
If a matrix is not diagonalisable, we say that it is deficient. But, as
we shall now see, given a deficient matrix, say A, we can find an invertible
matrix S, such that

S−1AS = J,

where the matrix J is almost diagonal. In particular, we are going to find
a matrix S which yields the Jordan Normal Form (or JNF) of A, i.e.

J =



λ1 ∗ 0 0 · · · 0 0
0 λ2 ∗ 0 · · · 0 0
0 0 λ3 ∗ · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · λn−1 ∗
0 0 0 0 · · · 0 λn


where the entries are as follows

• along the diagonal of J, i.e. the elements (J)i,i for 1 ≤ i ≤ n, we have
the eigenvalues of A,

• along the ‘upper off-diagonal’, i.e. the elements (J)i,i+1 for 1 ≤ i ≤
n− 1, we have the ‘∗’s each of which is either a zero or a one,

• every other entry, i.e. (J)i,j for 1 ≤ i, j ≤ n with j 6= i, i + 1, is zero.

Clearly, this is almost diagonal since this matrix would be diagonal if it
wasn’t for the fact that some (or all) of the ‘∗’s could be a one.



Let’s consider a 3× 3 matrix A and see how this would work. We have
the following cases:

• A has three distinct eigenvalues, in which case A is diagonalisable.

• A has two distinct eigenvalues, say λ1 and λ2, where aλ1 = 2. In this
case, we could have

• gλ1 = 2, in which case A is diagonalisable.

• gλ1 = 1, in which case A is not diagonalisable and we seek the
JNF of A. Let’s call this Case 1.

• A has one distinct eigenvalue, say λ1, where aλ1 = 3. In this case, we
could have

• gλ1 = 3, in which case A is diagonalisable.

• gλ1 = 2, in which case A is not diagonalisable and we seek the
JNF of A. Let’s call this Case 2.

• gλ1 = 1, in which case A is not diagonalisable and we seek the
JNF of A. Let’s call this Case 3.

Note that if A is diagonalisable, then all the ‘∗’s will be zero in the JNF.
In the other cases we find that...



Case 1: A has two eigenvalues, say λ1 6= λ2, where aλ1 = 2 and gλ1 = 1.
Let v1 and v2 be the eigenvectors corresponding to λ1 and λ2 respec-

tively, i.e.†
Aside 4.5.1 This means that v1 is
in the null space of A − λ1I3. Notice
that v1 and v2 are linearly indepen-
dent since they are eigenvectors cor-
responding to distinct eigenvalues.

Av1 = λ1v1 and Av2 = λ2v2,

where v1 and v2 are linearly independent. We seek a vector v ′
1 which is

related to v1 according to†

Aside 4.5.2 This means that v ′
1 is

not in the null space of A− λ1I3 since

(A− λ1I3)v
′
1 = v1 6= 0.

As such, v1 and v ′
1 are linearly inde-

pendent. We can also see that v ′
1 and

v2 are linearly independent. (Why?
See Exercise 1.) Thus we can guaran-
tee the invertibility of the matrix S we
are constructing.

(A− λ1I3)v ′
1 = v1, or rearranging, Av ′

1 = v1 + λ1v
′
1.

We now construct an invertible matrix S with the vectors v1, v ′
1 and v2 as

its columns so that S−1AS yields the JNF of A. That is, we want AS = SJ
where J has the form described above. But, since AS gives

A

v1 v ′
1 v2


︸ ︷︷ ︸

S

=

Av1 Av ′
1 Av2

 =

λ1v1 v1 + λ1v
′
1 λ2v2



we take J to be such that

SJ =

v1 v ′
1 v2

λ1 1 0
0 λ1 0
0 0 λ2


︸ ︷︷ ︸
required JNF!

=

λ1v1 v1 + λ1v
′
1 λ2v2


Go to Example 1



Case 2: A has one eigenvalue, say λ1, where aλ1 = 3 and gλ1 = 2. †
Aside 4.5.3 This means that v1

and v2 form a basis for the null space
of A− λ1I3.

Let v1 and v2 be the eigenvectors corresponding to λ1, i.e.

Av1 = λ1v1 and Av2 = λ1v2,

where v1 and v2 are linearly independent. We take a vector v3 6∈ Lin{v1, v2}
and then find a vector, say v ′

2, such that†
Aside 4.5.4 Notice that the vec-
tor v ′

2 cannot be 0 as that would mean
v3 ∈ Lin{v1, v2}! However, v ′

2 will be
in Lin{v1, v2}, i.e. it is also an eigen-
vector of A corresponding to the eigen-
value λ1. (Why? See Exercise 2.)

(A− λ1I3)v3 = v ′
2, or rearranging, Av3 = v ′

2 + λ1v3.

We now construct an invertible matrix S with the vectors vi (where we
take vi to be whichever of v1 or v2 is linearly independent of v ′

2), v ′
2 and

v3 as its columns† so that S−1AS yields the JNF of A. That is, we want
Aside 4.5.5 As v3 6∈ Lin{v1, v2},
we can see that vi, v ′

2 and v3 are lin-
early independent. This is what guar-
antees the invertibility of the matrix
S we are constructing.

AS = SJ where J has the form described above. But, since AS gives

A

vi v ′
2 v3


︸ ︷︷ ︸

S

=

Avi Av ′
2 Av3

 =

λ1vi λ1v
′
2 v ′

2 + λ1v3



and so, we take J to be such that

SJ =

vi v ′
2 v3

λ1 0 0
0 λ1 1
0 0 λ1


︸ ︷︷ ︸
required JNF!

=

λ1vi λ1v
′
2 v ′

2 + λ1v3


Go to Example 2



Case 3: A has one eigenvalue, say λ1, where aλ1 = 3 and gλ1 = 1.
Let v1 be the eigenvectors corresponding to λ1, i.e.†

Aside 4.5.6 This means that v1 is
in the null space of A− λ1I3.Av1 = λ1v1,

We seek a vector v ′
1 which is related to v1 according to†

Aside 4.5.7 This means that v ′
1 is

not in the null space of A − λ1I3 as
v1 6= 0. As such, v1 and v ′

1 are linearly
independent. But, notice that v ′′

1 is in
the null space of (A− λ1I3)

2 as

(A− λ1I3)
2v ′

1 = (A− λ1I3)v1 = 0,

since v1 is in the null space of A−λ1I3.

(A− λ1I3)v ′
1 = v1, or rearranging, Av ′

1 = v1 + λ1v
′
1,

and a vector v ′′
1 which is related to v ′

1 according to†

Aside 4.5.8 This means that v ′′
1 is

not in the null space of A − λ1I3 as
v1 6= 0. Also, as

(A−λ1I3)
2v ′′

1 = (A−λ1I3)v
′
1 = v1 6= 0,

v ′′
1 is not in the null space of (A −

λ1I3)
2. As such, v1, v

′
1 and v ′′

1 are lin-
early independent. This is what guar-
antees the invertibility of the matrix
S we are constructing.

(A− λ1I3)v ′′
1 = v ′

1, or rearranging, Av ′′
1 = v ′

1 + λ1v
′′
1 .

We now construct an invertible matrix S with the vectors v1, v ′
1 and v ′′

1 as
its columns so that S−1AS yields the JNF of A. That is, we want AS = SJ
where J has the form described above. But, since AS gives

A

v1 v ′
1 v ′′

1


︸ ︷︷ ︸

S

=

Av1 Av ′
1 Av ′′

1

 =

λ1v1 v1 + λ1v
′
1 v ′

1 + λ1v
′′
1



we take J to be such that

SJ =

v1 v ′
1 v ′′

1

λ1 1 0
0 λ1 1
0 0 λ1


︸ ︷︷ ︸
required JNF!

=

λ1v1 v1 + λ1v
′
1 v ′

1 + λ1v
′′
1


Go to Example 3



For example: To see how Case 1 works, consider the matrix

A =

 0 4 4
1 0 −3
−2 4 7


which has two eigenvalues λ1 = 2 (with a2 = 2) and λ2 = 3 (with a3 = 1)
and corresponding linearly independent eigenvectors v1 = [2, 1, 0]t (i.e.
g2 = 1) and v2 = [0,−1, 1]t (i.e. g3 = 1) respectively. Following the
method above, we seek a vector v ′

1 such that (A− 2I3)v ′
1 = v1. The easiest

way to find such a vector is to find the components x, y and z of v ′
1 by

solving the matrix equation−2 4 4
1 −2 −3
−2 4 5

x
y
z

 =

2
1
0

 =⇒ x

−2
1
−2

 + y

 4
−2
4

 + z

 4
−3
5

 =

2
1
0


which, by inspection, has v ′

1 = [x, y, z]t = [−5, 0,−2]t as a solution.† Thus,
Aside 4.5.9 There are other solu-
tions since the three column vectors
in the matrix (A−2I3) are linearly de-
pendent.

we take our invertible matrix, S, and its associated JNF, J, to be

S =

2 −5 0
1 0 −1
0 −2 1

 and J =

2 1 0
0 2 0
0 0 3


as you can verify by checking that AS = SJ. ♣



For example: To see how Case 2 works, consider the matrix

A =

−2 1 1
1 −2 −1
−2 2 1


which has linearly independent eigenvectors v1 = [1, 1, 0]t and v2 = [1, 0, 1]t

corresponding to its sole eigenvalue of −1 (i.e. here a−1 = 3 and g−1 = 2).
Following the method above, We take a vector v3, say [0, 0, 1]t, which is
not in Lin{[1, 1, 0]t, [1, 0, 1]t} and find a vector v ′

2 such that (A+ I3)v3 = v ′
2,

i.e. −1 1 1
1 −1 −1
−2 2 2

0
0
1

 =

 1
−1
2

 ,

Thus, we take our invertible matrix, S, and its associated JNF, J, to be

S =

1 1 0
1 −1 0
0 2 1

 and J =

−1 0 0
0 −1 1
0 0 −1


as you can verify by checking that AS = SJ. ♣



For example: To see how Case 3 works, consider the matrix

A =

0 0 1
1 0 −3
0 1 3


which has one linearly independent eigenvector v1 = [1,−2, 1]t correspond-
ing to its sole eigenvalue λ1 = 1 (i.e. here a1 = 3 and g1 = 1). We seek a
vector v ′

1 = [x, y, z]t such that (A− I3)v ′
1 = v1, i.e.−1 0 1

1 −1 −3
0 1 2

x
y
z

 =

 1
−2
1

 =⇒ x

−1
1
0

+y

 0
−1
1

+z

 1
−3
2

 =

 1
−2
1


which, by inspection, has v ′

1 = [x, y, z]t = [−1, 1, 0]t as a solution.† We
Aside 4.5.10 There are other so-
lutions since the three column vectors
in the matrix (A− I3) are linearly de-
pendent.

then seek a vector v ′′
1 = [x, y, z]t such that (A− I3)v ′′

1 = v ′
1 such that−1 0 1

1 −1 −3
0 1 2

x
y
z

 =

−1
1
0

 =⇒ x

−1
1
0

+y

 0
−1
1

+z

 1
−3
2

 =

−1
1
0


which, by inspection, has v ′′

1 = [x, y, z]t = [1, 0, 0]t as a solution.† Thus, we
Aside 4.5.11 There are other so-
lutions since the three column vectors
in the matrix (A− I3) are linearly de-
pendent.

take our invertible matrix, S, and its associated JNF, J, to be

S =

 1 −1 1
−2 1 0
1 0 0

 and J =

1 1 0
0 1 1
0 0 1


as you can verify by checking that AS = SJ. ♣



Exercise 1: Consider a 3× 3 matrix A which has two distinct eigenvalues Return to where you came from.
Go to the solution.λ1 (with aλ1 = 2) and λ2 (with aλ2 = 1) with corresponding eigenvectors

v1 and v2. If the vector v ′
1 is given by

(A− λ1I3)v ′
1 = v1,

show that the vectors v ′
1 and v2 are linearly independent.

Exercise 2: Consider a 3 × 3 matrix A which has one eigenvalue λ1 (i.e. Return to where you came from.
Go to the solution.aλ1 = 3) and corresponding linearly independent eigenvectors v1 and v2.

If the vector v ′
2 6= 0 is given by

(A− λ1I3)v3 = v ′
2,

where v3 6∈ Lin{v1, v2}, show that v ′
2 is in Lin{v1, v2}.



Solution to Exercise 1: We consider a 3 × 3 matrix A which has two
distinct eigenvalues λ1 (with aλ1 = 2) and λ2 (with aλ2 = 1) with corre-
sponding eigenvectors v1 and v2. Given that the vector v ′

1 is given by

(A− λ1I3)v ′
1 = v1,

we want to show that the vectors v ′
1 and v2 are linearly independent.

To show this, we note that

(A− λ1I3)v ′
1 = v1 =⇒ Av ′

1 = λ1v
′
1 + v1,

and we assume that the vectors v ′
1 and v2 are linearly dependent, i.e. there

is some non-zero scalar α ∈ R such that v ′
1 = αv2. If this was the case, we

have

A(αv2) = λ1(αv2)+v1 =⇒ αAv2 = αλ1v2 +v1 =⇒ αλ2v2 = αλ1v2 +v1,

as v2 is an eigenvector of A corresponding to the eigenvalue λ2. Thus we
have

v1 = α(λ2 − λ1)v2,

i.e. the vectors v1 and v2 are linearly dependent too. But, this contradicts
the fact that the eigenvectors v1 and v2 are linearly independent. Conse-
quently, the vectors v ′

1 and v2 must be linearly independent, as required. ♠



Solution to Exercise 2: We consider a 3×3 matrix A with one eigenvalue
λ1 (i.e. aλ1 = 3) and corresponding linearly independent eigenvectors v1

and v2. Given that the vector v ′
2 6= 0 is given by (A− λ1I3)v3 = v ′

2, where
v3 6∈ Lin{v1, v2}, we want to show that v ′

2 is in Lin{v1, v2}.

To show this, we note that the set of vectors {v1, v2, v3} is a basis of R3 †
and so we can write the vector v ′

2 ∈ R3 as
Aside 4.5.12 As the eigenvectors
v1 and v2 are linearly independent,
if we take a third vector v3 6∈
Lin{v1, v2}, we have three linearly in-
dependent vectors in R3.

v ′
2 =

3∑
i=1

αivi =⇒ α3v3 = v ′
2 −

2∑
i=1

αivi,

for some scalars α1, α2, α3 ∈ R. Multiplying this by A yields

α3Av3 = Av ′
2 −

2∑
i=1

αiAvi = Av ′
2 −

2∑
i=1

αiλ1vi = Av ′
2 − λ1

2∑
i=1

αivi,

since v1 and v2 are eigenvectors corresponding to the eigenvalue λ1. But,

(A− λ1I3)v3 = v ′
2 =⇒ Av3 = λ1v3 + v ′

2 =⇒ α3Av3 = λ1α3v3 + α3v
′
2,

and so equating these two expressions for α3Av3 we get

Av ′
2−λ1

2∑
i=1

αivi = α3λ1v3+α3v
′
2 =⇒ Av ′

2 = α3v
′
2+λ1

3∑
i=1

αivi = (α3+λ1)v ′
2.

Thus, α3 must be zero (or else, as v ′
2 6= 0, we have another eigenvalue given

by α3 + λ1) and so v ′
2 = α1v1 + α2v2 ∈ Lin{v1, v2}, as required. ♠


