
Further Mathematical Methods (Linear Algebra) 2002

Lectures 9 and 10: Population Dynamics, Steady States

and Stability

The second application of diagonalisation which we shall consider is its use in analysing systems of
differential equations. This topic will be motivated by looking at how such systems can be used
to model ‘population dynamics’. In particular, we shall develop a method for finding their steady
states and assessing their stability. Further discussion of this topic may be found in the textbook
Mathematics for Economists (Norton, 1994) by C. Simon and L. Blume.

9.1 Population dynamics: The single species case

Suppose that y(t) is the size of a population of a species of animal at time t. (The time is measured
with respect to some reference time, t = 0, and the ‘size’ need not be an integer, since it may, for
example, measure the population in thousands.) Modelling the population as a differentiable function
over a continuous time parameter, we denote the derivative of the function y(t) with respect to t, i.e.
dy/dt, by ẏ(t).

The growth rate of a population is the rate of change of the size of a population divided by the size
itself, i.e. ẏ/y. If the population has a constant growth rate, say r (which will equal the difference
between the birth and death rates), then we have the Malthus equation

ẏ(t) = ry(t),

which can easily be solved to yield
y(t) = y(0)ert,

for some initial population y(0).
This model is over-simplistic, and more realistically, as the population increases, growth-inhibiting

factors will come into action. (These might arise, for instance, from limitations on space and scarcity
of natural resources.) Consequently, we should modify the simple model used above. We may do
this by assuming that the growth rate ẏ/y is not constant, but is a decreasing function of y. The
simplest type of decreasing function is the linear one, where the growth rate is equal to a − by for
positive constants a and b. In this case, we have

ẏ = (a− by)y,

and this is known as the logistic model of population growth.1 This is also easily solved as it is a
separable first-order differential equation. As such, we can write

∫
dy

y(a− by)
=

∫
dt,

and using partial fractions to simplify the left-hand side, we find that

1
a

∫ [
1
y

+
b

a− by

]
dy =

∫
dt,

which on integrating gives
1
a

ln
[

y

a− by

]
= t + c.

Simplifying this, we get
y(t) =

a

b + ke−at
,

1Those who study Chaos Theory will encounter such non-linear differential equations
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where the constant k is related to the initial condition y(0) by the formula

y(0) =
a

b + k
.

In turn, this gives rise to two kinds of solution, that is we have

• either: k = 0 and y(t) =
a

b
for all times t,

• or: k 6= 0 and y(t) =
a

b + ke−at
.

Notice that k = 0 corresponds to the case where y(0) = a/b.
We refer to the first kind of solution (i.e. where y(t) takes the constant value a/b at all times) as

a steady state solution. This is because, if we take the initial value of y in this case, namely a/b, and
substitute it into the right-hand-side of the differential equation above we get zero. That is, in this
case, the differential equation reduces to ẏ = 0 and so the value of y does not change with time —
it just stays at the initial value a/b. We also observe, for future reference, that in the second kind
of solution, the constant k is determined by the initial population y(0) via the formula above, but
whatever the value of y(0), y(t) → a/b as t → ∞. The fact that every solution of this differential
equation tends towards this value as t →∞ means that it is globally asymptotically stable (more on
this later).

9.2 Population dynamics: The competing species case

We now make our model of population dynamics slightly more sophisticated. Suppose that we have
two species of animal and that they compete with each other (for food, for instance). Let us denote
the corresponding populations at time t by y1(t) and y2(t). We assume that, in the absence of the
other, the population of either species would exhibit logistic growth, as above. But, given that they
compete with each other, we assume that the presence of each has a negative effect on the growth
rate of the other. That is, we assume that for some positive numbers a1, a2, b1, b2, c1 and c2, the
growth rates of these populations will be given by

ẏ

y1
= a1 − b1y1 − c1y2

ẏ

y2
= a2 − b2y2 − c2y1

We then have the coupled system of differential equations given by

ẏ1 = a1y1 − b1y
2
1 − c1y1y2

ẏ2 = a2y2 − b2y
2
2 − c2y1y2

and clearly such a model could be extended to more than two species.

9.3 Systems of differential equations

We now take a moment to introduce a new piece of notation which will help us in our analysis of
the competing species model of population growth. In general, we say that a [square] system of
differential equations for the functions y1, y2, . . . , yn is a set of coupled differential equations of the
form

ẏ1 = f1(y1, y2, . . . , yn)
ẏ2 = f2(y1, y2, . . . , yn)

...
ẏn = fn(y1, y2, . . . , yn)
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and these can be written as
ẏ = F (y),

where F is a function from Rn to Rn.
In MA100 you considered the case where the functions f1, f2, . . . , fn of y1(t), y2(t), . . . , yn(t) which

‘made up’ the function F were linear (and we will consider these again in Section 9.5). But, in this
course, we shall also be concerned with the case where the functions f1, f2, . . . , fn of y1(t), y2(t), . . . ,
yn(t) are non-linear.

9.4 Steady states and stability

We now introduce some new concepts which will clarify the remarks made at the end of Section 9.1.
In particular, we shall define what we mean by a steady state solution and what it is for a solution
to be globally asymptotically stable. So, formally, for the former term we say that

Definition 9.1 The constant vector y∗ ∈ Rn is a steady state solution of the [square] system of
differential equations

ẏ = F (y),

if it satisfies the equation F (y) = 0, where 0 is the null vector in Rn.

As we have seen, if such a system is required to satisfy the initial condition given by y(0) = y∗, then
its solution will be y(t) = y∗ for all times t. (So, y∗ will be a constant solution of the system.) You
may recall that in Section 9.1, when we considered the single species case, we found that y∗ = a/b
was a steady state solution of the [1 × 1 system of] differential equation[s] in question. Let us now
look at a slightly harder example.

For example: Consider two species where the populations at a time t are given by the functions y1

and y2. These species compete for resources and their populations evolve according to the differential
equations

ẏ1 = 4y1 − y2
1 − y1y2

ẏ2 = 6y2 − y2
2 − 3y1y2

This [2× 2] system of differential equations is of the form ẏ = F (y) where

F (y1, y2) =
(

f1(y1, y2)
f2(y1, y2)

)
=

(
4y1 − y2

1 − y1y2

6y2 − y2
2 − 3y1y2

)
.

So, to find the steady states of this system we set F (y) = 0 and find the values of y which satisfy
the resulting simultaneous equations, i.e.

4y1 − y2
1 − y1y2 = 0

6y2 − y2
2 − 3y1y2 = 0

to solve these (think about how you found the stationary points of three-dimensional surfaces in
MA100!) we re-write these equations as

y1(4− y1 − y2) = 0
y2(6− y2 − 3y1) = 0

and find that the steady states are (0, 0), (0, 6), (4, 0) and (1, 3). ♣

We now go on to give the formal definition of an asymptotically stable steady state,

Definition 9.2 A steady state y∗ is an asymptotically stable equilibrium if every solution y(t) which
starts near y∗ converges to y∗ as t → ∞. That is, if there is some ε > 0 such that ẏ = F (y) and
‖y(0)− y∗‖ < ε, then y(t) → y∗ as t →∞.
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Further, we say that

Definition 9.3 A steady state y∗ is a globally asymptotically stable equilibrium if for every y(0)
(with the possible exception of a set of y(0) of lower dimension), the solution of ẏ = F (y) which
satisfies y(0) tends to y∗ as t →∞. (That is, ‘almost every’ solution of the system approaches y∗ in
the long run.)

You may recall that in Section 9.1, when we considered the single species case, we found that y∗ = a/b
was a globally asymptotically stable equilibrium as every solution to the [1×1 system of] differential
equation[s] in question tended to the steady state solution a/b as t →∞.

It is natural to ask: How do we determine whether the steady states of a system of differential
equations is stable? We are not in a position to answer this question completely, but by examining
linear systems, we will be able to find a sufficient condition for steady states to be asymptotically
stable equilibria.

9.5 Linear systems of differential equations

A linear system of differential equations is one in which the function F is a linear transformation.
As we have seen, such a system can be represented by a matrix, i.e.

ẏ = Ay,

where A is an n× n matrix whose entries are fixed real numbers. If the matrix A was diagonal, this
would be easy to solve. This is because, if

A = diag[λ1, λ2, . . . , λn],

then the system is just
ẏ1 = λ1y1, ẏ2 = λ2y2, . . . , ẏn = λnyn,

and so, on solving these differential equations, we find that

y1 = y1(0)eλ1t, y2 = y2(0)eλ2t, . . . , yn = yn(0)eλnt,

where the coefficients y1(0), y2(0), . . . , yn(0) are the initial conditions that these differential equations
must satisfy, i.e. they are the components of the vector y(0).

However, in general, when we are confronted with a linear system of differential equations they
will not be represented by a nice diagonal matrix. So, in an attempt to reduce them to this simple
form, we might be able to use diagonalisation. Let us assume that the matrix A can indeed be
diagonalised. In this case, we can find an invertible matrix P such that

P−1AP = D,

where D is a diagonal matrix containing the eigenvalues of A and P is a matrix whose columns are
given by the corresponding eigenvectors, i.e.

D = diag[λ1, λ2, . . . , λn] and P =


 v1 v2 · · · vn


 .

We now set y = Pz (or, equivalently, z = P−1y), and in order to perform this substitution, we need
to see how differentiation affects it. But, as the entries of P are just real numbers, it should be clear
that

ẏ =
d

dt
(Pz) = P

dz
dt

= Pż,

and so, we get
Pż = Ay = APz,
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or, better still,
ż = P−1APz = Dz.

As D is a diagonal matrix, we can now solve this for z using the method above, and then we can find
y from y = Pz.

For example: Consider the linear system of differential equations given by the matrix equation
[

ẏ1

ẏ2

]
=

[
1 1
2 2

] [
y1

y2

]
.

To solve this system of differential equations we follow the method given above. We find that the
eigenvalues and eigenvectors of A are such that

D =
[

0 0
0 3

]
and P =

[
1 1
−1 2

]
,

where P−1AP = D. So, choosing new functions z1 and z2 such that

y = Pz,

the system becomes ż = P−1APz = Dz, i.e.

ż =
[

0 0
0 3

] [
z1

z2

]
=

[
0

3z2

]
.

This is now an ‘uncoupled’ system, and solving these two [easy] differential equations we find that

z1(t) = z1(0) and z2(t) = z2(0)e3t.

However, we want to know about the functions y1(t) and y2(t), and so, using y = Pz, we get

[
y1(t)
y2(t)

]
=

[
1 1
−1 2

] [
z1(t)
z2(t)

]
=⇒ y1(t) = z1(t) + z2(t)

y2(t) = −z1(t) + 2z2(t)

which, on substituting our expressions for z1(t) and z2(t), gives

y1(t) = z1(0) + z2(0)e3t

y2(t) = −z1(0) + 2z2(0)e3t

We also want the answer in terms of y1(0) and y2(0), and so, using z = P−1y, we get

[
z1(0)
z2(0)

]
=

1
3

[
2 −1
1 1

] [
y1(0)
y2(0)

]
=⇒ z1(0) = 1

3{2y1(0)− y2(0)}
z2(0) = 1

3{y1(0) + y2(0)}

Consequently, the final result is given by

y1(t) = 1
3{2y1(0)− y2(0)}+ 1

3{y1(0) + y2(0)}e3t,

and
y2(t) = −1

3{2y1(0)− y2(0)}+ 2
3{y1(0) + y2(0)}e3t.

Let us now look at the steady states of this system and see whether they are asymptotically stable.
Looking at the differential equations, we find that setting ẏ = 0, we get the two simultaneous

equations

y1 + y2 = 0
2y1 + 2y2 = 0
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But this just gives us one equation relating two variables, that is, setting y2 (say) equal to the free
parameter r, solutions of these simultaneous equations take the form (y1, y2) = (−r, r) for all r ∈ R.
Consequently, we have an infinite number of steady states given by y∗ = (−r, r), and so, if the system
is required to satisfy one of the initial conditions given by y(0) = (−r, r), then its solution will be
y(t) = (−r, r) for all times t. This should be clear from the solutions we found, because if we put
these initial values in, we find that

y1(t) = 1
3{2(−r)− r}+ 1

3{(−r) + r}e3t =⇒ y1(t) = −r,

and
y2(t) = −1

3{2(−r)− r}+ 1
3{(−r) + r}e3t =⇒ y2(t) = r.

That is, the time-dependence disappears (as the initial conditions make the coefficient of the e3t

terms zero) and we just stay in the state prescribed by the initial conditions for all time.
However, these steady states are not stable. To see this, consider the case where our initial

conditions are not of the form y(0) = (−r, r). If any of these non-steady states are to give asymptotic
stability, we require that in the limit as t → ∞, the solution y(t) tends to one of the steady states
y∗ = (−r, r) for r ∈ R. But, clearly, if y(0) 6= (−r, r), the coefficient of the exponential term in the
solution is non-zero, and so we find that as t →∞,

y1(t) →∞ and y2(t) →∞,

if y1(0) + y2(0) > 0, and
y1(t) → −∞ and y2(t) → −∞,

if y1(0) + y2(0) < 0. Consequently, none of the steady states of this system are stable as y 9 y∗ =
(−r, r) for any r ∈ R if y(0) 6= (−r, r). ♣
We now return to the general linear system in which A can be diagonalised to see what conclusions
we can draw about its steady states and their stability. From the analysis above, we know that for
any diagonalisable matrix A, we can write

ż = P−1APz = Dz,

and so, on solving the n differential equations contained within this system we get

z(t) =




z1(0)eλ1t

z2(0)eλ2t

...
zn(0)eλnt


 .

Now, using y = Pz, we can write

y(t) =


 v1 v2 · · · vn







z1(0)eλ1t

z2(0)eλ2t

...
zn(0)eλnt


 ,

and multiplying this matrix product out, we find that

y(t) = z1(0)eλ1tv1 + z2(0)eλ2tv2 + · · ·+ zn(0)eλntvn.

Indeed, we can use the fact that z = P−1y to find each zi(0) in terms of the initial conditions, yi(0).
But, all that this will give us is some constant coefficients, say ci, with which to replace the zi(0),
and so we find that

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·+ cneλntvn,

is the general solution to the system of differential equations ẏ = Ay.
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To conclude then, we state two theorems which should be justified by the analysis above. Now,
we can show that A can be diagonalised if it has n distinct eigenvalues,2 and so we claim that

Theorem 9.4 If an n × n matrix A has n distinct eigenvalues λ1, λ2, . . . , λn and corresponding
eigenvectors v1,v2, . . . ,vn, then the system of differential equations given by

ẏ = Ay,

has the general solution

y(t) = c1e
λ1tv1 + c2e

λ2tv2 + · · ·+ cneλntvn,

where the ci are constants.

Further, if the eigenvalues are all negative real numbers, then all of the exponential terms tend to
zero as t →∞ and so, y(t) → 0 in this limit. Indeed, if the matrix has non-zero eigenvalues, then it
is non-singular (i.e. it has an inverse),3 and so the only solution to the matrix equation Ay = 0 is
y = 0. Consequently, the only steady state in this case is y∗ = 0, and since y(t) → 0 as t →∞ for
all possible sets of initial conditions, this steady state is globally asymptotically stable. So, formally,
we have

Theorem 9.5 If an n × n matrix A has n distinct negative real eigenvalues, then the only steady
state of the system of differential equations

ẏ = Ay,

is y∗ = 0 and this is globally asymptotically stable.

9.6 Stability in general systems: Linearisation

What about non-linear systems of differential equations? In general, we are unable to solve these as
we would in the linear case, and so we can’t discover whether the steady states of such systems are
stable using the method developed above. But, we can get some information about the stability of
non-linear systems of differential equations by using [a version of] Taylor’s Theorem to ‘relate’ it to
a linear system. In fact, the version of Taylor’s theorem which we shall use is the following:4

Theorem 9.6 [Taylor’s Theorem] If F : Rn → Rn is a continuously differentiable function and y∗

is some constant vector in Rn, then for a vector h ∈ Rn,

F (y∗ + h) = F(y∗) + DF(y∗)h + R(h).

Note that if the function F (y) = (f1(y), f2(y), . . . , fn(y)), then DF is the Jacobian

DF =




∂f1

∂y1

∂f1

∂y2
· · · ∂f1

∂yn

∂f2

∂y1

∂f2

∂y2
· · · ∂f2

∂yn

...
...

. . .
...

∂fn

∂y1

∂fn

∂y2
· · · ∂fn

∂yn




,

and the matrix DF(y∗) is the Jacobian evaluated at y∗. Further, R(h) has the property that

R(h)
‖h‖ −→ 0,

as h → 0.
2You will prove in Problem Sheet 4 that: If a 2 × 2 matrix has two distinct eigenvalues, then the eigenvectors

corresponding to these eigenvalues are linearly independent. In the Harder Problems on this Sheet, this is generalised
to: If an n× n matrix has n distinct eigenvalues, then the eigenvectors corresponding to these eigenvalues are linearly
independent. We also know, from the lectures (or the proof from the Harder Problems of Sheet 4) that: An n × n
matrix is diagonalisable iff it has n linearly independent eigenvectors. The stated result follows from combining these
results.

3Again, see the Harder Problems on Sheet 4.
4Note: a function is continuously differentiable if its first-order partial derivatives exist and are continuous.
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Loosely speaking, this means that if each entry of h is small, then

F (y∗ + h) ' F(y∗) + DF(y∗)h,

where ‘'’ can be interpreted as ‘is approximately.’
Now, suppose that y∗ is a steady state solution of the system of differential equations ẏ = F (y),

i.e. F(y∗) = 0, and take y(t) to be a solution of the system such that y(0)− y∗ is small. If we now
take h(t) = y(t) − y∗, then y(t) = y∗ + h(t) and our system of differential equations, ẏ = F (y),
becomes

d

dt
{y∗ + h(t)} = F (y∗ + h(t)).

Consequently, using Taylor’s theorem, we have

ḣ(t) =
d

dt
{y∗ + h(t)} = DF(y∗)h(t) + R(h(t)),

and if h(t) is small, we can ignore the R term. This means that if the quantity h(0) = y(0)− y∗ is
small, then the behaviour of the vector h(t) = y(t) − y∗ is qualitatively the same as the solution to
the linear system

ḣ(t) = DF(y∗)h(t).

(Obviously, this argument is not watertight, but it can be made so.) This analysis results in the
following theorem:

Theorem 9.7 Let the constant vector y∗ be a steady state solution of the system of differential
equations ẏ = F (y) where F : Rn → Rn is a continuously differentiable function and let the matrix
DF(y∗) denote the Jacobian evaluated at y∗. If DF(y∗) has n negative real eigenvalues then y∗ is
asymptotically stable.

Let us look at an example to see how this theorem is used.

For example: Returning to the example considered earlier, i.e.

ẏ1 = 4y1 − y2
1 − y1y2

ẏ2 = 6y2 − y2
2 − 3y1y2

where

F (y1, y2) =
(

f1(y1, y2)
f2(y1, y2)

)
=

(
4y1 − y2

1 − y1y2

6y2 − y2
2 − 3y1y2

)
,

we can see that the Jacobian will be given by

DF (y) =




∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2


 =

(
4− 2y1 − y2 −y1

−3y2 6− 2y2 − 3y1

)
.

Evaluating the Jacobian at the steady state y∗ = (0, 6) we get the matrix

DF(y∗) =
[ −2 0
−18 −6

]
,

whose eigenvalues are −2 and −6 (Verify this!). Consequently, we can deduce that the steady state
y∗ = (0, 6) is asymptotically stable as these eigenvalues are both negative real numbers (as required
by Theorem 9.7). ♣
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