
Further Mathematical Methods (Linear Algebra) 2002

Lecture 20: Singular Values Decomposition

Recall that the spectral decomposition of a matrix A is only possible if the matrix is normal, that is,
if it is such that AA† = A†A. But, if A is an m× n matrix with m 6= n (i.e. A is not square), then A
cannot be a normal matrix as:

• AA† is an m×m matrix.

• A†A is an n× n matrix.

and so, since these matrices are of different sizes, they cannot be equal. However, we can find
something, called the singular values decomposition, which is the non-square matrix analogue of the
spectral decomposition. To see this, we first note that:

Theorem 20.1 Let A be an m×n matrix. The matrices AA† and A†A are both Hermitian and they
have the same positive eigenvalues. Further, the orthonormal sets of eigenvectors {x1,x2, . . . ,xk}
and {y1,y2, . . . ,yk} corresponding to the positive eigenvalues of AA† and A†A can be chosen so that

xi =
1√
λi

Ayi and yj =
1√
λj

A†xj .

Proof: To start with, since (AA†)† = AA† and (A†A)† = A†A, the matrices AA† and A†A are
both Hermitian. As such, we know from the lecture on complex matrices that they will have real
eigenvalues. We further note that:

• For any eigenvalue λ of AA†, we have AA†x = λx with x 6= 0. Thus, since

x†AA†x = (A†x)†A†x = ‖A†x‖2 ≥ 0,

and
x†AA†x = λx†x = λ‖x‖2,

we have λ ≥ 0 since ‖x‖2 ≥ 0. Consequently, any eigenvalue of AA† is non-negative.

• For any eigenvalue λ of A†A, we have A†Ax = λx with x 6= 0. Thus, since

x†A†Ax = (Ax)†Ax = ‖Ax‖2 ≥ 0,

and
x†A†Ax = λx†x = λ‖x‖2,

we have λ ≥ 0 since ‖x‖2 ≥ 0. Consequently, any eigenvalue of A†A is non-negative.

Now, we also have to show that the matrices AA† and A†A have the same non-zero eigenvalues and
to do this, we note that:

• For any eigenvalue λ of AA†, we have AA†x = λx with x 6= 0. That is, multiplying through by
A†, we have

A†(AA†)x = λA†x =⇒ (A†A)(A†x) = λ(A†x) =⇒ A†Ay = λy,

where we have set y = A†x. Thus, provided that y 6= 0, any eigenvalue of AA† is also an
eigenvalue of A†A. However, if y = 0, then

λx = AA†x = Ay = A0 = 0,

i.e. since x 6= 0, we have λ = 0. Consequently, this analysis only holds if we are considering
the non-zero eigenvalues of AA†.
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• For any eigenvalue λ of A†A, we have A†Ax = λx with x 6= 0. That is, multiplying through by
A, we have

A(A†A)x = λAx =⇒ (AA†)(Ax) = λ(Ax) =⇒ AA†y = λy,

where we have set y = Ax. Thus, provided that y 6= 0, any eigenvalue of A†A is also an
eigenvalue of AA†. However, if y = 0, then

λx = A†Ax = A†y = A†0 = 0,

i.e. since x 6= 0, we have λ = 0. Consequently, this analysis only holds if we are considering
the non-zero eigenvalues of A†A.

Thus, the matrices AA† and A†A have the same positive eigenvalues (as required).

Further, we have to prove that the orthonormal sets of eigenvectors {x1,x2, . . . ,xk} and {y1,y2, . . . ,yk}
corresponding to the positive eigenvalues of AA† and A†A can be chosen so that

xi =
1√
λi

Ayi and yj =
1√
λj

A†xj .

Now, from the lecture on complex matrices, we know that such sets of orthonormal eigenvectors
can be found since the matrices AA† and A†A are Hermitian, and hence normal. So, given such
orthonormal sets of eigenvectors, we note that:

• {y1,y2, . . . ,yk} is an orthonormal set of eigenvectors corresponding to the non-zero eigenvalues
λ1, λ2, . . . , λk of A†A and from above, we know that {Ay1, Ay2, . . . ,Ayk} are eigenvectors for
the non-zero eigenvalues λ1, λ2, . . . , λk of AA†. So, since

〈Ayi, Ayj〉 = (Ayi)†Ayj = y†iA
†Ayj = λiy

†
iyj =

{
λi if i = j

0 if i 6= j
,

we can see that the set of vectors {x1,x2, . . . ,xk} where

xi =
1√
λi

Ayi,

is an orthonormal set of eigenvectors corresponding to the non-zero eigenvalues λ1, λ2, . . . , λk

of AA†.

• {x1,x2, . . . ,xk} is an orthonormal set of eigenvectors corresponding to the non-zero eigenvalues
λ1, λ2, . . . , λk of AA† and from above, we know that {A†x1, A

†x2, . . . ,A
†xk} are eigenvectors for

the non-zero eigenvalues λ1, λ2, . . . , λk of A†A. So, since

〈A†xi, A
†xj〉 = (A†xi)†A†xj = x†iAA†xj = λjx

†
ixj =

{
λj if i = j

0 if i 6= j
,

we can see that the set of vectors {y1,y2, . . . ,yk} where

yj =
1√
λj

A†xj ,

is an orthonormal set of eigenvectors corresponding to the non-zero eigenvalues λ1, λ2, . . . , λk

of A†A.

Thus, we have established the required result. ♠
Now, using this Theorem, it is possible to derive the analogue of the spectral decomposition that we
spoke of earlier. That is:
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Theorem 20.2 Let A be an m×n matrix where the matrices AA† and A†A have positive eigenvalues
λ1, λ2, . . . , λk and orthonormal sets of eigenvectors given by {x1,x2, . . . ,xk} and {y1,y2, . . . ,yk}
corresponding to these eigenvalues such that

xi =
1√
λi

Ayi and yj =
1√
λj

A†xj .

In this case, we can write

A =
k∑

i=1

√
λixiy

†
i ,

and this is called the singular values decomposition of A and the scalars
√

λ1,
√

λ2, . . . ,
√

λk are called
the singular values of this matrix.

Proof: Clearly, by Theorem 19.4, we know that this Theorem will hold for any m× n matrix with
m 6= n. So, to establish this result, we note that we can extend the orthonormal set of eigenvectors
{y1,y2, . . . ,yk} corresponding to the positive eigenvalues of the matrix A†A, to an orthonormal set
of eigenvectors {y1,y2, . . . ,yk,yk+1, . . . ,yn} for the non-negative eigenvalues of the n × n matrix
A†A.1 Now, we recall from the lecture on complex matrices that the spectral decomposition of the
identity matrix can be written in terms of this extended orthonormal set of eigenvectors, i.e.

I =
n∑

i=1

yiy
†
i ,

and multiplying this through by the matrix A we get

A =
n∑

i=1

Ayiy
†
i .

However, for k + 1 ≤ i ≤ n, we have zero eigenvalues which means that y†iA
†Ayi = λi‖yi‖2 = 0 and

so,
y†iA

†Ayi = (Ayi)†Ayi = ‖Ayi‖ = 0 =⇒ Ayi = 0,

that is, the last n− k terms in our summation are zero. Thus, we have

A =
k∑

i=1

Ayiy
†
i .

and since,

xi =
1√
λi

Ayi,

this means that we can write

A =
k∑

i=1

√
λixiy

†
i ,

as required. ♠
You may wonder why we have bothered to do this. However, the singular values decomposition of a
matrix gives us a nice way of calculating its strong generalised inverse, namely:

Theorem 20.3 If A is an m× n matrix whose singular values decomposition is given by

A =
k∑

i=1

√
λixiy

†
i ,

then the strong generalised inverse of A is given by

AG =
k∑

i=1

1√
λi

yix
†
i .

1That is, the vectors yk+1,yk+2, . . . ,yn are eigenvectors corresponding to the eigenvalue λ = 0 of A†A (which has
multiplicity n− k).
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Proof: See Question 7 of Problem Sheet 10. ♠

For example: For an example of calculating the singular values decomposition of a matrix and then
using this to find its strong generalised inverse, see Question 6 of Problem Sheet 10. ♣
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