
Further Mathematical Methods (Linear Algebra) 2002

Lecture 3: Linear Transformations

In this hand-out we are going to look at linear transformations: what they are, what properties they
have, and how they can be represented by a matrix. We shall also investigate how bases are actually
used and see ways of ‘changing’ the basis we want to work with. The Learning Objectives associated
with this hand-out are given at the end.

3.1 What Are Linear Transformations?

Consider two vector spaces V and W , a transformation (or mapping) from V to W is a function,
T : V → W , which takes vectors v ∈ V and gives us corresponding vectors T (v) ∈ W . In this
hand-out we will be concerned with a special class of transformations, namely those which are linear
— that is, where the transformation of a linear combination of vectors in V will give us a linear
combination of transformed vectors in W . Or, in symbols, transformations, T : V → W , where given
vectors v1,v2 ∈ V ,

T (α1v1 + α2v2) = α1T (v1) + α2T (v2)

where T (v1), T (v2) ∈ W . So, formally, we have:

Definition 3.1 Let V and W be vector spaces. The function, T : V → W , is a linear transformation
from V to W if, for all vectors v1,v2 ∈ V and all scalars α1, α2,

T (α1v1 + α2v2) = α1T (v1) + α2T (v2)

Further, the vector spaces V and W are called the domain and co-domain of T respectively.

The action of a linear transformation on a vector v ∈ V is illustrated in Figure 3.1.

T( )vv

00

V WT

Figure 3.1: A schematic representation of the linear transformation T : V → W . Every point in
the ellipses labelled V and W is supposed to represent a vector in the vector spaces V and W
respectively. The vector v ∈ V is ‘transformed’ to the vector T (v) ∈ W under the action of the
linear transformation T : V → W . (Notice that under such transformations, the null vector in V
always maps to the null vector in W — see Theorem 3.3.)

Now, although the definition only stipulates how a linear combination of two vectors in V is
mapped to W under a linear transformation, we should expect that a more general linear combination
should be transformed in much the same way. To this end, we note that

Theorem 3.2 Let V and W be vector spaces. If T : V → W is a linear transformation, then

T (α1v1 + α2v2 + · · ·+ αmvm) = α1T (v1) + α2T (v2) + · · ·+ αmT (vm)

for vectors v1,v2, . . . ,vm ∈ V and scalars α1, α2, . . . , αm. This represents the fact that linear trans-
formations preserve linear combinations.

Proof: Let V and W be vector spaces, and consider the linear transformation from V to W .
Clearly, as the vectors v1,v2, . . . ,vm are in the vector space V and α1, α2, . . . , αm are scalars, the
linear combination α1v1 + α2v2 + · · ·+ αmvm is in V too. Consequently, to prove the Theorem, all
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we have to do is apply Definition 3.1 to the vector represented by this linear combination. That is,
using the definition we see that:

T (α1v1 + α2v2 + α3v3 + · · ·+ αmvm) = α1T (v1) + T (α2v2 + α3v3 + · · ·+ αmvm)
= α1T (v1) + α2T (v2) + T (α3v3 + · · ·+ αmvm)

and on the (m− 1)th application of the definition we find that

T (α1v1 + α2v2 + α3v3 + · · ·+ αmvm) = α1T (v1) + α2T (v2) + α3T (v3) + · · ·+ αmT (vm)

which is a vector in W . ♠
Indeed, several useful consequences of Definition 3.1 are given in the following theorem:

Theorem 3.3 Let V and W be vector spaces. If T : V → W is a linear transformation, then

1. T (0) = 0.

2. T (−v) = −T (v).

3. T (u− v) = T (u)− T (v).

for all vectors u,v ∈ V .

The proof of this theorem will be discussed in Problem Sheet 2.

Lastly, we consider what happens when you find the composition of two linear transformations,
namely:

Definition 3.4 Let U , V and W be vector spaces. If T1 : U → V and T2 : V → W are linear
transformations, then the composition of T2 with T1, denoted by T2 ◦ T1 : U → W , is the function
given by the formula

(T2 ◦ T1)(u) = T2(T1(u))

for any vector u ∈ U .

It should be clear that in order for such a composition to make sense, we require that for any
u ∈ U , the vector T1(u) ∈ V must lie in the domain of T2. (Otherwise, there would be vectors
u ∈ U that could not be mapped to the vector space W by the composition (T2 ◦ T1)(u) contrary
to Definition 3.4.) The action of a composition of two linear transformations on a vector u ∈ U
is illustrated in Figure 3.2. We also note that, as may be expected, the composition of two linear
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Figure 3.2: A schematic representation of the composition, T2 ◦ T1 : U → W , of two linear transfor-
mations T1 : U → V and T2 : V → W . The vector u ∈ U is ‘transformed’ to the vector T1(u) ∈ V
and this in turn is ‘transformed’ to the vector T2(T1(u)) ∈ W under the action of the composition
T2 ◦ T1. Alternatively, using (T2 ◦ T1)(u) we ‘transform’ u ∈ U to T2(T1(u)) ∈ W directly. (Notice
that under all of these transformations, the null vector in the domain always maps to the null vector
in the co-domain — see Theorem 3.3.)

transformations is itself a linear transformation, i.e.
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Theorem 3.5 If T1 : U → V and T2 : V → W are linear transformations, then (T2 ◦ T1) : U → W
is also a linear transformation.

Proof: Let u1 and u2 be two general vectors in U and let α1 and α2 be two general scalars. By
Definition 3.4, this means that

(T2 ◦ T1)(α1u1 + α2u2) = T2(T1(α1u1 + α2u2))
= T2(α1T1(u1) + α2T1(u1))
= α1T2(T1(u1)) + α2T2(T1(u1))

∴ (T2 ◦ T1)(α1u1 + α2u2) = α1(T2 ◦ T1)(u1) + α2(T2 ◦ T1)(u1)

and so, by Definition 3.1, T2 ◦ T1 is a linear transformation. ♠
Let us now look at some examples.

Example: Which of the following three transformations are linear?

1. T1 : V → V given by T1(v) = 0.

2. T2 : V → V given by T2(v) = kv for some non-zero fixed scalar k.

3. T3 : V → V given by T3(v) = v + v0 for some fixed non-zero vector v0 ∈ V .

Further, find the compositions T1 ◦ T2 and T1 ◦ T2.

Solution: To see whether these transformations are linear, we have to see whether they satisfy
Definition 3.1, i.e. does

T (α1v1 + α2v2) = α1T (v1) + α2T (v2)

for all vectors v1,v2 ∈ V and all scalars α1, α2?

(1) Consider two general vectors v1,v2 ∈ V and two general scalars α1, α2. We observe that for the
transformation T1 : V → V given by T1(v) = 0, we have

T1(α1v1 + α2v2) = 0, T1(v1) = 0 and T1(v2) = 0

as the vectors α1v1 + α2v2, v1 and v2 are all in V . Consequently, we can see that

T1(α1v1 + α2v2) = 0 and α1T1(v1) + α2T1(v2) = α10 + α20 = 0

These two expressions are equal for the general vectors and scalars considered and so T1(v) is a linear
transformation. (Note that this linear transformation is sometimes referred to as the null (or zero)
transformation.)

(2) Consider two general vectors v1,v2 ∈ V and two general scalars α1, α2. We observe that for the
transformation T2 : V → V given by T2(v) = kv where k is some non-zero fixed scalar, we have

T2(α1v1 + α2v2) = k(α1v1 + α2v2), T2(v1) = kv1 and T2(v2) = kv2

as the vectors α1v1 + α2v2, v1 and v2 are all in V . Consequently, we can see that

T2(α1v1 + α2v2) = k(α1v1 + α2v2) = α1kv1 + α2kv2 = α1T2(v1) + α2T2(v2)

and so, T2(v) is a linear transformation. (Note that this linear transformation is sometimes referred
to as a contraction of V with factor k if 0 < k < 1 (or a dilation of V with factor k if k > 1) as it
‘compresses’ (or ‘stretches’) each vector in V by a factor of k.)

(3) Consider two general vectors v1,v2 ∈ V and two general scalars α1, α2. We observe that for the
transformation T3 : V → V given by T3(v) = v + v0 where v0 ∈ V is a fixed non-zero vector, we
have

T3(α1v1 + α2v2) = α1v1 + α2v2 + v0, T3(v1) = v1 + v0 and T3(v2) = v2 + v0
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as the vectors α1v1 + α2v2, v1 and v2 are all in V . Consequently, we can see that as

α1T2(v1) + α2T2(v2) = α1(v1 + v0) + α2(v2 + v0) = α1v1 + α2v2 + (α1 + α2)v0

is not equal to
T3(α1v1 + α2v2) = α1v1 + α2v2 + v0

for the general vectors and scalars considered, T3(v) is not a linear transformation.1 (Note that this
transformation, although not linear, is very useful in linear algebra and we shall look at why it is
important later.)

Lastly, we note that the compositions T1 ◦ T2 : V → V and T2 ◦ T1 : V → V are given by

T1 ◦ T2(v) = T1(T2(v)) = T1(kv) = 0

and
T2 ◦ T1(v) = T2(T1(v)) = T2(0) = k0 = 0

for any vector v ∈ V and some fixed non-zero scalar k. (Notice that both compositions map every
vector v ∈ V to the null vector 0 in this case.) ♣
You should also note that within this general framework, we can look at linear transformations which
map between real function spaces too. We now turn to an illustration of this.

Example: Recall that PRn is the subspace of FR that contains all polynomials of degree at most n
(where n is a non-negative integer).2 That is, every vector p ∈ PRn is of the form

p = a0 · 1 + a1 · x + · · ·+ an · xn

where p : x → p(x) for all x ∈ R and

p(x) = a0 + a1x + · · ·+ anxn

for all x ∈ R. Which of the following three transformations are linear?

1. T1 : PR2 → PR2 given by T1(p) : x → p(x + k) for all x ∈ R and some fixed real number k.

2. T2 : PR2 → PR2+m given by T2(p) : x → xmp(x) for all x ∈ R and some fixed integer m ≥ 0.

3. T3 : PR2 → PR2 given by T3(p) : x → p(x) + k for all x ∈ R and some fixed non-zero scalar k.

Further, find the compositions T1 ◦ T2 and T1 ◦ T2.

Solution: As in the previous example, to see whether these transformations are linear, we have to
see whether they satisfy Definition 3.1, i.e. does

T (α1p1 + α2p2) = α1T (p1) + α2T (p2)

for all vectors p1,p2 ∈ PR2 and all scalars α1, α2?

(1) Consider two general vectors p1,p2 ∈ PR2 and two general scalars α1, α2. We observe that for the
transformation T1 : PR2 → PR2 given by T1(p) : x → p(x+ k) for all x ∈ R and some fixed real number
k, we have

T1(α1p1 + α2p2) : x → α1p1(x + k) + α2p2(x + k), ∀x ∈ R
because the vector α1p1+α2p2 ∈ PR2 is defined using point-wise operations and so [α1p1+α2p2](x) =
α1p1(x) + α2p2(x) for all x ∈ R.3 Similarly, we have:

T1(p1) : x → p1(x + k) and T1(p2) : x → p2(x + k)
1But, this should be obvious as T3(0) = 0 + v0 = v0 6= 0 contrary to Theorem 3.3(1).
2This subspace of FR was first introduced in the Example on p. 19 of the hand-out for Lecture 2.
3See Section 1.3.3.
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for all x ∈ R. Consequently, we can see that as

α1T1(p1) + α2T1(p2) : x → α1p1(x + k) + α2p2(x + k)

for all x ∈ R, it is the case that

T1(α1p1 + α2p2) = α1T1(p1) + α2T1(p2)

and so as these expressions are equal for the general vectors and scalars considered, T1(p) is a linear
transformation. (Note that when this linear transformation is applied to a [quadratic] polynomial
p(x), it ‘shifts’ it in the negative x-direction by k units.)

(2) Consider two general vectors p1,p2 ∈ PR2 and two general scalars α1, α2. We observe that for the
transformation T2 : PR2 → PRm+2 given by T2(p) : x → xmp(x) for all x ∈ R and some fixed integer
m ≥ 0, we have

T2(α1p1 + α2p2) : x → α1x
mp1(x) + α2x

mp2(x), ∀x ∈ R
because the vector α1p1+α2p2 ∈ PR2 is defined using point-wise operations and so [α1p1+α2p2](x) =
α1p1(x) + α2p2(x) for all x ∈ R. Similarly, we have:

T2(p1) : x → xmp1(x) and T2(p2) : x → xmp2(x)

for all x ∈ R. Consequently, we can see that as

α1T2(p1) + α2T2(p2) : x → α1x
mp1(x) + α2x

mp2(x)

for all x ∈ R, it is the case that

T2(α1p1 + α2p2) = α1T1(p1) + α2T1(p2)

and so as these expressions are equal for the general vectors and scalars considered, T2(p) is a linear
transformation. (Note that when this linear transformation is applied to a [quadratic] polynomial
p(x), it turns it into another polynomial xmp(x) [which is of degree 2 + m].)

(3) Consider two general vectors p1,p2 ∈ PR2 and two general scalars α1, α2. We observe that for the
transformation T3 : PR2 → PR2 given by T3(p) : x → p(x) + k for all x ∈ R and some fixed non-zero
scalar k, we have

T3(α1p1 + α2p2) : x → α1p1(x) + α2p2(x) + k, ∀x ∈ R
because the vector α1p1+α2p2 ∈ PR2 is defined using point-wise operations and so [α1p1+α2p2](x) =
α1p1(x) + α2p2(x) for all x ∈ R. Similarly, we have:

T3(p1) : x → p1(x) + k and T3(p2) : x → p2(x) + k

for all x ∈ R. Consequently, we can see that as, for all x ∈ R,

α1T3(p1) + α2T3(p2) : x → α1(p1(x) + k) + α2(p2(x) + k) = α1p1(x) + α2p2(x) + (α1 + α2)k

is not equal to
T3(α1p1 + α2p2) : x → α1p1(x) + α2p2(x) + k,

for the general vectors and scalars considered, T3(p) is not a linear transformation.4 (Note that this
transformation (which we could have written as T3(p) = p+k ·1), although not linear, is very useful
in linear algebra and we shall look at why it is important later.)

4But, this should be obvious as T3(0) = 0 + k · 1 = k · 1 6= 0 contrary to Theorem 3.3(1). (Recall that here, 0 ∈ PRn
corresponds to the zero function (or, indeed, the null polynomial) — see Section 1.3.3.)
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Lastly, we note that the composition T1 ◦T2 is only defined if m = 0 as we require that the co-domain
of T2 (i.e. PR2+m) is the same as the domain of T1 (i.e. PR2 ). So, in this case, T1 ◦ T2 : PR2 → PR2 is
given by

T1 ◦ T2(p) = T1(T2(p)) = T1(p) : x → p(x + k), ∀x ∈ R
and T2 ◦ T1 : PR2 → PR2+m is

T2 ◦ T1(p(x)) = T2(T1(p(x))) = T2(p(x + k)) : x → xmp(x + k), ∀x ∈ R

for any vector p ∈ PR2 such that p(x) = p(x) and some fixed non-zero real number k and fixed integer
m ≥ 0. ♣

3.2 Ranges, Null Spaces And The Rank-Nullity Theorem

Associated with each linear transformation T : V → W are two special vector spaces which will be
very useful in our study of linear algebra. One of them is the null space of T and this is a subspace
of V which contains all of the vectors in V which T maps to the null vector (or additive identity) in
W . The other is the range of T and this is a subspace of W which contains all of the vectors in W
that are mapped to from vectors in V by T . So, formally, we have:

Definition 3.6 Let V and W be vector spaces and let T : V → W be a linear transformation. The
null space (or kernel) of T , denoted by N(T ), is the subset

N(T ) = {v ∈ V | T (v) = 0}

of V , and the range of T , denoted by R(T ), is the subset

R(T ) = {w ∈ W | T (v) = w for some v ∈ V }

of W .

The relationship between the null-space and the range of a linear transformation T : V → W is
illustrated in Figure 3.3. Of course, we still have to justify the assertion that the null space and
range of T are not just subsets, but also subspaces, of V and W respectively. This fact is established
in the following theorem:

Theorem 3.7 Let V and W be vector spaces. If T : V → W is a linear transformation, then the
null space of T is a subspace of V and the range of T is a subspace of W .

The proof of this theorem will be discussed in Problem Sheet 2.

Indeed, as the range and null space of a linear transformation are vector spaces, they will have a
dimension associated with them. That is, we can define:

Definition 3.8 Let V and W be vector spaces. If T : V → W is a linear transformation, then the
dimension of the null space of T is called the nullity of T and is denoted by η(T ), and the dimension
of the range of T is called the rank of T and is denoted by ρ(T ).

Rather surprisingly, despite the fact that the null space and range are subspaces of different vector
spaces (i.e. V and W respectively), there is a relationship between their dimensions as they are
related by the linear transformation T . This relationship is given by the rank-nullity theorem, i.e.

Theorem 3.9 Let V and W be vector spaces. If T : V → W is a linear transformation, then
ρ(T ) + η(T ) = dim(V ).
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Figure 3.3: A schematic representation of the relationship between the null space N(T ) and range
R(T ) of a linear transformation T : V → W . Notice that all vectors in V are mapped into R(T ) ⊆ W ,
and all vectors in N(T ) ⊆ V are mapped to the null vector in W , under the action of T . (Notice
that as V , W , N(T ) and R(T ) are all vector spaces, they all contain the [appropriate] null vector 0.)

Proof: Let V and W be vector spaces, and further, assume that dim(V ) = n. We start by es-
tablishing that the result holds when 1 ≤ η(T ) ≤ n − 1 and treat the special cases where η(T ) is
0 or n later.5 So, let us assume that η(T ) = r where 1 ≤ r ≤ n − 1, and let the set of vectors
S = {v1,v2, . . . ,vr} be a basis of the null space of T , N(T ) ⊆ V . Now, as S is a basis, it is a linearly
independent set of vectors and so we can find n−r vectors vr+1,vr+2, . . . ,vn such that the expanded
set S′ = {v1,v2, . . . ,vr,vr+1,vr+2, . . . ,vn} is a basis for V .6

But what about the range of T , R(T ) ⊂ W? The proof now proceeds by establishing that the
vectors needed to turn S into S′ (i.e. the vectors vr+1,vr+2, . . . ,vn), when mapped into W by T ,
form a set S′′ = {T (vr+1), T (vr+2), . . . , T (vn)} ⊆ W which is a basis for R(T ). Of course, to show
this, we only need to establish that the set S′′ both spans R(T ) and is linearly independent (recall
Theorem 2.10):

• To show that S′′ spans R(T ): Let w be any vector in the range of T , that is, by Definition 3.6,
there is some vector v ∈ V such that w = T (v) ∈ W . Now, since the set S′ is a basis for V ,
we can write the vector v as a linear combination of the vectors in this set, i.e.

v = α1v1 + α2v2 + · · ·+ αrvr + αr+1vr+1 + αr+2vr+2 + · · ·+ αnvn

We now note that as the vectors v1,v2, . . . ,vr are in the null space of T , by Definition 3.6, we
have T (v1) = T (v2) = · · · = T (vr) = 0, and consequently because T is a linear transformation,7

we have
w = T (v) = 0 + αr+1T (vr+1) + αr+2T (vr+2) + · · ·+ αnT (vn)

Thus, any vector w ∈ R(T ) can be written as a linear combination of the vectors in the set
S′′ = {T (vr+1), T (vr+2), . . . , T (vn)}, and so S′′ spans R(T ) by Definition 2.2 (as required).

5It should be obvious that if U is a subspace of a [finite dimensional] vector space V , then 0 ≤ dim(U) ≤ dim(V ).
Clearly, dim(U) ≥ 0 holds because the smallest possible subspace of V is {0} and this has a dimension of zero. Further,
the fact that dim(U) ≤ dim(V ) was established in the Harder Problems of Problem Sheet 1.

6This is a direct consequence of Theorem 2.9, that is, we could prove a generalisation of this result which says that:
If S ⊆ V is a linearly independent set of vectors that is not already a basis for V , then the set S can be expanded to
form a new set S′ which is a basis for V by adding appropriate vectors to S. If you are suspicious of this, you will have
the chance to prove this result (and another related theorem) in the Harder Problems of Problem Sheet 2.

7Note the implicit use of Theorem 3.2 here.

3-7



• To show that S′′ is linearly independent: To show that the vectors in S′′ are linearly
independent, consider the vector equation

αr+1T (vr+1) + αr+2T (vr+2) + · · ·+ αnT (vn) = 0

as per Definition 2.6. Since T is a linear transformation, this implies that8

T (αr+1vr+1 + αr+2vr+2 + · · ·+ αnvn) = 0

and so, by Definition 3.6, the vector αr+1vr+1 + αr+2vr+2 + · · ·+ αnvn is in the null space of
T . Consequently, we can write this vector as a linear combination of the vectors in S as this
set is a basis for the null space of T , i.e. there are scalars α1, α2, . . . , αr such that

αr+1vr+1 + αr+2vr+2 + · · ·+ αnvn = α1v1 + α2v2 + · · ·+ αrvr

which on re-arranging gives

α1v1 + α2v2 + · · ·+ αrvr − αr+1vr+1 − αr+2vr+2 − · · · − αnvn = 0

But, since the set S′ is a basis, and hence linearly independent, all of the coefficients in this
vector equation must be zero. Hence, in particular, αr+1 = ar+2 = · · · = αn = 0, and the
vectors in S′′ are linearly independent (as required).

Consequently, we have shown that the set S′′ = {T (vr+1), T (vr+2), . . . , T (vn)} is a basis of R(T ),
and further the rank of T , i.e. ρ(T ), must equal n− r as there are this many vectors in S′′.

The required result now follows from the fact that η(T ) = r and ρ(T ) = n− r, i.e.

η(T ) + ρ(T ) = r + (n− r) = n = dim(V )

as we assumed that V was an n-dimensional vector space in the proof. (The special cases where
η(T ) = 0 or n will be considered in Problem Sheet 2.) ♠
Let us now look at some examples of this.

For example: We saw in the previous section that T1(v) = 0 and T2(v) = kv [for some non-zero
fixed scalar k] are linear transformations from V to V . Let us illustrate these new concepts by
applying them to these two simple examples.

As T1 maps all vectors in its domain to the null vector in its co-domain, the null space of
T1 is V and its range is {0}. Consequently, the nullity of T1 is dim(V ), its rank is zero and as
dim(V ) + 0 = dim(V ) the rank-nullity theorem is satisfied.

As T2 only maps the null vector in the domain to the null vector in the co-domain, the null space
of T2 is {0}. Further, the range of T2 is V (as, for every vector in the co-domain, there is a vector
in the domain which will map to it under T2). Consequently, the nullity of T2 is zero, its rank is
dim(V ) and as 0 + dim(V ) = dim(V ) the rank-nullity theorem is [again] satisfied. ♣
But finding the range and null-space of a linear transformation may not always be so easy as we shall
see in Problem Sheet 2.

3.3 Representing Linear Transformations By Matrices

However, despite the utility of this abstract way of looking at linear transformations when trying to
prove theorems, it is not always the most convenient way of dealing with them. In this section we
shall look at a linear transformation T : V → W where V and W are n and m-dimensional spaces
respectively to see how it is often easier to represent the transformation as a matrix instead of a
function. As the development of this idea can be quite confusing, we shall split the discussion into
four parts.

8Note the implicit use of Theorems 3.2 and 3.3(1) here.
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3.3.1 Coordinates and coordinate vectors

To see how this is done, we start by considering that any vector v ∈ V is just an object in this n-
dimensional vector space and its representation depends on the basis which we choose. For instance
if the set of vectors S = {v1,v2, . . . ,vn} is a basis for V , we can represent v as a linear combination
of the vectors in this set, i.e.

v = x1v1 + x2v2 + · · ·+ xnvn

where the coefficients x1, x2, . . . , xn are scalars. Now, if all of these scalars are real numbers, we can
regard the column vector [x1, x2, . . . , xn]t in Rn as another way of representing the vector v with
respect to the basis S.9

Of course, although I say that this is a ‘new representation’ of the vector v ∈ V , you have seen
and used it before, even in this course. The column vector in question, namely [x1, x2, . . . , xn]t, has
a standard geometrical interpretation. That is, in the case where V is Rn, we can think of v as the
position vector of some point in the space, and this column vector is nothing more than the coordinate
vector which tells us where this point is relative to the basis vectors that lie along the axes being used.
Indeed, this is why it is important that we know which basis is being used when doing calculations
with coordinate vectors — if we change the basis vectors (i.e. the directions of the axes10), then we
will change the coordinate vector (i.e. the coordinates) of the point we are looking at!

So, formally, we have:

Definition 3.10 Let the set of vectors S = {v1,v2, . . . ,vn} be a basis of the vector space V . The
real numbers x1, x2, . . . , xn are the [unique] coordinates of a vector v in the n-dimensional space V
with respect to the basis S iff

v = x1v1 + x2v2 + · · ·+ xnvn

Further, we define [v]S , where

[v]S =




x1

x2
...

xn




S

to be the coordinate vector of v relative to the basis S.

Notice that by Definition 2.1 and Theorem 2.12, the coordinates of a vector with respect to a certain
basis are just the coefficients of the unique linear combination of the basis vectors that is used to
express it.

Example: Consider the sets of vectors

E =








1
0
0


 ,




0
1
0


 ,




0
0
1






 and S =








1
0
1


 ,




1
2
0


 ,




1
1
0






 ,

which are both bases of the vector space R3 (verify this!). The basis given by E is called the standard
basis of R3, and so, unless otherwise stated, vectors will be given in terms of it, i.e. the vector [6, 5, 2]t

(say) is implicitly given in terms of this basis. That is, explicitly,




6
5
2




E

= 6




1
0
0


 + 5




0
1
0


 + 2




0
0
1


 .

Thus, the vector [6, 5, 2]t has coordinates 6, 5, 2 with respect to the basis E [as one would expect!].
However, when referring to a ‘non’-standard basis, such as S, we note that we can write the vector

9Further, this new representation will be unique as the linear combination which gives rise to the coefficients used
in this column vector is unique (recall Theorem 2.12).

10Strictly, the scales on the axes can change too.
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[6, 5, 2]t as a linear combination of the vectors in S, i.e.



6
5
2


 = 2




1
0
1


 + 1




1
2
0


 + 3




1
1
0


 .

So, it is clear that [2, 1, 3]tS is the coordinate vector of the vector [6, 5, 2]t relative to the basis S,
and that 2, 1, 3 are the coordinates of this vector with respect to this basis. One of the many
applications of the matrix representation of a linear transformation is that it enables us to calculate
how the coordinates of a vector change when we switch between bases (see the Appendix at the end
of this hand-out).

3.3.2 Why can matrices represent linear transformations?

Now, consider again the set of vectors S = {v1,v2, . . . ,vn} which is a basis of the n-dimensional
vector space V and the vector v ∈ V such that

v = x1v1 + x2v2 + · · ·+ xnvn

where the coefficients x1, x2, . . . , xn are scalars. Let us also introduce the set of vectors S′ =
{w1,w2, . . . ,wm} to be a basis of the m-dimensional vector space W . If we now consider our
linear transformation, T : V → W , it should be clear that the vectors T (v1), T (v2), . . . , T (vn) will
be in W and so, as S′ is a basis for W , they can be written as linear combinations of the vectors in
S′, i.e.

T (v1) = a11w1 + a21w2 + · · · + am1wm

T (v2) = a12w1 + a22w2 + · · · + am2wm
...

...
...

...
T (vn) = a1nw1 + a2nw2 + · · · + amnwm

We also know that linear combinations are preserved under linear transformations (recall Theo-
rem 3.2), and so

T (v) = T (x1v1 + x2v2 + · · ·+ xnvn) = x1T (v1) + x2T (v2) + · · ·+ xnT (vn)

Consequently, substituting for the vectors T (v1), T (v2), . . . , T (vn) using the linear combinations
above we get

T (v) = x1(a11w1 + a21w2 + · · ·+ am1wm) + · · ·+ xn(a1nw1 + a2nw2 + · · ·+ amnwm)

which on re-arranging gives

T (v) = (x1a11 + x2a12 + · · ·+ xna1n)w1 + · · ·+ (x1am1 + x2am2 + · · ·+ xnamn)wm

Now, if we write
T (v) = y1w1 + y2w2 + · · ·+ ymwm

where the coefficients y1, y2, . . . , ym are scalars and then compare the two expressions for T (v), we
get the matrix equation




y1

y2
...

ym


 =




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn







x1

x2
...

xn




where the ith row represents the coefficient of the vector wi.
But, what does this tell us? To interpret this matrix equation, let us assume for simplicity that

the vector spaces V and W are real, i.e. the scalars x1, x2, . . . , xn and y1, y2, . . . , ym are all real
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numbers.11 This means that the vectors in our matrix equation are such that [x1, x2, . . . , xn]t ∈ Rn

and [y1, y2, . . . , ym]t ∈ Rm, indeed using the notation introduced in Definition 3.10 we can use them
to represent the vectors v ∈ V and T (v) ∈ W respectively, i.e.

• The real numbers x1, x2, . . . , xn are the coordinates of the vector v ∈ V with respect to the
basis S (as v = x1v1 + x2v2 + · · ·+ xnvn) and so we can write [v]S = [x1, x2, . . . , xn]tS .12

• The real numbers y1, y2, . . . , ym are the coordinates of the vector T (v) ∈ W with respect
to the basis S′ (as T (v) = y1w1 + y2w2 + · · · + ymwm) and so we can write [T (v)]S′ =
[y1, y2, . . . , ym]tS′ .

13

Thus, we can see that the matrix equation above can be re-written as

[T (v)]S′ = A[v]S

where A is the m× n matrix (ai,j) given above. Consequently, we can represent the linear transfor-
mation T : V → W as a matrix equation, and formally, we can say that14

Definition 3.11 Given a linear transformation T : V → W , the matrix AT is called the matrix for
T with respect to the bases S and S′ if

[T (v)]S′ = AT [v]S

for all vectors v ∈ V .

Indeed, the analysis presented above can be used to establish that:

Theorem 3.12 Let V and W be n and m-dimensional vector spaces respectively. If T : V → W is
a linear transformation, then there is an m× n matrix A such that T (v) = Av.

or, conversely,

Theorem 3.13 Let V and W be n and m-dimensional vector spaces respectively. If A is an m× n
matrix, then there is a linear transformation T : V → W such that T (v) = Av.

The proofs of these two theorems will be considered in Problem Sheet 2.
We now go on to consider how all of this theory works in practice by looking at how we can find

AT given T and vice versa.

3.3.3 Given T , how do you find AT?

So far, we have only considered examples of simple linear transformations (i.e. those like T (v) = 0
and T (v) = kv in the Example of Section 1.1) which can be expressed in terms of a vector v without
reference to a basis. However, we want to be in a position to deal with more complicated examples
such as, say, the linear transformation T : R3 → R2 given by the formula

T







x
y
z





 =

[
x + y
y + z

]

where clearly, the vectors in R3 that are being transformed are now being represented relative to
some basis by the vector [x, y, z]t ∈ R3. For simplicity, we shall follow the convention introduced in

11The only other possibility that we will consider in this course is that the vector spaces V and W are complex. In
this case, the scalars would be complex numbers and the coordinate vectors would be elements of Cn. The analysis
that follows can easily be altered to take this into account.

12That is, the vector [x1, x2, . . . , xn]t ∈ Rn can be interpreted as the coordinate vector [x1, x2, . . . , xn]tS of v ∈ V
relative to the basis S ⊆ V .

13That is, the vector [y1, y2, . . . , ym]t ∈ Rm can be interpreted as the coordinate vector [y1, y2, . . . , ym]tS′ of T (v) ∈ W
relative to the basis S′ ⊆ W .

14Notice that Definition 3.11 and Theorems 3.12 and 3.13 are completely general and consequently hold for complex
vector spaces too.
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the Example of Section 3.3.1 and assume that if no basis is specified, then the bases being used are
the standard bases of the vector spaces in question.

So, in general, we will have a linear transformation T : V → W given by some formula and we
will want to represent it by some matrix AT such that

AT [v]S = [T (v)]S′

where on the left-hand-side we have AT acting on the coordinate vector of v relative to some basis
S (i.e. we have AT multiplied by [v]S) which gives us the vector on the right-hand-side which is the
result of the transformation — i.e. T ([v]) — expressed as a coordinate vector relative to the basis
S′. We now recall that [v]S is just the vector [x1, x2, . . . , xn]t of scalars x1, x2, . . . , xn such that

v = x1v1 + x2v2 + · · ·+ xnvn

where S = {v1,v2, . . . ,vn} is a basis for V and similarly, [T (v)]S′ is the vector [y1, y2, . . . , yn]t of
scalars y1, y2, . . . , yn such that

T (v) = y1w1 + y2w2 + · · ·+ ymwm

where S′ = {w1,w2, . . . ,wm} is a basis for W . Indeed, using this notation, we found earlier that the
matrix which we seek is contained within the matrix equation

[T (v)]S′ =




y1

y2
...

ym




S′

=




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn







x1

x2
...

xn




S

= AT [v]S

Now, the basis vector v1 ∈ S is represented by the coordinate vector [v1]S = [1, 0, 0, . . . , 0]tS relative
to the basis S, v2 ∈ S by [v2]S = [0, 1, 0, . . . , 0]tS , et cetera and so we can see that

[T (v1)]S′ =




a11

a21
...

am1




as x1 = 1 is the only non-zero component in [v1]S = [1, 0, 0, . . . , 0]tS ,

[T (v2)]S′ =




a12

a22
...

am2




as x2 = 1 is the only non-zero component in [v2]S = [0, 1, 0, . . . , 0]tS , et cetera. Consequently, we
can see that the ith column of the matrix A is just the coordinate vector [T (vi)]S′ gained from
transforming the ith basis vector in S, that is:

AT =


 [T (v1)]S′ [T (v2)]S′ · · · [T (vn)]S′




So, given the formula for some linear transformation T : V → W we now have a method for
calculating a matrix AT such that

[T (v)]S′ = AT [v]S

which is the sought after matrix for T with respect to the bases S and S′ (as defined in Definition 3.11).
Luckily, using this method is much simpler than the derivation and to illustrate this, let us look at
some examples.
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Example: Let T : R3 → R2 be the linear transformation where

T







x
y
z





 =

[
x + y
y + z

]

Find a matrix AT such that T (x) = ATx.

Solution: This is particularly simple if we take the bases S and S′ to be the standard basis for R3

and R2 respectively. As you know, this means that

S =








1
0
0


 ,




0
1
0


 ,




0
0
1






 and S′ =

{[
1
0

]
,

[
0
1

]}

So, calculating the values of T (v) for the elements of S we find that

T







1
0
0





 =

[
1
0

]
, T







0
1
0





 =

[
1
1

]
, and T







0
0
1





 =

[
0
1

]

where the vectors on the left-hand-sides of these expressions are automatically of the required form
(i.e. [T (v)]S′) as S′ is the standard basis of R2. Thus, in this case,

AT =
[

1 1 0
0 1 1

]

is the required matrix for the bases S and S′ given above.
Alternatively, we could make life a little more difficult by specifying that the bases which we want

to use are

S =








1
0
1


 ,




1
2
0


 ,




1
1
0






 and S′ =

{[
1
2

]
,

[
0
−1

]}

where S is the basis of R3 which we considered in Section 3.3.1 and S′ is a basis for R2 (verify this!).
So, as before, we start by calculating T (vi) for the basis vectors vi ∈ S and we find that

T (v1) = T







1
0
1





 =

[
1
1

]
, T (v2) = T







1
2
0





 =

[
3
2

]
and T (v3) = T







1
1
0





 =

[
2
1

]

where the vectors on the left-hand-sides are written in terms of the standard basis of R2. However,
to find AT in this case, we need them to be written in terms of the basis S′ = {w1,w2} where
w1 = [1, 2]t and w1 = [0,−1]t, i.e. we need to find [T (v)]S′ for each of these vectors. To do this we
note that the first expression gives

T (v1) =
[

1
1

]
=

[
1
2

]
+

[
0
−1

]
= w1 + w2 =⇒ [T (v1)]S′ =

[
1
1

]

S′

the second expression gives

T (v2) =
[

3
2

]
= 3

[
1
2

]
+ 4

[
0
−1

]
= 3w1 + 4w2 =⇒ [T (v2)]S′ =

[
3
4

]

S′

and the third expression gives

T (v3) =
[

2
1

]
= 2

[
1
2

]
+ 3

[
0
−1

]
= 2w1 + 3w2 =⇒ [T (v3)]S′ =

[
2
3

]

S′
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Consequently,

AT =
[

1 3 2
1 4 3

]

is the required matrix for the bases S and S′ given above. (Notice that, as expected, if we change
the bases involved we change the matrix.) ♣
However, the power of this method is that the vector spaces V and W do not need to be Euclidean
spaces (i.e. spaces of the form Rn or Cn). Despite the fact that the matrix representation relies on
the coordinate vectors of v and T (v) (i.e. [v]S and [T (v)]S′) being elements of a Euclidean space,
the vectors v and T (v) themselves need not be. Let us consider an illustration of this fact.

Example: Let T : PR2 → PR1 be the linear transformation where

T (a0 · 1 + a1 · x + a2 · x2) = a1 · 1 + 2a2 · x
Find a matrix A such that T (p) = Ap for p ∈ PR2 .

Note: Although we haven’t come across it yet, the standard basis for PRn is the set of vectors
{1,x, . . . ,xn}.
Solution: This is particularly simple if we take the bases S and S′ to be the standard basis for PR2
and PR1 respectively. This means that

S = {1,x,x2} and S′ = {1,x}
So, calculating the values of T (p) for the elements of S we find that

T (1) = 0, T (x) = 1 and T (x2) = 2 · x
where the vectors on the left-hand-sides of these expressions are automatically of the required form
(i.e. [T (p)]S′) as S′ is the standard basis of PR1 . Thus, in this case,

AT =
[

0 1 0
0 0 2

]

is the required matrix for the bases S and S′ given above.
Alternatively, we could [again] make life a little more difficult by specifying that the bases which

we want to use are

S = {4 · x + 1,x2 + 2 · x,x2 + 1} and S′ = {x + 1,x− 1}
So, as before, we start by calculating T (vi) for the basis vectors vi ∈ S and we find that

T (4 · x + 1) = 4 · 1, T (x2 + 2 · x) = 2 · x + 2 · 1 and T (x2 + 1) = 2 · x
where the vectors on the left-hand-sides are written in terms of the standard basis of PR1 . However,
to find AT in this case, we need them to be written in terms of the basis S′ = {w1,w2} where
w1 = x + 1 and w2 = x − 1, i.e. we need to find [T (v)]S′ for each of these vectors. To do this we
note that the first expression gives

T (v1) = 4 · 1 = 2 · (w1 −w2) = 2 ·w1 − 2 ·w2 =⇒ [T (v1)]S′ =
[

2
−2

]

S′

the second expression gives

T (v2) = 2 · x + 2 · 1 = 2 ·w1 =⇒ [T (v2)]S′ =
[

2
0

]

S′

and the third expression gives

T (v3) = 2 · x = w1 + w2 =⇒ [T (v3)]S′ =
[

1
1

]

S′
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Consequently,

AT =
[

2 2 1
−2 0 1

]

is the required matrix for the bases S and S′ given above. (Notice that, as expected, if we change
the bases involved we change the matrix.) ♣

3.3.4 Given AT , how do you find T?

What happens if you are given a linear transformation T in terms of a matrix AT and you want to
find its null space or range? Well, luckily, a matrix also has a range and a null space associated with
it, and these are — relative to the bases involved — the same as the range and null space of the
transformation. You learnt how to calculate the range and null space of a matrix in MA100 (using
row operations et cetera) and so we won’t go over this again here. However, an alternative method
would be to try and recover the linear transformation from the matrix and use this to calculate the
range and null space.

So, we start with a matrix equation such as

[T (v)]S′ = AT [v]S

where [v]S ∈ V and [T (v)]S′ ∈ W , and we want to find the linear transformation T : V → W which
corresponds to this, i.e.

w = T (v)

where w ∈ W and v ∈ V are written relative to the standard basis. To see how this is done, we start
by re-writing the given matrix equation as

[T (v)]S′ =




y1

y2
...

ym




S′

=




a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn







x1

x2
...

xn




S

= AT [v]S

using the notation introduced earlier. As we want to recover this linear transformation in terms of
the standard bases of V and W , it would be good if we could find its matrix representation with
respect to these bases. That is, we want to convert the coordinate vectors [v]S and [T (v)]S′ relative
to the bases S and S′ of V and W respectively into coordinate vectors [v] and [T (v)] relative to the
standard bases of V and W respectively. To do this, we just ‘change basis’ (see the Appendix at the
end of this hand-out if you don’t know how to do this!), i.e. we note that

V[v]S = [v] and W[T (v)]S′ = [T (v)]

where the columns of the matrices V and W are the basis vectors in S and S′ respectively. Conse-
quently, on re-arranging these expressions and substituting we have

[T (v)] = WAT V−1[v]

where WAT V−1 is the matrix representing T with respect to the standard bases of S and S′. Now,
if we let [v] be some vector [z1, z2, . . . , zn]t and multiply it by WAT V−1, we will find the effect that
T has on vectors in V — which is what we were after.

Again, the method is easier to apply in practice, and so let us look at an example.

Example: Given that a linear transformation T : R3 → R2 is represented by the matrix

AT =
[

1 3 2
1 4 3

]
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where the bases being used in R3 and R2 are

S =








1
0
1


 ,




1
2
0


 ,




1
1
0






 and S′ =

{[
1
2

]
,

[
0
−1

]}

find the formula for T (v).

Solution: As per the method above, we start by finding the matrices which will change the bases
being used in R3 and R2 from S and S′ to the appropriate standard basis. As these matrices just
have the basis vectors as their columns we get

V =




1 1 1
0 2 1
1 0 0


 and W =

[
1 0
2 −1

]

So, as indicated above, we then calculate the matrix product

WAT V−1 =
[

1 0
2 −1

] [
1 3 2
1 4 3

]


0 0 1
−1 1 1
2 −1 −2


 =

[
1 1 0
0 1 1

]

and multiply this matrix by a vector [z1, z2, z3]t representing [v], to get

[
1 1 0
0 1 1

]


z1

z2

z3


 =

[
z1 + z2

z2 + z3

]

which tells us that the formula for T (v) is

T







z1

z2

z3





 =

[
z1 + z2

z2 + z3

]

as you may have expected. ♣

3.4 Appendix: How To Change Basis

Let us consider a vector x in a vector space V which is given by the coordinate vectors

• [x]S = [a1, a2, . . . , an]tS relative to a basis S = {u1,u2, . . . ,un} ⊆ V

• [x]S′ = [b1, b2, . . . , bn]tS′ relative to some other basis S′ = {v1,v2, . . . ,vn} ⊆ V

Now, as both of these coordinate vectors represent the same vector, it should be clear that when
they are written out in full, they must be equal, i.e.

x = a1u1 + a2u2 + · · ·+ anun = b1v1 + b2v2 + · · ·+ bnvn

But, this can be re-written in terms of matrices, i.e.


 u1 u2 · · · un







a1

a2
...

an


 =


 v1 v2 · · · vn







b1

b2
...

bn




or, better still,
U[x]S = V[x]S′
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where the columns of the matrices U and V are the basis vectors in S and S′ respectively.
Further, notice that as S and S′ are just different bases of the same n-dimensional vector space, U

and V will both be n×n matrices, and as bases are linearly independent, they will both be invertible
too. This means that we can find [x]S from [x]S′ (say) by using

[x]S = U−1V[x]S′

and so, it should be clear that changing basis is yet another example of a linear transformation (in
this case from V to V ).

3.5 Learning Objectives

At the end of this hand-out you should:

• Understand what a linear transformation is and the properties it possesses as given in the
Theorems of Section 3.1.

• Understand that the null space and range of a linear transformation are particular subspaces
of certain vector spaces and that their dimensions are related by the rank-nullity theorem as
given in Section 3.2. (Although, detailed knowledge of the proof of the rank-nullity theorem is
not required for this course.)

• Be able to represent a linear transformation as a matrix using given bases and be able to recover
the linear transformation from such a matrix as described in Section 3.3. (Although a detailed
justification of why this is possible is not required for this course.)

• Be able to construct a matrix which will allow you to change between bases as described in
Section 3.4.

This material will be developed in Problem Sheet 2.
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