonal of J, i.e. the elements (J);; for 1 <1i < n, we have
the eigenvalues of A,

e along the ‘upper off-diagonal’, i.e. the elements (J); ;41 for 1 <i <
n — 1, we have the ‘x’s each of which is either a zero or a one,

e every other entry, i.e. (J);; for 1 <4, j <n with j #¢,i 4+ 1, is zero.

Clearly, this is almost diagonal since this matrix would be diagonal if it
wasn’t for the fact that some (or all) of the ‘*’s could be a one.



Let’s consider a 3 x 3 matrix A and see how this would work. We have
the following cases:

e A has three distinct eigenvalues, in which case A is diagonalisable.

e A has two distinct eigenvalues, say A1 and A2, where ay, = 2. In this
case, we could have
® g\, = 2, in which case A is diagonalisable.
® g\, = 1, in which case A is not diagonalisable and we seek the

JNF of A. Let’s call this Case 1.

e A has one distinct eigenvalue, say A1, where ay, = 3. In this case, we
could have
® g\, = 3, in which case A is diagonalisable.

® g\, = 2, in which case A is not diagonalisable and we seek the
JNF of A. Let’s call this Case 2.

e g\, = 1, in which case A is not diagonalisable and we seek the
JNF of A. Let’s call this Case 3.

Note that if A is diagonalisable, then all the ‘x’s will be zero in the JNF.
In the other cases we find that...



Case 1: A has two eigenvalues, say A\ # A2, where ay, = 2 and gy, = 1.
Let v; and v2 be the eigenvectors corresponding to A\; and Ao respec-

tively, i.e.}

Avy = Ao,

Avy =\ and

where v; and vy are linearly independent. We seek a vector v; which is
related to v; according tof

(A — M\l3)v] = vy, or rearranging, Awv] = v; + \jv].

We now construct an invertible matrix S with the vectors v, v{ and vs as
its columns so that S™'AS yields the JNF of A. That is, we want AS = SJ
where J has the form described above. But, since AS gives

Alvy, v w| = [Av Av] Avy| = | Ao v+ Ay Aow
U T A A | | |
S
we take J to be such that
A T B T PSR B | | |
Sl=|v1 v v 0 N 0] =[Mvy v+ MY Aoy
I N R ORI A | |

requir(;l JNF'!

Aside 4.5.1 This means that v is
in the null space of A — A\ils. Notice
that v; and wv2 are linearly indepen-
dent since they are eigenvectors cor-
responding to distinct eigenvalues.

Aside 4.5.2 This means that v is
not in the null space of A — A\il3 since

(A — )\1'3)’0{ ="M 75 0.

As such, v; and v] are linearly inde-
pendent. We can also see that v; and
vy are linearly independent. (Why?
See Exercise 1.) Thus we can guaran-
tee the invertibility of the matrix S we
are constructing.

Go to Example 1



Case 2: A has one eigenvalue, say A1, where a), =3 and g\, = 2. {
Let v; and vy be the eigenvectors corresponding to Ay, i.e.

A’l)1 = )\1’01 and A’UQ = )\1’1)2,

where v; and v, are linearly independent. We take a vector v3 & Lin{v, va}
and then find a vector, say vj, such thatt

(A — Al3)vs3 = v, or rearranging, Awvs = v} + A\ v3.

We now construct an invertible matrix S with the vectors v; (where we
take v; to be whichever of v; or vy is linearly independent of vj), v5 and
v3 as its columnst so that ST'AS yields the JNF of A. That is, we want
AS = SJ where J has the form described above. But, since AS gives

Alv, v v3| = |Avy;, Av) Avs| = | My Aoy v+ Mg
R ] |
S
and so, we take J to be such that
e 00 ] |
Sl=|v; v} ws 0 A 1| =[Ny, Mv) v+ A\vs
J Y B N R AP YT F N B |

requireti JNF!

Aside 4.5.3 This means that v
and v form a basis for the null space
Of A — >\1|3.

Aside 4.5.4 Notice that the vec-
tor v4 cannot be 0 as that would mean
v3 € Lin{v1, v2}! However, vy will be
in Lin{wv, v2}, i.e. it is also an eigen-
vector of A corresponding to the eigen-
value A\i1. (Why? See Exercise 2.)

Aside 4.5.5 As V3 € Lin{vl,vg},
we can see that v;, v5 and vz are lin-
early independent. This is what guar-
antees the invertibility of the matrix
S we are constructing.

Go to Example 2



Case 3: A has one eigenvalue, say A1, where ay, = 3 and g), = 1.
Let v; be the eigenvectors corresponding to Ay, i.e.t

Av; = \jvy,
We seek a vector v; which is related to v according tof
(A — \l3)v] = vy,
and a vector v; which is related to v according tot
(A — Al3)v] = vy,

We now construct an invertible matrix S with the vectors v;, v{ and v{ as
its columns so that S™'AS yields the JNF of A. That is, we want AS = SJ
where J has the form described above. But, since AS gives

or rearranging, Awv; = v; + A\ vy,

or rearranging, Awv; = v{ + A\ vy .

Alv v vof| =[Av Av] Av/| = | Mo v+ v] v + Ao
I N . | | |
S
we take J to be such that
e o | |
Sl=|v v /| |0 XA 1|=|[Mvy v+ v v + N\
N U . | |

requirga JNF!

Aside 4.5.6 This means that v; is
in the null space of A — \1ls.

Aside 4.5.7 This means that v is
not in the null space of A — A1l as
v; # 0. Assuch, v; and v{ are linearly
independent. But, notice that v{ is in
the null space of (A — A\1l3)? as

(A = Ail3)%v] = (A= Ail3)v = 0,

since v is in the null space of A— A1 ls.

Aside 4.5.8 This means that v{ is
not in the null space of A — A1l as
v1 # 0. Also, as

(A=X113)° 0] = (A=X1l3)vy = vy #0,

v’ is not in the null space of (A —
A1l3)%. As such, vi, v{ and v{" are lin-
early independent. This is what guar-
antees the invertibility of the matrix
S we are constructing.

Go to Example 3



For example: To see how Case 1 works, consider the matrix

0 4 4
A=11 0 -3
-2 4 7

which has two eigenvalues A\ = 2 (with ao = 2) and A2 = 3 (with a3 = 1)
and corresponding linearly independent eigenvectors v; = [2,1,0]" (i.e.
go = 1) and v = [0,—1,1]% (i.e. g3 = 1) respectively. Following the
method above, we seek a vector v{ such that (A —2l3)v] = v;. The easiest
way to find such a vector is to find the components x, y and z of v{ by
solving the matrix equation

-2 4 4 T 2 —2 4 4 2

1 =2 =3 |yl =11 — x| 1| +y|-2|+2z|-3| =|1

-2 4 5 z 0 —2 4 5) 0
which, by inspection, has v{ = [z, v, 2]' = [-5,0, —2]* as a solution.t Thus,

we take our invertible matrix, S, and its associated JNF, J, to be

2 =5 0 2 10
S=1(1 0 -1 and J= (0 2 O
0 -2 1 0 0 3

as you can verify by checking that AS = SJ. )

Aside 4.5.9 There are other solu-
tions since the three column vectors
in the matrix (A —2l3) are linearly de-
pendent.



For example: To see how Case 2 works, consider the matrix

-2 1 1
A=|1 -2 -1
-2 2 1

which has linearly independent eigenvectors v; = [1,1,0]" and v = [1,0, 1]
corresponding to its sole eigenvalue of —1 (i.e. here a_; = 3 and g_;1 = 2).
Following the method above, We take a vector w3, say [0,0,1]*, which is
not in Lin{[1, 1,0]*, [1,0,1]*} and find a vector v} such that (A+I3)v3 = vJ,

1 1 1770 1
1 -1 —1| |o| = |-1],
2 2 2|1 2

Thus, we take our invertible matrix, S, and its associated JNF, J, to be

1 1 0 -1 0 0
S=1|1 -1 0 and J=[0 -1 1
0 2 1 0O 0 -1

as you can verify by checking that AS = SJ. )



For example: To see how Case 3 works, consider the matrix

0 0 1
A=11 0 -3
01 3

which has one linearly independent eigenvector v; = [1, —2, 1]* correspond-
ing to its sole eigenvalue A\; = 1 (i.e. here a; = 3 and g; = 1). We seek a
vector v{ = [z,y, 2] such that (A —I3)v] = vy, i.e.

—1 0 1 T 1 —1 0 1 1

1 =1 =3 |yl =]-2 — x| 1 |+y|-1|+2z|-3| =|-2

0 1 2 z 1 0 1 2 1
which, by inspection, has v{ = [z,y,2|' = [~1,1,0]" as a solution. We
then seek a vector v] = [z,y, z|* such that (A — I3)v = v{ such that

-1 0 1 T —1 —1 0 1 —1

1 =1 =3 [y =1|1 — x| 1 |4y |—-1|4+2z|-3| =]1

0 1 2 z 0 0 1 2 0

which, by inspection, has v{ = [z,y, 2] = [1,0,0]" as a solution.t Thus, we
take our invertible matrix, S, and its associated JNF, J, to be

1 -1 1 1 1 0
S=1(-2 1 0 and J=1(0 1 1
1 0 O 0 0 1

as yvou can verify by checking that AS = SJ. &

Aside 4.5.10 There are other so-
lutions since the three column vectors
in the matrix (A — I3) are linearly de-
pendent.

Aside 4.5.11 There are other so-
lutions since the three column vectors
in the matrix (A — I3) are linearly de-
pendent.



Exercise 1: Consider a 3 X 3 matrix A which has two distinct eigenvalues
A1 (with ay, = 2) and Ao (with a), = 1) with corresponding eigenvectors
v; and vo. If the vector vy is given by

(A — /\1|3)’U{ = 1,

show that the vectors v; and vy are linearly independent.

Exercise 2: Consider a 3 x 3 matrix A which has one eigenvalue \; (i.e.
ay, = 3) and corresponding linearly independent eigenvectors v; and wvs.
If the vector v} # 0 is given by

(A — )\1|3)’Ug = ’Ué,

where v3 ¢ Lin{wv;, v2}, show that v} is in Lin{v;, v2}.

Return to where you came from.
Go to the solution.

Return to where you came from.
Go to the solution.



Solution to Exercise 1: We consider a 3 X 3 matrix A which has two
distinct eigenvalues \; (with ay, = 2) and Ay (with a), = 1) with corre-
sponding eigenvectors v, and ve. Given that the vector v{ is given by

(A — /\1|3)’U{ = 1,

we want to show that the vectors v{ and v, are linearly independent.

To show this, we note that
(A—)\1|3)’U{ =1 = A’U{ :)\11){+vl,

and we assume that the vectors v; and vy are linearly dependent, i.e. there
is some non-zero scalar o € R such that v{ = awe. If this was the case, we
have

A(Oé’vg) = )\1(041)2)—|—’l)1 — aAvy = a1+ V] = algvy = a\jvy+ vy,

as v is an eigenvector of A corresponding to the eigenvalue Ao. Thus we
have
V1 = Oé()\z — )\1)’02,

i.e. the vectors v; and v, are linearly dependent too. But, this contradicts
the fact that the eigenvectors v; and vy are linearly independent. Conse-
quently, the vectors v; and vo must be linearly independent, as required. #



Solution to Exercise 2: We consider a 3 x 3 matrix A with one eigenvalue
A1 (i.e. ay, = 3) and corresponding linearly independent eigenvectors v;
and vy. Given that the vector v} # 0 is given by (A — A\il3)vs3 = v}, where
vs & Lin{v;, v2}, we want to show that v} is in Lin{wv;, vo}.

To show this, we note that the set of vectors {v;, vo, v3} is a basis of R? {

and so we can write the vector v5 € R3 as )
Aside 4.5.12 As the eigenvectors

3 2 v; and w2 are linearly independent,
fvé — E o V; — Q3V3 = ’vé — g QL V5, if we take a third vector wvs ¢
i—1 i—1 Lin{wv;, v2}, we have three linearly in-

dependent vectors in R®.

for some scalars a1, as, ag € R. Multiplying this by A yields

2 2 2
Oé3A’03 = A’Ué — E OéiA’Ui = A’Ué — E ai>\1’vz- = A’Ué — )\1 E a,;;,

since v; and vy are eigenvectors corresponding to the eigenvalue A;. But,
<A — )\1|3)’l)3 = ’Ué — Avy = \jv3 + ’Ué — a3Av3 = \jagvs + Oég’vé,

and so equating these two expressions for asAvs we get

2 3
/ / / / /
A’UQ—)\l E ;U = 043>\1’U3—+—Oz3’l)2 — A'v2 = 053’02—|—>\1 E oV = (043—|—>\1)’U2.

Thus, as must be zero (or else, as v) # 0, we have another eigenvalue given
by as + A1) and so v) = ajv; + agvy € Lin{v, v2}, as required. l



