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Lecture 11: ‘Special’ Real and Complex Matrices

Notation

We denote the complex conjugate of a matrix A by A∗ and the complex conjugate transpose of a
matrix A by A†. Consequently, we can see that A† = (A∗)t = (At)∗, and indeed, that (A†)† = A.
Notice that this is not the notation used in the book by Ostaszewski where the complex conjugate
of a matrix A is denoted by A and the complex conjugate transpose of a matrix is denoted by A∗.

Convention

Throughout this part of the course, we will assume that we are working with the real Euclidean inner
product when in Rn (i.e. if x = [x1, . . . , xn]t and y = [y1, . . . , yn]t are vectors in Rn, then 〈x,y〉 =
x1y1 + · · · + xnyn) and the complex Euclidean inner product when in Cn (i.e. if x = [x1, . . . , xn]t

and y = [y1, . . . , yn]t are vectors in Cn, then 〈x,y〉 = x1y
∗
1 + · · ·+ xny∗n). Further, note that for such

vectors in Cn, x†y = x∗1y1 + · · ·+ x∗nyn = (x1y
∗
1 + · · ·+ xny∗n)∗ = 〈x,y〉∗.

Definitions

Here is a summary of the special types of complex matrix (and their real analogues) that we shall
meet in the lecture. If we have an n × n matrix A with complex entries, i.e. the vectors that form
the column space of the matrix are in Cn, we say that

• A is Hermitian if A† = A.

• A is unitary if AA† = I.

However, if we have an n × n matrix A with real entries, i.e. the vectors that form the the column
space of the matrix are in Rn, we say that

• A is symmetric if At = A.

• A is orthogonal if AAt = I.

As R ⊆ C (and, Rn ⊆ Cn), a matrix with real entries is a special case of a matrix with complex
entries (as if a matrix A has real entries, A∗ = A). It should be clear that all symmetric matrices
are Hermitian (as for a symmetric matrix A, A† = (A∗)t = At = A) and all orthogonal matrices
are unitary (as for an orthogonal matrix A, AA† = A(A∗)t = AAt = I). Consequently, most of our
theorems about Hermitian and unitary matrices can be translated into theorems about symmetric
and orthogonal matrices [respectively] by using the following rules:

the complex matrix A (i.e. CS(A) ⊆ Cn) becomes the real matrix A (i.e. CS(A) ⊆ Rn)
the complex conjugate transpose of A (i.e. A†) becomes the transpose of A (i.e. At)

the unitary matrix A (i.e. AA† = I) becomes the orthogonal matrix A (i.e. AAt = I)
the Hermitian matrix A (i.e. A† = A) becomes the symmetric matrix A (i.e. At = A)

For example: Notice that if A and B are two complex matrices, then (AB)† = B†A†. But, if A and
B are two real matrices, then (AB)t = BtAt. We will assume this result (but, see Problem Sheet 6,
Question 5).

Lastly, as unitary matrices have the property that AA† = I, it should be clear that if A is a unitary
matrix, then A† = A−1. Thus, for a unitary matrix we have A†A = I as well. Similarly, if A is an
orthogonal matrix, then At = A−1 and AtA = I too.
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Unitary Diagonalisation

As we are often keen to diagonalise matrices, it is useful to note that a particularly nice form of
diagonalisation is available in some cases. To see this, observe that:

Theorem: A [square] complex matrix A has an orthonormal set of eigenvectors iff there exists a
unitary matrix P such that the matrix P†AP is diagonal. If such a P exists, then A is said to be
unitarily diagonalisable.

Proof: It should be clear that a matrix P is unitary iff the column vectors of P form an orthonormal
set. To see this, observe that if the column vectors of a 3 × 3 matrix P are the vectors v1, v2 and
v3, then the product P†P is given by:



— v†1 —
— v†2 —
— v†3 —





 v1 v2 v3


 =




v†1v1 v†1v2 v†1v3

v†2v1 v†2v2 v†2v3

v†3v1 v†3v2 v†3v3


 =



〈v1,v1〉∗ 〈v1,v2〉∗ 〈v1,v3〉∗
〈v2,v1〉∗ 〈v2,v2〉∗ 〈v2,v3〉∗
〈v3,v1〉∗ 〈v3,v2〉∗ 〈v3,v3〉∗




where we have used the fact mentioned earlier when we set up our convention. So, clearly, P†P = I
iff the column vectors of P form an orthonormal set. Now, to prove the theorem, we need to show
that it holds in both ‘directions’:
LTR: Assume that A is a [square] complex matrix with an orthonormal set of eigenvectors. This
means that A is diagonalisable (as orthonormal vectors are linearly independent) and so there exists
a P such that the matrix P−1AP is diagonal. This matrix P is the matrix whose columns are the
eigenvectors of A, and as these are orthonormal, we can see from the above observation that P will be
unitary. For unitary matrices, P−1 = P†, and therefore there exists a P such that P†AP is diagonal
(as required).
RTL: Assume that there exists a unitary matrix P such that P†AP is diagonal. Now, as P is unitary,
from the observation above, its column vectors must be orthonormal. Further, as P†AP is diagonal
and unitary matrices are such that P−1 = P†, we have a matrix P−1AP that is diagonal. Now, this
is the result of our standard diagonalisation procedure, and so P is a matrix whose columns are the
eigenvectors of the [in general, complex and square] matrix A. But we have seen that these column
vectors are orthonormal, and so the eigenvectors of A must form an orthonormal set (as required).

It is now convenient to define another special kind of complex matrix, namely:

Definition: A [square] complex matrix A is normal iff A†A = AA†.

and this leads to the following useful theorem:

Theorem: A [square] complex matrix is normal iff A is unitarily diagonalisable.

Proof: We have to establish that this theorem holds by proving it in both ‘directions’.
RTL: We assume that A is unitarily diagonalisable, that is, there exists a unitary matrix P such that
the matrix P†AP = D is diagonal. Now P is unitary, and so P† = P−1, which means that A = PDP†,
and taking the complex conjugate transpose of this we get A† = (PDP†)† = PD†P†. Further, using
these, we can see that

AA† = (PDP†)(PD†P†) = PDD†P† and A†A = (PD†P†)(PDP†) = PD†DP†

where, again, we have used the fact that P† = P−1. But, for the diagonal matrix D = diag(λ1, λ2, . . . ,
λn) it should be clear that DD† = D†D as

DD† = diag(|λ1|2, |λ2|2, . . . , |λn|2) = D†D

Consequently, AA† = A†A, and so the matrix A is normal (as required).
LTR: This is quite hard, and so due to considerations of space, we shall omit it here.
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