
Further Mathematical Methods (Linear Algebra) 2002

Lecture 7: An Introduction To Spectral Theory

Here, we briefly revise some facts about eigenvalues and eigenvectors from MA100. As you know
from this earlier course, these can be used to simplify certain geometric problems, but in this course,
we shall use them in some other applications. The study of the eigenvalues and eigenvectors of a
matrix is generally referred to as spectral theory since the set of eigenvalues of a matrix is sometimes
called its spectrum.

7.1 Eigenvalues and Eigenvectors [in Rn]

Consider a linear transformation T : Rn → Rn. Generally, there is no obvious geometrical relationship
between the vectors x and T (x) in Rn, i.e. the vector x is transformed to a completely different vector
T (x) as both the magnitude and direction of x change under the action of T . However, sometimes,
we find vectors x and T (x) that have the same direction, i.e. the direction of x is preserved under
the action of T if x is one of these ‘special’ vectors. So, such vectors, called the eigenvectors of the
transformation T , are such that:

T (x) = λx,

for some λ ∈ R (since T is a transformation between two real spaces) and x 6= 0 (since if x = 0,
then there is no direction to be preserved). Indeed, as we can represent the linear transformation
T : Rn → Rn by an n× n matrix A where

T (x) = Ax,

we say that

Definition 7.1 If A is a [real] n× n matrix, then a non-zero vector x ∈ Rn is called an eigenvector
of A if

Ax = λx,

for some λ ∈ R. Here, λ is called an eigenvalue of A, and x is said to be an eigenvector corresponding
to the eigenvalue λ.

To find the eigenvalues of an n×n matrix A, i.e. the scalars λ such that Ax = λx for some non-zero
vector x, we write this matrix equation as

Ax = λIx,

or indeed,
(A− λI)x = 0.

So, denoting the column vectors of the matrix A− λI by the vectors u1,u2, . . . ,un we can write this
matrix equation as a vector equation, i.e.

x1u1 + x2u2 + · · ·+ xnun = 0,

where x = [x1, x2, . . . , xn]t. But, since we require that x 6= 0, this means (by Definition 2.6) that the
vectors u1,u2, . . . ,un, and hence the column vectors of the matrix A − λI, are linearly dependent.
As such, the eigenvalues of the matrix are the scalars which make the column vectors of the matrix
A−λI linearly dependent. Consequently, the eigenvalues of the matrix A are the scalars that make the
matrix A−λI singular (i.e. not invertible) and as such they can be found by solving the determinant
equation

det(A− λI) = 0.

Indeed, expanding this out, we have
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Theorem 7.2 If A is a [real] n× n matrix, then

det(A− λI) = (−1)nλn + c1λ
n−1 + · · ·+ cn,

and this is called the characteristic polynomial of A. In particular, note that the coefficient of the λn

term is (−1)n and cn = det(A).

Proof: See Problem Sheet 4, Question 11. ♠
and so, the eigenvalues of an n × n matrix A are just the roots of its characteristic polynomial. As
such, A can have no more than n real eigenvalues.

Once we have found the eigenvalues of A, we can find the eigenvectors corresponding to each
eigenvalue. Strictly speaking, this involves finding the set of all vectors which satisfy the matrix
equation

(A− λI)x = 0,

for a given eigenvalue λ. Obviously, this set of vectors will be the null space of the matrix A − λI,
and we call this subspace of Rn the eigenspace of A corresponding to the eigenvalue λ. Indeed,
any non-zero vector in this subspace will be an eigenvector of A corresponding to the eigenvalue λ.
However, all we need to find to capture all of the information carried by these vectors is a basis for
this subspace. So, when we talk of the eigenvectors of a matrix corresponding to some eigenvalue
λ, we are just talking about a basis for the eigenspace.1 Thus, to calculate the eigenvectors of the
matrix A corresponding to the eigenvalue λ, we just need to find a basis for the solution space of the
matrix equation above.

Indeed, we find that

Theorem 7.3 Let A be a [real] n × n matrix. If A has n distinct [real] eigenvalues λ1, λ2, . . . , λn,
then the eigenvectors corresponding to these eigenvalues form a linearly independent set.

Proof: See Problem Sheet 4, Questions 2 and 8. ♠
Notice that in this case, where we have n distinct [real] eigenvalues, the eigenspace corresponding to
each eigenvalue will be one-dimensional and together, the single basis vector which can be found for
each eigenspace can be used to form a basis for Rn. This prompts us to ask what happens when we
do not have n distinct [real] eigenvalues.

For example: Consider the matrix given by

A =
[
1 a
1 1

]
,

for some value of a ∈ R. As discussed above, the eigenvalues of this matrix are the solutions to the
determinant equation

det(A− λI) = 0,

that is, we have to solve
∣∣∣∣
1− λ a

1 1− λ

∣∣∣∣ = 0 =⇒ (1− λ)2 − a = 0.

But, clearly, the solutions of this equation are just λ = 1±√a. From this, we can see that there are
three possible cases:

• If a > 0, then A has two distinct real eigenvalues.

• If a = 0, then A has one [repeated] real eigenvalue, namely λ = 1.

1This is why the eigenvectors must be non-zero. (As any set that contains the null vector cannot be a basis since it
will be linearly dependent. See the first part of Question 4 on Problem Sheet 1.)

7-2



• If a < 0, then A has two complex roots.2

(The second case will be discussed in Section 7.2 when we deal with repeated roots of the characteristic
polynomial (i.e. ‘multiplicitous’ eigenvalues). Also, as we are only considering eigenvalues and
eigenvectors in real space (i.e. R2) here we shall not discuss the third of these cases until Section
7.4.)

Now, to find the eigenvectors corresponding to the two distinct real eigenvalues (i.e. those where
a > 0), we have to find a basis for the null space of the matrix A−λI for each value of λ. To do this,
we just substitute the appropriate values of λ into the matrix equation

(A− λI)x = 0,

and solve for x. Let us do this for the first case mentioned above:

When a > 0: In this case the eigenvalues are λ = 1±√a and we consider each of these in turn:

• If λ = 1 +
√

a, this substitution yields the matrix equation:
[−√a a

1 −√a

] [
x1

x2

]
= 0,

and so, expanding out, we see that the components of these vectors must satisfy the simulta-
neous equations:

−√ax1 + ax2 = 0
x1 −

√
ax2 = 0

But here, the first equation is just the second equation multiplied by the [non-zero] factor −√a,
i.e. we effectively have just one equation (say, x1 −

√
ax2 = 0) relating two variables. Thus,

one of these variables (say, x2) must be free and so the null space of the matrix A− λI is given
by all vectors of the form

x = x2

[√
a

1

]
,

Consequently, we take [
√

a, 1]t to be the eigenvector corresponding to the eigenvalue λ =
1 +

√
a.3

• If λ = 1−√a, this substitution yields the matrix equation:
[√

a a
1

√
a

] [
x1

x2

]
= 0,

and so, expanding out, we see that the components of these vectors must satisfy the simulta-
neous equations:

√
ax1 + ax2 = 0
x1 +

√
ax2 = 0

But here, the first equation is just the second equation multiplied by the [non-zero] factor
√

a,
i.e. we effectively have just one equation (say, x1 +

√
ax2 = 0) relating two variables. Thus,

one of these variables (say, x2) must be free and so the null space of the matrix A− λI is given
by all vectors of the form

x = x2

[−√a
1

]
,

Consequently, we take [−√a, 1]t to be the eigenvector corresponding to the eigenvalue λ =
1−√a.4

2Note that these form a complex conjugate pair. (This must be the case since the quadratic equation involved has
real coefficients.)

3Since the set containing this vector, i.e. {[√a, 1]t}, is a basis for the null space of A− λI when λ = 1 +
√

a.
4Since the set containing this vector, i.e. {[−√a, 1]t}, is a basis for the null space of A− λI when λ = 1−√a.
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And so, we have found that [
√

a, 1]t and [−√a, 1]t are the eigenvectors corresponding to the eigen-
values λ = 1 +

√
a and λ = 1 − √a respectively in the case where a > 0. (Notice that we get two

linearly independent eigenvectors since we have two distinct eigenvalues — see Theorem 7.3.) ♣

7.2 Multiplicity

If the characteristic polynomial of A does not have n distinct [real] roots, then we can also get
repeated roots or complex roots. In this section, we consider what happens when [at least one] of
the eigenvalues is a repeated root of the characteristic polynomial and this brings us onto the notion
of multiplicity. Formally, we say:

Definition 7.4 An eigenvalue λ′ of a matrix A is said to be of multiplicity m if λ′ is an m times
repeated root of the characteristic polynomial of A.5

Now, if we have a multiplicitous eigenvalue, the eigenspace of A corresponding to this eigenvalue
can be more than one-dimensional. In particular, if λ is of multiplicity m, then the corresponding
eigenspace can have a dimension of anything upto m depending on how many linearly independent
eigenvectors we can find. Unfortunately, short of actually working out what the eigenvectors are,
there is no easy way of determining how many of them there are! Thus, there is no guarantee that
an eigenvalue of multiplicity m will have an m-dimensional eigenspace (i.e. m linearly independent
eigenvectors) and this is why we can make no general claim about their linear independence.

For example: We now turn to the case where A has one [repeated] real eigenvalue (i.e. when a = 0)
mentioned in the previous example. It is clear that in this case, the eigenvalue λ = 1 has multiplicity
two6 and we can now work out the eigenvectors corresponding to this eigenvalue using the method
described above.

When a = 0: In this case the [repeated] eigenvalue is λ = 1 and considering this we have:

• For λ = 1, the substitution yields the matrix equation:
[
0 0
1 0

] [
x1

x2

]
= 0,

and so, expanding out, we see that the components of these vectors must satisfy the equation
x1 = 0. That is, we have just one equation relating two variables. Thus, one of these variables
(namely, x2) must be free and so the null space of the matrix A− λI is given by all vectors of
the form

x = x2

[
0
1

]
,

Consequently, we take [0, 1]t to be the eigenvector corresponding to the eigenvalue λ = 1.7

And so, we have found that [0, 1]t is the the eigenvector corresponding to the eigenvalue λ = 1 [in
the case where a = 0].8 (Notice that we have only one eigenvector here and so the dimension of the
eigenspace corresponding to this [sole] eigenvalue is one.) ♣

5That is, the characteristic polynomial of A contains a factor of the form (λ′ − λ)m.
6Notice that when a = 0, the characteristic polynomial of the matrix A is given by

det(A− λI) = (1− λ)2,

as we should expect from the previous footnote.
7Since the set containing this vector, i.e. {[0, 1]t}, is a basis for the null space of A− λI when λ = 1.
8This is what we should expect from setting a = 0 in the eigenvectors corresponding to the eigenvalues λ = 1±√a

in the case where a > 0 discussed above.
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7.3 Diagonalisation

We now briefly recall a useful technique which will allow us to simplify many matrix calculations in
this course, namely how to diagonalise matrices. That is,

Definition 7.5 A [real] n×n matrix A is called diagonalisable [over R] iff there is a [real] invertible
matrix P such that P−1AP is a [real] diagonal matrix.

Indeed, it can be shown that

Theorem 7.6 Let A be a [real] n× n matrix. A is diagonalisable [over R] iff A has n [real] linearly
independent eigenvectors.

Proof: See Problem Sheet 4, Question 9. ♠
and so, if the matrix A has n distinct [real] eigenvalues then, by Theorem 7.3, it will be diagonalisable
[over R]. However, if there are multiplicitous eigenvalues, it may or may not be diagonalisable — it
depends on whether we can find n linearly independent eigenvalues or not.9

It is actually straightforward to diagonalise a matrix A since the column vectors of the sought after
invertible matrix P are just the eigenvectors of the matrix A.10 Thus, if the vectors x1,x2, . . . ,xn

are the [linearly independent] eigenvectors corresponding to the eigenvalues λ1, λ2, . . . , λn [including
multiplicity] respectively, then

P =


v1 v2 · · · vn


 ,

and this gives rise to the diagonal matrix D, i.e.

P−1AP =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 ≡ D.

Notice that the order in which the eigenvectors are put in to P determines the order in which the
eigenvalues appear along the diagonal of D. Indeed, changing the order of the eigenvectors in P will
change the order of the eigenvalues of D and so diagonalising a matrix does not lead to a unique
diagonal matrix D.

For example: Looking at the matrix A in the earlier example, we can see that when a > 0 we have
two linearly independent eigenvectors and so (by Theorem 7.6) it can be diagonalised. Following the
prescription above, we let P be the matrix of eigenvectors, i.e.

P =
[√

a −√a
1 1

]
,

and as these vectors are linearly independent, det(P) 6= 0 and so this matrix is invertible. Further, if
we calculate the matrix product P−1AP, we find that

P−1AP =
1

2
√

a

[
1

√
a

−1
√

a

] [
1 a
1 1

] [√
a −√a

1 1

]

=
1

2
√

a

[
1

√
a

−1
√

a

] [√
a + a −√a + a√
a + 1 −√a + 1

]

=
1

2
√

a

[
2
√

a(1 +
√

a) 0
0 2

√
a(1−√a)

]

∴ P−1AP =
[
1 +

√
a 0

0 1−√a

]

9Note: If some of the eigenvalues are complex, then (as you saw in MA100) the matrix is not disagonalisable over
R since this requires that the eigenvalues (i.e. the entries in D — see below) are real numbers. (But, it may be
diagonalisable over C — see the next section – if we can find n linearly independent eigenvectors corresponding to the
n eigenvalues.)

10This is why we require that A has n linearly independent eigenvectors, as this guarantees that P is invertible.
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and this is the required diagonal matrix D. (Notice that the entries of this matrix are the eigenvalues
of A and that these appear in the same order as the eigenvectors corresponding to them appear in
P.)

However, when a = 0 we only get one [linearly independent] eigenvector and so (by Theorem 7.6)
the matrix A is not diagonalisable in this case.11 ♣

7.4 Eigenvalues and Eigenvectors [in Cn]

Presently, we will want to consider eigenvalues and eigenvectors of linear transformations which are
defined over complex spaces such as T : Cn → Cn. The need for such transformations can arise when
we consider certain n× n matrices A representing a linear transformation T , for example:

• The matrix A could have complex entries and so it will map [possibly real vectors] to complex
vectors, i.e. we could have T : Rn → Cn.

• The matrix A may have real entries but these give rise to complex eigenvalues, i.e. the eigen-
vectors corresponding to the complex eigenvalues will be mapped to a complex space by T .

In these circumstances the results above need to be amended to take into account that the matrices,
eigenvalues and eigenvectors can be complex. But, as we shall see, these modifications are straight-
forward as can be seen in Problem Sheet 4 where we make no assumptions about the set of scalars
(i.e. R or C) being used in the results of Questions 2, 8, 9, 10 and 11.

For example: We now turn to the case where A has two complex eigenvalues (i.e. when a < 0)
mentioned in the first example. Now, to find the eigenvectors corresponding to these eigenvalues we
use the method described in Section 7.1 (despite the fact that they are complex numbers) and so we
just have to find a basis for the null space of the matrix A− λI for each value of λ. As before, we do
this by substituting the appropriate values of λ into the matrix equation

(A− λI)x = 0,

and solve for x. So, doing this, we find that:

When a < 0: In this case the eigenvalues are λ = 1±√a and we consider each of these in turn:

• If λ = 1 +
√

a, this substitution yields the matrix equation:
[−√a a

1 −√a

] [
x1

x2

]
= 0,

and so, expanding out, we see that the components of these vectors must satisfy the simulta-
neous equations:

−√ax1 + ax2 = 0
x1 −

√
ax2 = 0

But here, the first equation is just the second equation multiplied by the [non-zero] factor −√a,
i.e. we effectively have just one equation (say, x1 −

√
ax2 = 0) relating two variables. Thus,

one of these variables (say, x2) must be free and so the null space of the matrix A− λI is given
by all vectors of the form

x = x2

[√
a

1

]
,

Consequently, we take [
√

a, 1]t to be the eigenvector corresponding to the eigenvalue λ =
1 +

√
a.12

11Notice that A fails to be diagonalisable in this case because we can’t find two linearly independent eigenvectors to
construct an invertible matrix P.

12Since the set containing this vector, i.e. {[√a, 1]t}, is a basis for the null space of A− λI when λ = 1 +
√

a.
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• If λ = 1−√a, this substitution yields the matrix equation:
[√

a a
1

√
a

] [
x1

x2

]
= 0,

and so, expanding out, we see that the components of these vectors must satisfy the simulta-
neous equations:

√
ax1 + ax2 = 0
x1 +

√
ax2 = 0

But here, the first equation is just the second equation multiplied by the [non-zero] factor
√

a,
i.e. we effectively have just one equation (say, x1 +

√
ax2 = 0) relating two variables. Thus,

one of these variables (say, x2) must be free and so the null space of the matrix A− λI is given
by all vectors of the form

x = x2

[−√a
1

]
,

Consequently, we take [−√a, 1]t to be the eigenvector corresponding to the eigenvalue λ =
1−√a.13

And so, unsurprisingly, we have found that [
√

a, 1]t and [−√a, 1]t are the [now complex] eigenvectors
corresponding to the [complex] eigenvalues λ = 1 +

√
a and λ = 1 − √

a respectively in the case
where a < 0. (Notice that we get two linearly independent eigenvectors since we have two distinct
eigenvalues — see Theorem 7.3.)

Further, since we have two linearly independent eigenvectors (by Theorem 7.6) we can diagonalise
A. So, following the prescription in Section 7.3, we let P be the [complex] matrix of eigenvectors, i.e.

P =
[√

a −√a
1 1

]
,

and as these vectors are linearly independent, det(P) 6= 0 and so this matrix is invertible. Further, if
we calculate the matrix product P−1AP, we find that

P−1AP =
1

2
√

a

[
1

√
a

−1
√

a

] [
1 a
1 1

] [√
a −√a

1 1

]

=
1

2
√

a

[
1

√
a

−1
√

a

] [√
a + a −√a + a√
a + 1 −√a + 1

]

=
1

2
√

a

[
2
√

a(1 +
√

a) 0
0 2

√
a(1−√a)

]

∴ P−1AP =
[
1 +

√
a 0

0 1−√a

]
,

and this is the required diagonal matrix D. (Notice that the entries of this [complex] matrix are the
[complex] eigenvalues of A and that these appear in the same order as the [complex] eigenvectors
corresponding to them appear in P.)

So, we can see that if the eigenvalues of a matrix are complex, the same methods for finding the
eigenvalues and eigenvectors apply, as does the method for diagonalising the matrix. However, we
are now working in a complex space (in this example, C2) when we use them. ♣

13Since the set containing this vector, i.e. {[−√a, 1]t}, is a basis for the null space of A− λI when λ = 1−√a.
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