
Further Mathematical Methods (Linear Algebra)

Problem Sheet 3

(To be discussed in week 4 classes. Please submit answers to the asterisked questions only.)

This week, we are going to do some problems on inner product spaces. In particular, we are going
to justify the assertion made in the lectures that many different inner products can be defined on a
given vector space. We shall also use the Gram-Schmidt procedure to generate an orthonormal basis.

1. Verify that the Euclidean inner product of two vector x = [x1, x2, . . . , xn]t and y = [y1, y2, . . . , yn]t

in Rn, i.e.
〈x,y〉 = x1y1 + x2y2 + · · ·xnyn

is indeed an inner product on Rn. Further, given n positive real numbers w1, w2, . . . , wn and vectors
x and y as given above, verify that the formula

〈x,y〉 = w1x1y1 + w2x2y2 + · · ·wnxnyn

also defines an inner product on Rn.

2. Derive the vector equation of a plane in R3 going through the point with position vector a and
normal n, i.e. 〈r,n〉 = 〈a,n〉. What is the Cartesian equation of this plane? What is the geometrical
significance of the quantity 〈a,n〉 if n is a unit vector? (Note that a unit vector is a vector with a
norm of one.)

Use this to calculate the vector and Cartesian equations of the plane which passes through the
point with position vector [1, 2, 1]t and is orthogonal to the vector [2, 1, 2]t. Calculate the quantity
mentioned at the end of the previous part.

3. * Prove that for all x and y in a real inner product space the equalities

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2 and ‖x + y‖2 − ‖x− y‖2 = 4〈x,y〉

hold. Further, give a geometric interpretation of the significance of the first equality in R3.

4. * Consider the subspace PRn of FR and let x0, x1, . . . , xn be n+1 fixed and distinct real numbers.
For all vectors p and q in PRn show that the formula

〈p,q〉 =
n∑

i=0

p(xi)q(xi)

defines an inner product on PRn .

5. * Given two non-zero vectors, prove that if they are orthogonal, then they are linearly independent.
Explain why the converse of this result does not hold in general.

6. * Show that the set of vectors S = {1,x,x2} ⊆ P[0,1]
2 is linearly independent. Further use these

vectors and the Gram-Schmidt procedure to construct an orthonormal basis for P[0,1]
2 where

〈f ,g〉 =
∫ 1

0
f(x)g(x)dx

is the inner product defined on this vector space. Also, find a matrix A which will allow you to
transform between coordinate vectors that are given relative to these two bases, i.e. find a matrix A

such that for any vector x ∈ P[0,1]
2 ,

[x]S = A[x]S′

where S′ is the orthonormal basis.



Other Problems. (These are not compulsory, they are not to be handed in, and will not be covered
in classes.)

Here are some more questions on these topics. Everyone should try these to further their under-
standing of the material covered in the lectures. Solutions for these problems will be contained in
the Solution Sheet.

7. Consider the vector space of all smooth functions defined on the interval [0, 1], i.e. S[0,1]. Using
the inner product given by the formula

〈f ,g〉 =
∫ 1

0
f(x)g(x)dx

find the inner products of the following pairs of functions:

• f : x → cos(2πx) and g : x → sin(2πx)

• f : x → x and g : x → ex

• f : x → x and g : x → 3x

Bearing in mind Question 5, comment on the significance of your results in terms of the relationship
between orthogonality and linear independence.

8. If p(x) = a0 + a1x + a2x
2 and q(x) = b0 + b1x + b2x

2 (for all x ∈ R) are two general vectors in
PR2 , verify that the formula

〈p,q〉 = a0b0 + a1b1 + a2b2

defines an inner product on PR2

Harder Problems. (These are not compulsory, they are not to be handed in, and will not be
covered in classes.)

Here are some slightly harder questions for those of you who think the stuff above is too easy.
Solutions for these problems will be contained in the Solution Sheet. If you want to discuss these
solutions (after they have been circulated) you should bother me and not your class teacher.

9. Verify that the Euclidean inner product of two vectors x = [x1, x2, . . . , xn]t and y = [y1, y2, . . . , yn]t

in Cn, i.e.
〈x,y〉 = x1y

∗
1 + x2y

∗
2 + · · ·xny∗n

is indeed an inner product on Cn. Further, recall that the norm of a vector x ∈ Cn is defined as

‖x‖ =
√
〈x,x〉,

and use this to prove that the following theorems hold in any complex inner product space.

• The Cauchy-Schwarz Inequality: If x and y are vectors in Cn, then |〈x,y〉| ≤ ‖x‖ ‖y‖.
• The Triangle Inequality: If x and y are vectors in Cn, then ‖x + y‖ ≤ ‖x‖+ ‖y‖.
• Generalised Theorem of Pythagoras: If x and y are vectors in Cn and x ⊥ y, then ‖x + y‖2 =
‖x‖2 + ‖y‖2.

Recall that two vectors x and y are orthogonal, written x ⊥ y, if 〈x,y〉 = 0.

10. Use the Cauchy-Schwarz inequality to prove that

(a cos θ + b sin θ)2 ≤ a2 + b2

for all real values of a, b and θ.

11. Prove that the equality in the Cauchy-Schwarz inequality holds iff the vectors involved are
linearly dependent.


