
Further Mathematical Methods (Linear Algebra) 2002

Lecture 1: Vector Spaces

In this hand-out we are going to revise some of the ideas which we encountered in MA100 about
vector spaces. The Learning Objectives associated with this hand-out are given at the end.

1.1 Logic and Sets

Before we talk about vector spaces, we shall take a moment to examine the meaning of some pieces
of notation. Firstly, most of the symbols that we meet will be familiar (or defined in situ), however
three of them may be new to you. These are: ‘∀’, ‘∃’ and ‘iff’ which mean ‘for all’, ‘there exists’
and ‘if and only if’ respectively. I am sure that context will make the meaning of the first two clear,
however the third one is a bit different. The words ‘if and only if’ (or, the symbol ‘iff’) represent a
logical connective (called the biconditional) and you may have seen it before written as ‘⇔’.

It is useful to take a moment to see what this means, although what we say here will be stunningly
brief and probably more than you need to know about logic. You should be aware that some
mathematical theorems take the form ‘if p, then q’ (this is sometimes written as ‘p implies q’ or
‘p ⇒ q’) where p and q are two propositions. If a theorem does take this form, its converse is written
as ‘if q, then p’. However, not every theorem of this form has a converse that is true — some do,
some don’t. But, if both the theorem and its converse are true, then we can say that ‘p if and only
if q’ or ‘p iff q’ (this is sometimes written as ‘p implies and is implied by q’ or, as we noted before,
‘p ⇔ q’). Notice that when you come to prove theorems that have the form ‘p iff q’, it is necessary
to prove both ‘if p, then q’ and ‘if q, then p’. I shall refer to these two parts of the proof as ‘RTL’
(meaning ‘Right-To-Left’) and ‘LTR’ (meaning ‘Left-To-Right’) respectively.

Incidentally, another useful logical term that we will use is contrapositive. We say that the
contrapositive of the theorem ‘if p then q’ is the expression ‘if not-q then not-p’ (here ‘not’ represents
the logical operator called negation). It should be noted that (unlike the converse), the contrapositive
is logically equivalent to the theorem we started with. You probably have some awareness of these
ideas, but I just wanted to bring them out into the open without going into any of the details.

A set is a collection of objects, called elements or members, that can be viewed as an object itself.
For example, the set {2n|n ∈ N} is the set of all even numbers. A set can be specified by either listing
all of its elements between ‘curly’ brackets, say {2, 4, 6, . . .}, or by giving a membership criterion, say
‘the set of all numbers of the form 2n with n ∈ N’. We denote the fact that an object is an element
of a set by using the symbol ‘∈’ and the fact that an object is not an element of a set by using the
symbol ‘6∈’. For example, 2 ∈ {2, 4, 6, . . .}, but 3 6∈ {2, 4, 6, . . .}. Lastly we say that two sets are equal
if and only if they have the same elements, i.e.

A = B if and only if (x ∈ A ⇐⇒ x ∈ B),

for all elements x and any two sets A and B.
Further, we can say that a set A is a subset of a set B, denoted by A ⊆ B, if all of the elements

in A are also in B, i.e.
If (x ∈ A =⇒ x ∈ B), then A ⊆ B.

for all elements x. For example, we know that the set of all even numbers is a subset of the set of
all natural numbers, i.e. {2, 4, 6, . . .} ⊆ {1, 2, 3, 4, 5, 6, . . .}. An immediate consequence of this is that
two sets, A and B, are equal if A is a subset of B and vice versa, i.e.

A = B if and only if (A ⊆ B and B ⊆ A).

(Can you see why?) This result gives us a useful way of showing that two sets are equal, namely
that two sets A and B are equal if we can show that A is a subset of B and B is a subset of A.1 For
example, we can show that the two sets {2, 4, 6, . . .} and {2n|n ∈ N} are equal using this method, i.e.

1This method for establishing the equality of two sets is sometimes called a ‘double inclusion proof’ since ‘A ⊆ B’
is sometimes read as ‘A is included in B’.

1-1



• For any element m ∈ {2, 4, 6, . . .}, we can find an n ∈ N such that m = 2n and so m ∈ {2n|n ∈
N}. Thus, {2, 4, 6, . . .} ⊆ {2n|n ∈ N}.

• For any element m ∈ {2n|n ∈ N} we have m = 2n and so m ∈ {2, 4, 6, . . .}. Thus, {2n|n ∈
N} ⊆ {2, 4, 6, . . .}.

and so the two sets are equal, as one should expect since both of them are representations of the set
of all even numbers.

1.2 What is a Vector Space?

A vector space is a mathematical structure which consists of a non-empty set of objects which are
[unsurprisingly] called vectors and two mathematical operations called vector addition (denoted by
‘+’) and scalar multiplication (denoted by ‘·’). The former rule associates an object u + v, called
the vector sum of u and v, with each pair of objects u and v in V ; whilst the latter rule associates
an object α · u, called the scalar multiple of u by α, with each object u in V and any scalar α. The
definition below tells us what we should expect:

Definition 1.1 Let V be a non-empty set of objects, on which two operations, vector addition (i.e.
‘+’) and scalar multiplication (i.e. ‘·’), are defined such that:

(A) ∀u,v ∈ V, u + v ∈ V Vector Addition
(M) ∀u ∈ V and ∀α ∈ K, α · u ∈ V Scalar Multiplication

where K, the set of scalars, is a given field.2 If the following axioms are satisfied, then we call V a
vector space, and we call the objects in V vectors:

(AC) u + v = v + u Commutativity of (A)
(AA) u + (v + w) = (u + v) + w Associativity of (A)
(A0) ∃0 ∈ V such that ∀u ∈ V, 0 + u = u + 0 = u Identity under (A)
(AI) ∃(−u) ∈ V such that (−u) + u = u + (−u) = 0 Inverse under (A)
(MD1) α · (u + v) = α · u + α · v Distributivity of (M)
(MD2) (α + β) · u = α · u + β · u Distributivity of (M)
(MA) (αβ) · u = α · (β · u) Associativity of (M)
(M1) 1 · u = u Identity under (M)

for all objects u,v,w ∈ V , and for all scalars α, β ∈ K.3

It is, perhaps, useful to have an understanding of what all of these axioms do, and we shall briefly
examine the function of each one below.

The first two axioms, namely (A) and (M), demand that the vector space is closed under the
two operations which are defined on it. This basically means that performing these operations on
any objects that are in the vector space will lead to another object that is also in the vector space,
i.e. you can’t get an object that is not in the vector space by using them. The ‘A’ and ‘M’ axioms
then tell us what properties the operations — vector addition and scalar multiplication respectively
— must have. The commutativity, associativity and distributivity axioms — (AC), (AA), (MD1),
(MD2) and (MA) respectively — should be familiar as they just tell us about the ‘order’ in which we
can legally perform the operations. The remaining three axioms may be slightly less familiar, and so
we shall consider each in turn. (A0) dictates that the vector space must contain an element, called
0, which serves as the identity under vector addition, that is, when it is added to another vector,
that vector remains unchanged. (AI) specifies that every element in the vector space must have

2I do not really want to go into the question of what can count as a set of scalars, except to note that it is a field,
which is another mathematical structure (and one that I really do not want to discuss). But, note that two ‘common’
fields are the set of real numbers, R and the set of complex numbers, C. Thus, when we use the word ‘scalar’, it will
be assumed that the set of scalars is either R or C as we know how real and complex numbers behave.

3We could have used an alternative form of the axioms (A0) and (AI), namely demanding only that u + 0 = u and
u + (−u) = 0 hold respectively. That these forms are equivalent follows at once from the axiom (AC).

1-2



an additive inverse, which is also in the vector space, and when a vector and its inverse are added
together, they ‘cancel,’ leaving us with the additive identity.4 Lastly, we have (M1), which tells us
that the set of scalars being used must contain a multiplicative identity, i.e. an element which, when
multiplied by a vector, leaves that vector unchanged.5

However, this is not a course in pure maths and so, there is no need for us to dwell on why
we have selected these axioms. But, in passing, we note that vector spaces also have the following
properties:

Theorem 1.2 If V is a vector space, then

1. The additive identity, namely 0, is unique; and further, 0 · u = 0 and α · 0 = 0.

2. The additive inverse of a vector u ∈ V , namely −u, is such that (−1) · u = −u.

3. If α · u = 0, then α = 0 or u = 0.

for all u ∈ V and all scalars, α.

Proof: Assume that V is a vector space, and that u ∈ V and α are an arbitrary vector and scalar
respectively.

(1): We want to show that the additive identity, 0 ∈ V where

u + 0 = u (1.1)

is unique. To do this, we assume the existence of any other additive identity 0′ ∈ V , which must be
such that

0′ + u = u (1.2)

Now, putting u = 0′ in Equation 1.1 gives

0′ + 0 = 0′,

and putting u = 0 in Equation 1.2 gives

0′ + 0 = 0,

and equating these we get
0 = 0′.

Thus, we have shown that the additive identity is unique (as required).
Further, we can show that 0 · u = 0 because, using (MD2) we have

(0 + 0) · u = 0 · u + 0 · u

and as the number zero has the property that 0 + 0 = 0, this means that

0 · u = 0 · u + 0 · u

Now, by (AI), there exists an additive inverse, (−0 · u) ∈ V such that

(−0 · u) + 0 · u = 0 · u + (−0 · u) = 0

and adding this to both sides of the previous expression, we get

0 · u + (−0 · u) = [0 · u + 0 · u] + (−0 · u)

4We know that this exists due to (A0).
5For example, if our scalars were real numbers, this role would be played by the number 1. This is the only

multiplicative inverse that we will need and so I have chosen to denote this special object by ‘1’.
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Then, applying (AA), i.e.

0 · u + (−0 · u) = 0 · u + [0 · u + (−0 · u)]

and using the fact that by (AI), 0 · u + (−0 · u) = 0, we find that

0 = 0 · u + 0

Finally, applying (A0), with 0 · u replacing u, i.e. 0 · u + 0 = 0 · u, we have

0 = 0 · u

(as required).
And, further still, α · 0 = 0 because, using (A0) with u = 0 we get

0 + 0 = 0

and then, by (A) we can multiply both sides by a scalar, α say, i.e.

α · (0 + 0) = α · 0

which by (MD2) becomes
α · 0 + α · 0 = α · 0.

Now, by (AI), there exists an additive inverse, (−α · 0) ∈ V , and adding this to both sides, we get

(−α · 0) + (α · 0 + α · 0) = (−α · 0) + α · 0.

which, after applying (AA) on the left-hand side and using the fact that by (AI), (−α ·0)+α ·0 = 0,
becomes

0 + α · 0 = 0.

Then, using (A0) with u = α · 0, i.e. 0 + α · 0 = α · 0, this gives

α · 0 = 0

(as required).

(2) and (3): See the problems. ♠
This proof has given us an idea of how to prove theorems about vector spaces. It is important to
notice that although what we have justified looks obvious, the proof of (1) can only proceed because
every step was justified by an appeal to the axioms. Once theorems [or any part of them] have been
proved, we can then use these theorems and the axioms in further proofs. This should be borne in
mind when giving proofs in this course.

1.3 Some Common Vector Spaces.

We shall now introduce the three vector spaces that will be used in this course. Among other things,
this will help us to clarify what the axioms in Definition 1.1 commit us to.6 At this point, we shall
also drop the convention that a ‘·’ denotes scalar multiplication (although, occasionally, we shall use
it to make things clearer). Thus, from now an expression like ‘αu’ will be synonymous with ‘α · u’.

6We should really prove that the following sets are vector spaces instead of just ‘noting’ that the axioms will be
satisfied.
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1.3.1 Euclidean n-space, Rn.

This is a vector space which we are all familiar with, and in the general, n-dimensional case, consists
of the set of all n-tuples of real numbers. These n-tuples can be interpreted in two ways: as the
points, (x1, x2, . . . , xn) in an n-dimensional space, or as the [position] vectors, x = [x1, x2, . . . , xn]t,
which represent these points.7 Of course, the latter view is the more useful here, and using the
familiar rules of vector manipulation we can define vector addition:

x + y =




x1

x2
...

xn


 +




y1

y2
...

yn


 =




x1 + y1

x2 + y2
...

xn + yn




and scalar multiplication:

αx = α




x1

x2
...

xn


 =




αx1

αx2
...

αxn




where x,y ∈ Rn as in this real space, we take x1, . . . , xn, y1, . . . , yn and the scalars to be elements of
the set R.

To be sure that this is indeed a vector space, we note that we have a vector which plays the
role of the additive identity — namely, the null vector 0 = [0, 0, . . . , 0]t, which is the position vector
of the origin. We also have an additive inverse for each element x ∈ Rn, which is given by −x =
[−x1,−x2, . . . ,−xn]t; as well as a multiplicative identity which is, as mentioned before, the number
1. Lastly, the rules specified above guarantee that the rest of the axioms hold and so Rn is indeed a
vector space.

For example: The vectors [1, 0, 2]t and [1, 2, 0]t are both in the vector space R3. Using the rules
defined above, we can manipulate these vectors using the operations of vector addition and scalar
multiplication. For instance,




1
0
2


 +




1
2
0


 =




2
2
2


 = 2




1
1
1


 .

Also, notice that the inverse of the vector [1, 0, 2]t is given by [−1, 0,−2]t and clearly satisfies the
equality 


1
0
2


 +



−1
0
−2


 =



−1
0
−2


 +




1
0
2


 =




0
0
0




as required by (AI). Here, as mentioned above, the role of the additive identity is played by the null
vector 0 = [0, 0, 0]t and this has the property that, for instance,




1
0
2


 +




0
0
0


 =




0
0
0


 +




1
0
2


 =




1
0
2




as required by (A0). ♣

7We shall use the convention that the position vectors in Rn are column vectors. This means that when we write
them as row vectors we should stress that we are really looking at the transpose of the position vector.
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1.3.2 Complex n-space, Cn.

This is almost identical to Rn although now, in Definition 1.1 we take scalars which are complex
numbers, i.e. α ∈ C (notice that the results of Theorem 1.2 also continue to hold). Consequently, a
general vector in Cn will be an entity that is complex, and so is not defined in any real space like Rn.
This might make this extension seem uninteresting, but as we shall see later, differences do arise.

For example: The vectors [1, 0, 1 + i]t and [i, 2, 0]t are both in the vector space C3 (where i is the
square root of −1, remember?). Using the rules defined above, we can manipulate these vectors using
the operations of vector addition and scalar multiplication. For instance,




1
0

1 + i


 +




i
2
0


 =




1 + i
2

1 + i


 = (1 + i)




1
1− i

1


 .

where we have used the fact that

2
1 + i

=
2(1− i)

(1 + i)(1− i)
=

2(1− i)
1 + 1

= 1− i

Also, notice that the inverse of the vector [i, 2, 0]t is given by [−i,−2, 0]t and clearly satisfies the
equality 


i
2
0


 +



−i
−2
0


 =



−i
−2
0


 +




i
2
0


 =




0
0
0




as required by (AI). Here, as mentioned above, the role of the additive identity is [again] played by
the null vector 0 = [0, 0, 0]t and this has the property that, for instance,




i
2
0


 +




0
0
0


 =




0
0
0


 +




i
2
0


 =




i
2
0




as required by (A0). ♣

1.3.3 Real-function space, FR.

This space consists of the set of all real-valued functions which are defined on the entire real line,
i.e. R.8 Consequently, in this vector space, the functions themselves are the vectors and so we shall
write f(x) instead of f(x), say, where f : R → R. Then, using the familiar rules for manipulating
functions we can define [point-wise] vector addition:

[f + g](x) = f(x) + g(x), that is, f + g : x → f(x) + g(x), ∀x ∈ R,

and [point-wise] scalar multiplication:

[αf ](x) = αf(x), that is, αf : x → αf(x), ∀x ∈ R,

where f ,g are the vectors in FR representing the functions f, g : R → R and α ∈ R.9 It may seem
a bit weird to think of functions as vectors in a vector space, especially as the functions themselves
are dependent on the variable x, so perhaps a picture, like Figure 1.1, will help.

8There are many ways of restricting this space, but many of these will not concern us. One way is to restrict the
functions to those that are differentiable (for all x ∈ R) a certain number of times. For example, we could specify that
we are working with the set of all real-valued functions that can be differentiated m times. Or, we could restrict the
functions to those that are defined over a certain interval. For example, we could use the set of real-valued functions
that are defined over the closed interval [a, b], and this is denoted by F [a,b]. Alternatively, we could extend the set
to include complex-valued functions and get a complex-function space. This notion of a ‘restriction’ of a vector space
which gives us another vector space is essentially the idea of a vector subspace, see Section 1.4.

9Notice that we have put the vector sum, f + g, and the scalar multiple, αf , in square brackets to indicate that it
is this function as a whole that is being evaluated at a certain point x. This is the essence of point-wise operations.
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-

f+g

x
x

f(x)+g(x)

-f(x)

f
f(x)

g(x)

g

f

Figure 1.1: Here, f and g are vectors in FR. Notice that the vector sum f + g and the scalar multiple
−1 · f (or, −f , see Theorem 1.2) are obtained by first calculating f(x) and g(x) at each point x, and
then these values are used to find f(x) + g(x) and −f(x) at each point. These are sometimes called
point-wise operations.

To be sure that this is indeed a vector space, we note that we have a vector which plays the role
of the additive identity — namely, the zero function, 0 : x → 0 for all x ∈ R (i.e. the function which
gives us zero for all values of the variable x) and we can denote this by 0(x), or just 0. We also have
an additive inverse for each element f ∈ FR, which is given by −f : x → −f(x) for all x ∈ R. Lastly,
we have a multiplicative identity, which is, as before, the number 1; and the rules specified above
guarantee that the rest of the axioms hold and so FR is indeed a vector space.

For example: The vectors 2 and 6x2 are both in the vector space FR where they represent the
functions

2 : x → 2 and 6x2 : x → 6x2

respectively for all x ∈ R. Using the rules defined above, we can manipulate these vectors using the
operations of vector addition and scalar multiplication. For instance, as 2 + 6x2 = 2(1 + 3x2) for all
x ∈ R,

2 + 6x2 = 2(1 + 3x2)

where 1 + 3x2 : x → 1+3x2 for all x ∈ R. Also, notice that the inverse of the vector 6x2 is given by
−6x2 and clearly, because 6x2 + (−6x2) = (−6x2) + 6x2 = 0 for all x ∈ R, this satisfies the equality

6x2 + (−6x2) = (−6x2) + 6x2 = 0

as required by (AI). Here, as mentioned above, the role of the additive identity is played by the null
vector 0 : x → 0 for all x ∈ R and, for instance, because 6x2 + 0 = 0 + 6x2 = 6x2 for all x ∈ R, this
has the property that

6x2 + 0 = 0 + 6x2 = 6x2

as required by (A0). ♣

1.4 Vector Subspaces

Imagine that we have a vector space, which as we saw above will consist of a set of objects, V , and
two operations that are defined so as to satisfy the ten vector space axioms. What happens if we
take a subset of this set of objects? Or, more specifically, can we find any subset, say, W of V which
also has the properties of a vector space? The answer is, of course, yes! We can define a vector
subspace as a set of objects, W ⊆ V , that also satisfy the vector space axioms. However, in the case
of vector subspaces, there is no need to test all of the axioms; we just have to check that the first
two — namely closure under the two operations — hold. This is because each vector subspace is
‘embedded’ in a vector space and so it ‘inherits’ most of the required structure. We can therefore
say that:
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Definition 1.3 A non-empty subset of a vector space, V , is a subspace of V if it is a vector space
under the operations of vector addition and scalar multiplication defined in V .

and further, we notice that:

Theorem 1.4 If V is a vector space and W ⊆ V is a non-empty subset, then W is a subspace iff
the following two conditions hold:

(CA) ∀u,v ∈ W, u + v ∈ W Closure under (A).
(CM) ∀u ∈ W, αu ∈ W Closure under (M).

for all scalars, α.

The proof of this theorem is left as an exercise for anyone who is interested.
This theorem gives us a simple way of testing if a subset of the objects in a vector space is a

subspace, but sometimes a quicker method may be available (if, for instance, the subset is obviously
not a vector space because it violates one of the other vector space axioms). We now turn our
attention to this aspect of vector spaces.

1.4.1 When is a subset of a vector space a subspace?

You may have noticed that in Definition 1.3 and Theorem 1.4 we stipulated that the subset of V
under consideration must be non-empty. This must obviously be the case as if we took the empty
subset, ∅, of V then it would not contain any elements, and so a fortiori, it would not contain an
additive identity, i.e. 0 /∈ ∅. But, of course, this violates axiom (A0) of Definition 1.1 and so ∅
cannot be a vector space, or indeed, a subspace (by Definition 1.3).

However, if we took the subset of V that contained just the additive identity, i.e. the set {0},
then this is a subspace [albeit a trivial one] by Theorem 1.4 because we know that

(CA) 0 + 0 = 0 :by axiom (A0) of Definition 1.1
(CM) α0 = 0 :by part (1) of Theorem 1.2

for all scalars, α.
Unfortunately, we often need to bring more sophisticated techniques to bear on the problem of

deciding whether a subset is a subspace, let us consider these in the context of some examples.

1.4.2 Some Relevant Methods of Proof

As well as doing some examples, we shall also revise some useful methods of proof that may have
been forgotten [or never really understood].

To show that a subset is a subspace:
In this case, we can invoke Theorem 1.4, where it is necessary to show that the subset is closed

under the operations of vector addition and scalar multiplication. The key here is to show that the
closure conditions are satisfied by all of the vectors in the subset, and this means performing the
proof with general vectors and scalars in the subset.10

Example: Show that the subset Sa,b,c = {x | ax1 + bx2 + cx3 = 0} (where a, b and c are [given] real
numbers) of R3 is a vector space, i.e. show that Sa,b,c is a subspace of R3.

Solution: To show this, we must consider two general vectors x,y ∈ Sa,b,c, i.e.

x =




x1

x2

x3


 and y =




y1

y2

y3


 (1.3)

where the components of these two vectors must satisfy the equations
10I stress this point because a common error in this case is to show that the subset is closed for one or two specific

vectors in the subset. This is clearly insufficient as there could be other vectors in the subset which fail to satisfy the
closure conditions. (See the next two footnotes.)
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1. ax1 + bx2 + cx3 = 0, and

2. ay1 + by2 + cy3 = 0

as this is the condition that any vector must satisfy to be in Sa,b,c. We can now proceed to verify that
Sa,b,c is a subspace by checking that it is closed under both vector addition and scalar multiplication.

To see that Sa,b,c is closed under vector addition, we note that using our rules, we have:

x + y =




x1

x2

x3


 +




y1

y2

y3


 =




x1 + y1

x2 + y2

x3 + y3


 (1.4)

and this new vector will also be in Sa,b,c if its components also satisfy the condition, i.e. it will be in
Sa,b,c provided that:

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = 0

and this is the case because,

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = (ax1 + bx2 + cx3) + (ay1 + by2 + cy3) = 0 + 0 = 0

where we have used the two equations — namely, (1) and (2) from above — which we know must be
satisfied by the vectors x and y. Consequently, as we started with two general vectors in Sa,b,c, we
have shown that the vector sum of any two vectors in Sa,b,c will give us another vector in Sa,b,c, i.e.
Sa,b,c is closed under vector addition.11

Then, to see that Sa,b,c is closed under scalar multiplication, we note that using our rules, we
have:

αx = α




x1

x2

x3


 =




αx1

αx2

αx3


 (1.5)

and this new vector will also be in Sa,b,c if its components also satisfy the condition, i.e. it will be in
Sa,b,c provided that:

a(αx1) + b(αx2) + c(αx3) = 0

and this is the case because,

a(αx1) + b(αx2) + c(αx3) = α(ax1 + bx2 + cx3) = α · 0 = 0

where we have, again, used equation (1) from above (which we know must be satisfied by the vector
x). Consequently, as we started with a general vector in Sa,b,c, we have shown that the scalar multiple
of any vector in Sa,b,c with any scalar, α ∈ R will give us another vector in Sa,b,c, i.e. Sa,b,c is closed
under scalar multiplication.12

Thus, by Theorem 1.4, we have demonstrated that Sa,b,c is a subspace of R3. (You may care to
notice that the additive identity — namely the null vector, 0 — is contained within Sa,b,c because
it represents the trivial solution of the equation that defines the set (i.e. a0 + b0 + c0 is clearly 0
as required). Further, this fact is included in our justification because we have shown that Sa,b,c

is closed under scalar multiplication, and so, if we choose α = 0 we get the null vector. Also, we
can see that each vector x ∈ Sa,b,c has an additive inverse in Sa,b,c which we can obtain, again

11As mentioned in the previous footnote, to prove that a subset of R3, S1,1,1 say, is closed under vector addition it
would be insufficient to use a pair of specific vectors. For example, the vectors [1,−1, 0]t and [1, 0,−1]t are both in S1,1,1

because they both satisfy the equation x1 + x2 + x3 = 0. Further, we can see that [1,−1, 0]t + [1, 0,−1]t = [2,−1,−1]t

is in S1,1,1 as it too satisfies the membership criterion. But, it should be clear that this doesn’t show that S1,1,1 is a
vector space because we have not considered how the infinite number of other vectors in S1,1,1 behave under vector
addition. We could, possibly, say that we have amassed some ‘evidence’ for S1,1,1 being a vector space (as we have not
found a counter-example). But this is maths, and not science, and a ‘quasi’-scientific methodology is not of much use
here.

12Again, we can take the vector [1, 0,−1]t which is in S1,1,1 and multiply it by a specific scalar, say 3, to get [3, 0,−3]t

which is another vector in S1,1,1; or we could multiply it by a general scalar, α ∈ R say, to get [α, 0,−α]t which also
gives us a vector in S1,1,1. However, either way, this is not enough (for the same reasons that were outlined in the
previous footnote).
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due to the fact that we have shown that Sa,b,c is closed under scalar multiplication, by multiplying x
by the scalar α = −1. Thus, Sa,b,c contains all the things that we expect a vector space to contain!) ♣

In order to firm up your ‘intuitions’ as to what sorts of subsets are vector spaces, we can see that,
geometrically, for any choice of our indices (i.e. a, b and c) we will get a plane going through the
origin — for example, see Figure 1.2. Except, of course, when we have a = b = c = 0, in which case,

y

0

z

x

y=0

x=0

x-2y=0

Figure 1.2: Three subspaces of R3: The planes x = 0, y = 0 and x − 2y = 0 (corresponding to the
subsets S1,0,0, S0,1,0 and S1,−2,0 respectively).

the membership criterion reduces to the identity 0 = 0, which is satisfied for all values of x1, x2 and
x3. Thus, in this [special] case, we get the vector space R3! Further, notice that the requirement
that the vector space be closed under vector addition and scalar multiplication means, as mentioned
before, that using these operations on vectors in the subspace, will always give us other vectors in
the subspace. The reason for this is clear if we look at Figure 1.3. Here the vectors are just the
position vectors of the points in the plane represented by the subset; and most notably, all of these

w2

x0

v

w

u

u+v

z

z=0y

Figure 1.3: The plane z = 0 (corresponding to the subset S0,0,1). Notice that the [position] vectors
u,v,w ∈ S0,0,1 [corresponding to the points (u1, u2, 0), (v1, v2, 0), (w1, w2, 0) in the plane z = 0] all
lie in the plane, as does the vector sum, u + v and the scalar multiple, 2w [which give the position
vectors of the points (u1 +v1, u2 +v2, 0) and (2w1, 2w2, 0) respectively; and, as expected, these points
are clearly in the plane z = 0 too].

vectors actually lie in the plane due to the fact that the plane contains the origin. Indeed, this is the
reason why the two operations always give us vectors that lie within the subspace.

To show that a subset is not a subspace:
We have two different ways (although mathematically, they are just two different ways of using

the same method) of showing that a subset is not a vector space.13

13Note that a particularly simple way of achieving this end is to show that the subset in question does not contain
something which is essential for a vector space. For example, a subset cannot be a vector space, and hence a subspace,
if it doesn’t contain the additive identity, or the required additive inverses. This will be illustrated in due course.
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Method I: General violation of the subspace conditions.
This method is based on showing that one of the conditions in Theorem 1.4 doesn’t generally

hold for the subset under consideration. Clearly, we only need to show that one of the conditions
fails; but here, for the sake of illustration, we shall consider whether one, or both, of the conditions
fail to hold.

Example: Show that the subset Sa,b,c,r = {x | ax1 + bx2 + cx3 = r} (where a, b, c and r are [given]
real numbers and r 6= 0) of R3 is not a vector space, i.e. show that Sa,b,c,r is not a subspace of R3.14

Solution: To show this, we must consider two general vectors x,y ∈ Sa,b,c,r, as before, but they
will be the same as the vectors we considered in the previous example (see Equation 1.3) except that
their components will now have to satisfy the two equations

1. ax1 + bx2 + cx3 = r, and

2. ay1 + by2 + cy3 = r

as this is the condition that any vector must satisfy to be in Sa,b,c,r. We can now proceed to verify
that Sa,b,c,r is not a subspace by showing that it fails to be closed under vector addition and scalar
multiplication.

To see that Sa,b,c,r is not closed under vector addition, we notice that Equation 1.4 tells us that
the vector sum will be in Sa,b,c,r provided that:

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = r.

But, this is not the case because,

a(x1 + y1) + b(x2 + y2) + c(x3 + y3) = (ax1 + bx2 + cx3) + (ay1 + by2 + cy3) = r + r = 2r 6= r, 15

where we have used the two equations — namely, (1) and (2) from above — which we know must
be satisfied by the vectors x and y. Consequently, as we started with two general vectors in Sa,b,c,r,
we have shown that the vector sum of any two vectors in Sa,b,c,r will not give us another vector in
Sa,b,c,r, i.e. Sa,b,c,r is not closed under vector addition.

Nor is Sa,b,c,r closed under scalar multiplication, we notice that Equation 1.5 tells us that the
vector sum will be in Sa,b,c,r provided that:

a(αx1) + b(αx2) + c(αx3) = r.

But, this is not the case because, for any α 6= 1,

a(αx1) + b(αx2) + c(αx3) = α(ax1 + bx2 + cx3) = α · r 6= r, 16

where we have, again, used equation (1) from above which we know must be satisfied by the vector
x. Consequently, as we started with a general vector in Sa,b,c,r, we have shown that, in general (i.e.
if α 6= 1), the scalar multiple of any vector in Sa,b,c,r with any scalar α ∈ R (α 6= 1) will not give us
another vector in Sa,b,c,r, i.e. Sa,b,c,r is not closed under scalar multiplication.

Thus, we have shown that Sa,b,c,r satisfies neither of the conditions required of a subspace by
Theorem 1.4 and therefore, it is not a subspace of R3. ♣

Method II: Counter-examples to the subspace conditions.
This method is based on showing that one of the conditions in Theorem 1.4 doesn’t hold for some

specific vector[s] in the subset under consideration. Again, we only need to find a counter-example
for one of the conditions; but here, for the sake of illustration, we shall look at a case where we can

14As per the last footnote, this is obviously not a vector space because it does not contain the additive identity. That
is, the null vector, 0 /∈ Sa,b,c,r as a · 0 + b · 0 + c · 0 = 0 6= r.

15Unless, of course, r = 0. But, we have excluded this case in our definition of Sa,b,c,r because, as we saw before, this
case would give us a subspace.

16Unless, of course, r = 0, but we discussed this case in the previous footnote.
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find counter-examples to both conditions.

Example: Show that the subset Sa,b,c,r = {x | ax1 + bx2 + cx3 = r} (where a, b, c and r are [given]
real numbers and a, b, r 6= 0)17 of R3 is not a vector space, i.e. show that Sa,b,c,r is not a subspace
of R3.

Solution: To find a counter-example to the requirement that the subset should be closed under
vector addition, take two vectors, say, [r/a, 0, 0]t and [0, r/b, 0]t, that are in Sa,b,c,r. Then notice
that their vector sum, i.e. the vector [r/a, r/b, 0]t, is not in Sa,b,c,r as we require it to be [because
a(r/a) + b(r/b) + 0 = r + r = 2r 6= r]. Thus, we have found a counter-example and so Sa,b,c,r cannot
be a subspace by Theorem 1.4.

Similarly, to find a counter-example to the requirement that the subset should be closed under
scalar multiplication, take a vector and a scalar, say, [r/a, 0, 0]t and the number 3, that are in Sa,b,c,r

and R respectively. Then notice that the scalar multiple of this vector with this scalar, i.e. the vector
[3r/a, 0, 0]t, is not in Sa,b,c,r as we require it to be [because a(3r/a) + 0 + 0 = 3r 6= r]. Thus, we have
found a counter-example and so Sa,b,c,r cannot be a subspace by Theorem 1.4.

Notice however that not every choice of scalar and vector will give a counter-example. Observe
that any pair of vectors will yield a counter-example to the requirement that the subset is closed
under vector addition (this can be seen from the fact that, in the first method, we showed that the
sum of any two vectors will give a vector where the membership criterion gives 2r 6= r and this is
never satisfied because r 6= 0). Although, if we take any vector and multiply it by the scalar α = 1
we will get a vector that does satisfy the membership criterion (this special case was noted when we
were showing, again in Method I, that the subset was not closed under scalar multiplication) and so
consequently, this will not serve as a counter-example. However, it should be clear that choosing any
other value for the scalar, we will get a counter-example ∀x ∈ Sa,b,c,r (as clearly, α · r 6= r if α 6= 1;
recall that r 6= 0 too!). ♣

Also, in order to firm up your ‘intuitions’ as to what sorts of subsets are not vector spaces, we
can see that geometrically, for any choice of our indices (i.e. a, b, c and r) we will get a plane that
does not go through the origin (as r 6= 0); for example, see Figure 1.4. Further, we can see that,

y

x+2y=8z

x0

x=3

y=2

Figure 1.4: Three planes that are not subspaces of R3: The planes x = 3, y = 2 and x + 2y = 8
(corresponding to the subsets S1,0,0,3, S0,1,0,2 and S1,2,0,8 respectively).

geometrically, the violation of the closure conditions corresponds to the fact that the position vectors
of the points in the plane do not lie in the plane itself — see Figure 1.5 — and so, when we perform
the operations of vector addition or scalar multiplication on them, we get the position vectors of
points that are not in the plane. Consequently, the subset cannot be closed.18

17In this example, we shall also assume that a 6= 0 and b 6= 0 (the reason for this assumption is obvious when you
look at the solution!). To see what happens if this isn’t the case, see Problem Sheet 1.

18If you are interested in what happens when we consider the ‘special’ subset S0,0,0,r (recall, something ‘special’
happened when we looked at the subspace S0,0,0), then notice that when a = b = c = 0, the membership criterion
reduces to 0 = r, and so, as r 6= 0, we get a contradiction. This means that no vector can belong to the subset S0,0,0,r,
i.e. S0,0,0,r is the empty set, and as we have seen, this is not a vector space.
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u1.5

x+2y=14

0 x

z

y

u

v

u+v

Figure 1.5: The plane x + 2y = 14 (corresponding to the subset S1,2,0,14). Notice that the [position]
vectors u,v ∈ S1,2,0,14 [corresponding to the points (u1, u2, u3) and (v1, v2, v3) in the plane x+2y = 14]
do not lie in the plane. Further, the vector sum, u + v and the scalar multiple, 1.5u do not give us
[the position vectors of] points in the plane.

1.5 Learning Objectives

At the end of this hand-out you should:

• Be familiar with the logical and set theoretical notation introduced in Section 1.1.

• Understand that a vector space must contain certain vectors and, in particular, it must be
closed under the operations of vector addition and scalar multiplication as specified in Section
1.2.

• Be aware of the three examples of a vector space given in Section 1.3 and, in particular, you
should know how to represent the vectors that they contain and understand how the operations
of vector addition and scalar multiplication are defined within them.

• Understand that some subsets of a vector space will also be a vector space and that we call
these subspaces. As outlined in Section 1.4.1, you should know that a subset is a subspace if
and only if it is closed under the operations of vector addition and scalar multiplication.

• Be able to prove, as shown in Section 1.4.2, that:

– A subset is a subspace (by showing that it satisfies the closure conditions given in Theorem
1.4 using general vectors).

– A subset is not a subspace (by finding a counterexample to, or showing that general vectors
in the set fail to satisfy, the closure conditions given in Theorem 1.4).

as appropriate for the set in question. You should also start to develop a geometric intuition
about which subsets of R3 are, and which are not, subspaces.

This material will be developed in Problem Sheet 1.
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