Further Mathematical Methods (Linear Algebra) 2002

Lecture 11: ‘Special’ Real and Complex Matrices

Notation

We denote the complex conjugate of a matrix A by A* and the complex conjugate transpose of a
matrix A by Al. Consequently, we can see that AT = (A*)! = (A")*) and indeed, that (AT)T = A.
Notice that this is not the notation used in the book by Ostaszewski where the complex conjugate
of a matrix A is denoted by A and the complex conjugate transpose of a matrix is denoted by A*.

Convention

Throughout this part of the course, we will assume that we are working with the real Euclidean inner
product when in R™ (i.e. if x = [x1,...,2,])" and y = [y1,...,yn]' are vectors in R™, then (x,y) =
T1y1 + -+ + Tpyn) and the complex Euclidean inner product when in C" (i.e. if x = [z1,..., 2,
andy = [y1,...,yn]! are vectors in C", then (x,y) = 21y} + -+ - + 2, ). Further, note that for such
vectors in C", xTy = afy + - + 2y, = (21yf + - + zayp)* = (x,y)".

Definitions

Here is a summary of the special types of complex matrix (and their real analogues) that we shall
meet in the lecture. If we have an n X n matrix A with complex entries, i.e. the vectors that form
the column space of the matrix are in C™, we say that

e Ais Hermitian if At = A.
o Ais unitary if AAT = 1.

However, if we have an n x n matrix A with real entries, i.e. the vectors that form the the column
space of the matrix are in R, we say that

o Ais symmetric if At = A.
e A is orthogonal if AA! = I.

As R C C (and, R™ C C™), a matrix with real entries is a special case of a matrix with complex
entries (as if a matrix A has real entries, A* = A). It should be clear that all symmetric matrices
are Hermitian (as for a symmetric matrix A, AT = (A*)! = A* = A) and all orthogonal matrices
are unitary (as for an orthogonal matrix A, AAT = A(A*)! = AA* = 1). Consequently, most of our
theorems about Hermitian and unitary matrices can be translated into theorems about symmetric
and orthogonal matrices [respectively| by using the following rules:

the complex matrix A (i.e. CS(A) C C"

the complex conjugate transpose of A (i.e. Af
the unitary matrix A (i.e. AAT = |

the Hermitian matrix A (i.e. AT = A

becomes the real matrix A (i.e. CS(A) C R")
becomes the transpose of A (i.e. A?)

becomes the orthogonal matrix A (i.e. AA! =1)
becomes the symmetric matrix A (i.e. Al = A)

o — —

For example: Notice that if A and B are two complex matrices, then (AB)f = BfAf. But, if A and
B are two real matrices, then (AB)! = B'A’. We will assume this result (but, see Problem Sheet 6,
Question 5).

Lastly, as unitary matrices have the property that AAT = |, it should be clear that if A is a unitary
matrix, then AT = A1, Thus, for a unitary matrix we have ATA = | as well. Similarly, if A is an
orthogonal matrix, then A® = A=! and A‘A =1 too.
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Unitary Diagonalisation

As we are often keen to diagonalise matrices, it is useful to note that a particularly nice form of
diagonalisation is available in some cases. To see this, observe that:

Theorem: A [square] complex matrix A has an orthonormal set of eigenvectors iff there exists a
unitary matrix P such that the matrix PTAP is diagonal. If such a P exists, then A is said to be
unitarily diagonalisable.

Proof: It should be clear that a matrix P is unitary iff the column vectors of P form an orthonormal
set. To see this, observe that if the column vectors of a 3 x 3 matrix P are the vectors vy, vo and
vs, then the product PP is given by:

1 T T

—vi — ([ [ | VIVI ViVa V|V (vi,v1)* (vi,va)* (vi,vs)*
— V; — Vi Vo V3 | = vgvl v%vz V$V3 = | (vo,v)" (va,va)* (vo,v3)*
— Vsz - ‘ ‘ ‘ V;T;V1 V;Tsz V§V3 (vg,vi)" (vs,va)* (v3,v3)”

where we have used the fact mentioned earlier when we set up our convention. So, clearly, PTP = |
iff the column vectors of P form an orthonormal set. Now, to prove the theorem, we need to show
that it holds in both ‘directions’:

LTR: Assume that A is a [square] complex matrix with an orthonormal set of eigenvectors. This
means that A is diagonalisable (as orthonormal vectors are linearly independent) and so there exists
a P such that the matrix P~'AP is diagonal. This matrix P is the matrix whose columns are the
eigenvectors of A, and as these are orthonormal, we can see from the above observation that P will be
unitary. For unitary matrices, P! = P!, and therefore there exists a P such that PTAP is diagonal
(as required).

RTL: Assume that there exists a unitary matrix P such that PTAP is diagonal. Now, as P is unitary,
from the observation above, its column vectors must be orthonormal. Further, as PTAP is diagonal
and unitary matrices are such that P! = Pt we have a matrix P~'AP that is diagonal. Now, this
is the result of our standard diagonalisation procedure, and so P is a matrix whose columns are the
eigenvectors of the [in general, complex and square] matrix A. But we have seen that these column
vectors are orthonormal, and so the eigenvectors of A must form an orthonormal set (as required).

It is now convenient to define another special kind of complex matrix, namely:
Definition: A [square] complex matrix A is normal iff ATA = AAT,

and this leads to the following useful theorem:

Theorem: A [square| complex matrix is normal iff A is unitarily diagonalisable.

Proof: We have to establish that this theorem holds by proving it in both ‘directions’.

RTL: We assume that A is unitarily diagonalisable, that is, there exists a unitary matrix P such that
the matrix PTAP = D is diagonal. Now P is unitary, and so PT = P!, which means that A = PDPT,
and taking the complex conjugate transpose of this we get AT = (PDPT)! = PD'PT. Further, using
these, we can see that

AAT = (PDPT)(PD'PT) = PDD'PT and ATA = (PD'PT)(PDP') = PDTDPT

where, again, we have used the fact that Pf = P~!. But, for the diagonal matrix D = diag(A1, Ag, . - -,
An) it should be clear that DD = DD as

DD = diag(|A1|%, [A2]%, ..., |An]?) = D'D

Consequently, AAT = ATA| and so the matrix A is normal (as required).
LTR: This is quite hard, and so due to considerations of space, we shall omit it here.
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