Further Mathematical Methods (Linear Algebra) 2002

Problem Sheet 7

(To be discussed in week 8 classes. Please submit answers to the asterisked questions only.)

This week, we shall start by looking at orthogonal complements and what they tell us about the range and null-space of a matrix. We shall then examine some of the consequences of our results concerning the rank of matrix products. Lastly, we shall look at sums and direct sums of vector spaces.

1. Let S be the subspace of \mathbb{R}^3 spanned by the vectors $[0, 0, -1]^t$ and $[1, 2, 3]^t$. Find S^{\perp} , the orthogonal complement of S. Interpret your results geometrically.

2. * Consider the matrix

$$\mathsf{A} = \left[\begin{array}{cc} 1 & -2 \\ -3 & 6 \end{array} \right].$$

Determine the range and null-space of A and its transpose, i.e. find R(A), $R(A^t)$, N(A) and $N(A^t)$. Further, verify that $R(A^t) = N(A)^{\perp}$ and $R(A)^{\perp} = N(A^t)$. Interpret your results geometrically.

3. * Suppose that $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n\}$ is a finite set of vectors in an inner product space V and let S be the subspace of V spanned by these vectors. Show that $\mathbf{x} \in S^{\perp}$ iff \mathbf{x} is orthogonal to every vector in the set $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n\}$.

- 4. * Prove the following theorems:
 - If V and W are subsets of a vector space such that $V \subseteq W$, then $W^{\perp} \subseteq V^{\perp}$.
 - If A is any $m \times n$ matrix and B is any $n \times m$ matrix where n < m, then AB is singular.¹
 - If B is an invertible square matrix and the matrix product AB is defined, then the rank of AB equals the rank of A.
- 5. * Suppose that Y and Z are the subspaces of \mathbb{R}^4 given by

$$Y = \operatorname{Lin}\left\{ [1, 0, 1, 0]^t, [0, 0, 0, 1]^t \right\} \text{ and } Z = \operatorname{Lin}\left\{ [0, 1, 0, 0]^t, [1, 0, 1, -1]^t \right\}.$$

Is the sum Y + Z direct? If so, why, and if not, why not? Find a basis for the subspace Y + Z of \mathbb{R}^4 .

- 6. Prove the following theorems:
 - If Y and Z are subspaces of a vector space V, then Y + Z is also a subspace of V. Further, Y + Z is the smallest subspace of V containing $Y \cup Z$ (in the sense that every other subspace of V that contains $Y \cup Z$ must contain Y + Z).
 - If the set of vectors $\{\mathbf{x}_1, \ldots, \mathbf{x}_k, \mathbf{x}_{k+1}, \ldots, \mathbf{x}_n\}$ is a basis of the vector space V, then

 $V = \operatorname{Lin}\{\mathbf{x}_1, \ldots, \mathbf{x}_k\} \oplus \operatorname{Lin}\{\mathbf{x}_{k+1}, \ldots, \mathbf{x}_n\}.$

• If Y and Z are subspaces of a vector space V such that $V = Y \oplus Z$, then $\dim(V) = \dim(Y \oplus Z) = \dim(Y) + \dim(Z)$.

¹Of course, you all know that a *singular* matrix is a matrix that is not invertible.

Other Problems. (These are *not* compulsory, they are *not* to be handed in, and will *not* be covered in classes.)

Here are some more questions on these topics. Maybe try them after the class when you have a clearer understanding of what is going on.

7. Consider the matrix

$$\mathsf{A} = \left[\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array} \right],$$

and repeat Question 2.

8. Find an orthonormal basis for the subspace of \mathbb{C}^3 spanned by the vectors $[i, 0, 1]^t$ and $[1, 1, 0]^t$. Further, determine the orthogonal complement of this subspace.

9. Prove that if S is any subset of \mathbb{R}^n , then $S \subseteq S^{\perp \perp}$. Further, prove that if S is a subspace of \mathbb{R}^n , then $S = S^{\perp \perp}$. Consequently, show that if S is a subspace of \mathbb{R}^n , then $\dim(S) + \dim(S^{\perp}) = n$.

10. Suppose that $T: V \to V$ is a linear transformation and that X and Y are subspaces of V such that $T(X) \subseteq X$ and $T(Y) \subseteq Y$. Show that if

$$V = X \oplus Y,$$

then

$$T(V) = T(X) \oplus T(Y).$$

11. Suppose that A is any real $m \times n$ matrix and that **b** is an $n \times 1$ column vector. Show that *precisely one* of the following systems has solutions:

- a. Ax = b.
- **b**. $A^t \mathbf{y} = \mathbf{0}$ and $\mathbf{y}^t \mathbf{b} \neq 0$.

where **0** is the null vector in \mathbb{R}^n

Harder Problem. (This is *not* compulsory, it is *not* to be handed in, and will *not* be covered in classes.)

This week we have only one harder problem, and you may be surprised to hear that it is an old exam question. (Luckily for you, it is a very old exam question!) See what you make of it.

12. Suppose that A is an $n \times n$ real matrix, prove that

$$\mathbb{R}^n \supseteq R(\mathsf{A}) \supseteq R(\mathsf{A}^2) \supseteq R(\mathsf{A}^3) \supseteq \cdots$$

Further, prove that if $R(A^s) = R(A^{s+1})$, then $R(A^s) = R(A^q)$ and $N(A^s) = N(A^q)$ for all $q \ge s$. Hence, show that if $\rho(A) < n$, then

$$\mathbb{R}^n \supset R(\mathsf{A}) \supset R(\mathsf{A}^2) \supset \cdots \supset R(\mathsf{A}^p) = R(\mathsf{A}^{p+1}) = R(\mathsf{A}^{p+2}) = \cdots$$

for some $p \ge 1$ (where $\mathsf{C} \supset \mathsf{D}$ means that $\mathsf{C} \supseteq \mathsf{D}$ and $\mathsf{C} \ne \mathsf{D}$). Further, prove that $\mathbb{R}^n = N(\mathsf{A}^p) \oplus R(\mathsf{A}^p)$.

(Hint: For the last part of this question it is easiest to use the following theorem:

 $V = Y \oplus Z \quad \text{iff} \quad Y \cap Z = \{\mathbf{0}\} \quad \text{and} \quad \dim(V) = \dim(Y) + \dim(Z).$

which you should also try to prove.)