
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 1

In this Problem Sheet, we looked at some sets of vectors that were vector spaces and some that were
not. We also used some of the ‘useful concepts’ from the notes and proved some new results about
them.

1. We are given four subsets of a vector space and we are asked to find out which of them are
subspaces. The reason why we are also asked to give a geometric interpretation of the subsets of R3

and to describe the subsets of FR is so that we can gain some idea of what sort of subsets are (and
aren’t) subspaces.

(a) The subset S1 = {[x, y, z]t ∈ R3 |x2 + y2 + z2 = 1} of R3 represents a sphere of unit radius
centred on the origin. It is not a subspace as:

• Subspaces are themselves vector spaces, and so by Definition 1.1, this means that they must
contain the additive identity (or null vector, which in this case is 0 = [0, 0, 0]t) and as 02 +02 +
02 = 0 6= 1, 0 /∈ S1.1 Consequently, S1 cannot be closed under vector addition.

• By Theorem 1.4, subspaces must be closed under vector addition and to show that S1 is not,
we can give a counter-example: The vectors [1, 0, 0]t and [0, 1, 0]t are in S1 (as 12 + 02 + 02 = 1
and 02 + 12 + 02 = 1 respectively), however the sum of these two vectors is




1
0
0


 +




0
1
0


 =




1
1
0


 ,

and this new vector is not in S1 as 12 + 12 + 02 = 2 6= 1. Consequently, S1 cannot be closed
under vector addition.

• By Theorem 1.4, subspaces must be closed under scalar multiplication and to show that S1 is
not, we can give a counter-example: The vector [1, 0, 0]t is in S1 (as 12 + 02 + 02 = 1), however
multiplying this by the scalar 2 (any other real number, except for 1 or −1, would have done!)
gives

2




1
0
0


 =




2
0
0


 ,

and this new vector is not in S1 as 22 + 02 + 02 = 4 6= 1. Consequently, S1 cannot be closed
under scalar multiplication.

Of course, any one of these reasons would have been sufficient to establish that the set S1 is not a
subspace of R3. (Alternatively, you could have shown that S1 generally fails to satisfy either of the
closure conditions required by Theorem 1.4.)

(b) The subset S2 = {[x, y, x + y]t ∈ R3 |x, y ∈ R} represents a plane through the origin in R3.
We observe that any vector in the set S2 will have a z-component given by z = x + y, and so the
Cartesian equation of this plane is x + y − z = 0. As this is just the set S1,1,−1 in the notation of
Chapter 1, we have already shown that this set is a subspace of R3.

However, if you wish to show that the set S2 is a subspace of R3 directly, then we can proceed as
follows:

1The origin is obviously not in S1 as a sphere of unit radius centred on the origin can be defined to be the set of all
points which are exactly one unit away from the origin!
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• If we take two general vectors in S2, say x = [x, y, x + y]t and x′ = [x′, y′, x′ + y′]t, where
x, y, x′, y′ ∈ R, then their vector sum is given by:

x + x′ =




x
y

x + y


 +




x′

y′

x′ + y′


 =




x + x′

y + y′

(x + y) + (x′ + y′)


 =




x + x′

y + y′

(x + x′) + (y + y′)


 ,

where x + x′, y + y′, (x + x′) + (y + y′) ∈ R too. Clearly, x + x′ ∈ S2 and so S2 is closed under
vector addition.

• If we take a general vector in S2, say x = [x, y, x + y]t, multiplying it by any scalar α ∈ R we
get

αx = α




x
y

x + y


 =




αx
αy

α(x + y)


 =




αx
αy

αx + αy


 ,

where αx, αy, αx+αy ∈ R too. Clearly, αx ∈ S2 and so S2 is closed under scalar multiplication.

Consequently, by Theorem 1.4, S2 is a subspace of R2 (as expected).

(c) The subset S3 = {f ∈ FR | f(2) = 1} of FR represents the set of all functions [defined over
R] which map 2 to 1. Some examples of functions which are represented by vectors in S3 are x− 1,
x2 − 3 and sin(πx/4). It is not a subspace as:

• Subspaces are themselves vector spaces, and so by Definition 1.1, this means that they must
contain the additive identity (or null vector, which in this case is 0 : x → 0 for all x ∈ R) and
as 0(2) = 0 6= 1, 0 /∈ S3.2

• By Theorem 1.4, subspaces must be closed under vector addition and to show that S3 is not,
we can give a counter-example: The functions x− 1 and x2− 3 are in S3 (as mentioned above),
however the sum of these two functions is x2 − x − 4 and this new function is not in S3 as it
takes the value −2 at x = 2. Consequently, S3 cannot be closed under vector addition.

• By Theorem 1.4, subspaces must be closed under scalar multiplication and to show that S3 is
not, we can give a counter-example: The function x− 1 is in S3 (as mentioned above), however
multiplying this by the scalar 2 (any other real number, except for 1, would have done) gives
2x − 2 and this new function is not in S3 as it takes the value 2 at x = 2. Consequently, S3

cannot be closed under scalar multiplication.

Of course, any one of these reasons would have been sufficient to establish that the set S3 is not a
subspace of FR. (Alternatively, you could have shown that S3 generally fails to satisfy either of the
closure conditions required by Theorem 1.4.)

(d) The subset S4 = {f ∈ FR | f(5) = 0} of FR represents the set of all functions [defined over
R] which map 5 to 0. Some examples of functions which are represented by vectors in S4 are x− 5,
x2 − 25 and sin(πx/5).3 To show that S4 is a subspace of FR, we proceed as follows:

• If we take two general vectors in S4, say f : x → f(x) and g : x → g(x) where f(5) = 0 and
g(5) = 0, then their vector sum is given by

[f + g](x) = f(x) + g(x) =⇒ f(5) + g(5) = 0 + 0 = 0,

and so f + g ∈ S4 too. Consequently, S4 is closed under vector addition.

2The zero-function is obviously not in S3 as this is the set of all functions which take the value 2 at x = 1, whereas
the zero-function takes the value zero for all x ∈ R.

3We note in passing that this set also contains the additive identity required by Definition 1.1. Recall that in FR,
this vector is represented by the zero-function 0 : x → 0.
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• If we take a general vector in S4, say f : x → f(x) where f(5) = 0, we can multiply it by any
scalar α ∈ R to get

[αf ](x) = αf(x) =⇒ αf(5) = α · 0 = 0,

and so f ∈ S4 too. Consequently, S4 is closed under scalar multiplication.

So, by Theorem 1.4, S2 is a subspace of R2.

2. The sets S1,1,1 and S1,2,3 are both subspaces of R3 as established in the Example of Section 1.4.2.
Indeed, they both represent sets of vectors [or points] that lie in planes passing through the origin,
specifically the planes x + y + z = 0 and x + 2y + 3z = 0. In this question we ask, in this specific
setting, whether the union or the intersection of two subspaces is also a subspace. This may seem
unimportant now, but later in the course we shall define other set operations4 and we will want to
know if performing these set operations on subspaces give rise to other subspaces.

We start by looking at the union of these two sets, namely

S1,1,1 ∪ S1,2,3 = {x ∈ R3 |x ∈ S1,1,1 or x ∈ S1,2,3},
and this represents the set of all vectors [or points] that lie on either one of the two planes. At first
sight, it appears that this new set is also a subspace since:

• The null vector, i.e. 0, is in both of the sets under consideration and so it is in their union too.

• If we take any vector in S1,1,1 (or S1,2,3) and multiply it by a scalar we get another vector in
S1,1,1 (or S1,2,3) since both of these sets are closed under scalar multiplication (as individually,
they are both subspaces).

• If we take any two vectors in S1,1,1 (or S1,2,3) and add them together we get another vector in
S1,1,1 (or S1,2,3) since both of these sets are closed under vector addition (as individually, they
are both subspaces).

However, this is not the case since we can easily find a counter-example to the claim that it is closed
under vector addition. To do this, we take a vector from S1,1,1 (which is not in S1,2,3) and a vector
from S1,2,3 (which is not in S1,1,1), for instance the vectors




1
−1
0


 ∈ S1,1,1 and




2
−1
0


 ∈ S1,2,3,

and notice that their sum is [3,−2, 0]t. But, this vector does not lie in the union since it is neither
in S1,1,1 (since 3− 2 + 0 = 1 6= 0) nor S1,1,1 (since 3− 4 + 0 = −1 6= 0). Thus, the union of the sets
S1,1,1 and S1,2,3 is not closed under vector addition and hence it is not a subspace of R3.

Next, looking at the intersection of these two sets, namely

S1,1,1 ∩ S1,2,3 = {x ∈ R3 |x ∈ S1,1,1 and x ∈ S1,2,3},
this represents the set of all vectors [or points] that lie on both of the two planes. In particular, if
the vector [x, y, z]t lies in this set its components must satisfy both x+y+z = 0 and x+2y+3z = 0,
that is, they must be solutions to the simultaneous equations:

x + y + z = 0
x + 2y + 3z = 0

But, in this case, we have two equations in three variables and so we can set one of the variables, say
z, equal to the free parameter r ∈ R. Thus, solving the equations we find that x = r and y = −2r
which means that only vectors of the form




x
y
z


 = r




1
−2
1


 ,

4A set operation is something that you ‘do’ to a set (or pair of sets) to yield another set. (For example, both the
union, and the intersection, of two sets yield another set.)
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will lie in the intersection, i.e. the vectors [or points] in this set lie on a line through the origin which
‘points’ in the direction [1,−2, 1]t. Indeed, this analysis provides us with a particularly nice way of
proving that S1,1,1 ∩ S1,2,3 does give us a subspace, as taking any two vectors in this set, say

r




1
−2
1


 and s




1
−2
1


 ,

where r, s ∈ R, and any scalar α ∈ R we can establish closure under:

• Vector Addition: since

r




1
−2
1


 + s




1
−2
1


 = (r + s)




1
−2
1


 ,

where r + s ∈ R, and

• Scalar Multiplication: since

α · r



1
−2
1


 = (αr)




1
−2
1


 ,

where αr ∈ R.

Thus, by Theorem 1.4, S1,1,1 ∩ S1,2,3 is a subspace.
What does this question imply for general unions and intersections of subspaces? Well, it should

lead you to suspect that the union of two [different] subspaces will not yield a subspace, whereas the
intersection will. We have not proved this, but it provides us with an example of a set operation that
does, and a set operation that does not, yield a subspace when it is applied to two specific subspaces.

3. We are given the plane x − y + 3z = 0 which represents a subspace of R3.5 To find a basis, we
notice that we have one equation in three variables, and so two of them must be free. So, taking y
and z to be the free variables, we set them equal to the free parameters r and s respectively, and
find that x = r − 3s. Consequently, vectors of the form




x
y
z


 =




r − 3s
r
s


 = r




1
1
0


 + s



−3
0
1


 ,

satisfy the equation of the plane, and so the set of vectors







1
1
0


 ,



−3
0
1






 ,

will span this subspace.6 However, to be a basis, this set must be linearly independent too. But
by choosing the free parameters to correspond to different variables we automatically get linear
independence.7 Consequently, this set is a basis and so we let

B =








1
1
0


 ,



−3
0
1






 ,

and as it contains two vectors we can see that the subspace of R3 we are considering has a dimension
of two.

5This is obviously a subspace of R3 as the set of all points in this plane is just S1,−1,3 — see Section 1.4.2.
6This is the method used in the Example following Definition 2.2.
7But you may verify that they are linearly independent by using the method of the Example following Theorem 2.7.
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Further, the vector [4, 7, 1]t is in this subspace because its components satisfy the equation of the
plane (i.e. 4− 7 + 3 = 0). However, if we add this vector to B to form the set

B′ =








1
1
0


 ,



−3
0
1


 ,




4
7
1






 ,

we no longer have a basis as this new set is linearly dependent. To see this, observe that the vector
[4, 7, 1]t can be written as a linear combination of the other vectors in B′, i.e.




4
7
1


 = 7




1
1
0


−



−3
0
1


 .

Or, alternatively, just note that as [4, 7, 1]t is in the subspace it must be in the linear span of B, i.e
it must be a linear combination of the other vectors in B′.

Further still, the vector [1, 0, 0]t is not in this subspace because its components do not satisfy the
equation of the plane (i.e. 1− 0 + 0 = 1 6= 0). So, adding this vector to B we form the set

B′′ =








1
1
0


 ,



−3
0
1


 ,




1
0
0






 .

Now, this set is linearly independent as if we look at the vector equation

α1




1
1
0


 + α2



−3
0
1


 + α3




1
0
0


 = 0,

we get the simultaneous equations

1α1 − 3α2 + 1α3 = 0
1α1 + 0α2 + 0α3 = 0 =⇒ α1 = 0
0α1 + 1α2 + 0α3 = 0 =⇒ α2 = 0

and as these values give α3 = 0 in the top equation, we only get a trivial solution to the vector
equation given above. Consequently, as the set B′′ is linearly independent it is a basis. The space
spanned by B′′ is R3 as a set of three linearly independent vectors in the three-dimensional space R3

will be a basis for (and will hence span) R3 by Theorem 2.17. Obviously, the dimension of this space
is three.

4. We are asked to prove the following four theorems:

(a) If S is a set of vectors that contains the null vector (i.e. 0), then it is linearly dependent.

Proof: Let us take the set S which contains the null vector to be {u1,u2, . . . ,un,0}. It is suggested
that we use Definition 2.6, which tells us that the set S is linearly dependent if the vector equation

α1u1 + α2u2 + · · ·+ αnun + αn+10 = 0,

has non-trivial solutions. Clearly, this is the case here as, regardless of the values of α1, α2, . . . , αn,
the coefficient of 0 can take any real value (i.e. an+1 need not be zero). Consequently, the set S is
linearly dependent (as required).

(b) Let S = {u1,u2, . . . ,um,v} be a set of vectors in a vector space V . If v can be written as a
linear combination of the other vectors in S (i.e. the vectors in the set S′ = {u1,u2, . . . ,um}), then
S and S′ span the same space, i.e. Lin(S) = Lin(S′).
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Proof: We take the sets S and S′ defined in the question and note that as v is a linear combination
of the vectors in the latter set we can write

v =
m∑

i=1

αiui,

where the coefficients α1, α2, . . . , αm are scalars. Then, using Definition 2.3 as suggested, we note
that

Lin(S) =

{
m∑

i=1

γiui + γm+1v
∣∣∣∣ for scalars γ1, γ2, . . . , γm, γm+1

}

=

{
m∑

i=1

γiui + γm+1

m∑

i=1

αiui

∣∣∣∣ for scalars α1, α2, . . . , αm, γ1, γ2, . . . , γm, γm+1

}

=

{
m∑

i=1

(γi + γm+1αi)ui

∣∣∣∣ for scalars α1, α2, . . . , αm, γ1, γ2, . . . , γm, γm+1

}

=

{
m∑

i=1

βiui

∣∣∣∣ for scalars β1, β2, . . . , βm

}

∴ Lin(S) = Lin(S′)

where we have let βi = γi + γm+1αi for 1 ≤ i ≤ m (as required).8

(c) Let S = {u1,u2, . . . ,um} be a basis of the finite dimensional space V and let S′ ⊆ V be any set
containing n vectors. If n < m, then the vectors in S′ cannot span V .

Proof: We take the set S defined in the question to be a basis of the finite dimensional space V 9

Also, let S′ be any subset of V containing n < m vectors, say S′ = {v1,v2, . . . ,vn} ⊆ V . We want
to show that S′ can not span V .

To do this we assume, for contradiction, that S′ does span V . If this is the case, then by Definition
2.2, every vector in V can be written as a linear combination of the vectors in S′, and in particular,
so can the vectors in S. Thus, we can write

u1 = a11v1 + a12v2 + · · · + a1nvn

u2 = a21v1 + a22v2 + · · · + a2nvn
...

...
...

...
um = am1v1 + am2v2 + · · · + amnvn

Now, consider the vector equation

γ1u1 + γ2u2 + · · ·+ γmum = 0, (1)

which, on substituting in the expressions for u1,u2, . . . ,um above, gives

γ1(a11v1 + a12v2 + · · ·+ a1nvn) + · · ·+ γm(am1v1 + am2v2 + · · ·+ amnvn) = 0,

and re-arranging we get

(γ1a11 + γ2a21 + · · ·+ γmam1)v1 + · · ·+ (γ1a1n + γ2a2n + · · ·+ γmamn)vn = 0.

But, whatever the coefficients of the vectors v1,v2, . . . ,vn in this equation may actually be, we notice
that if they are all equal to zero, then they satisfy the equation. That is, the set of simultaneous

8Notice that this result is related to Theorem 2.9: We have just shown that if we remove a linearly dependent vector
from a set of vectors, the set will still span the same space. However, Theorem 2.9 tells us that if we add a linearly
independent vector to a linearly independent set of vectors, the set will still be linearly independent.

9Notice that, by Definition 2.13, this means that V is an m-dimensional vector space.
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equations
a11γ1 + a21γ2 + · · · + am1γm = 0
a12γ1 + a22γ2 + · · · + am2γm = 0

...
...

...
...

a1nγ1 + a2nγ2 + · · · + amnγm = 0
will always be a solution to the vector equation in question. However, since n < m, we have more
unknowns than equations10 and so there will be m − n > 0 free variables which, in general, will
be non-zero. Consequently, there will be non-trivial solutions to Equation 1 and hence the vectors
u1,u2, . . . ,um are linearly dependent. But, this is contrary to the fact that these vectors form a
basis and must therefore be linearly independent. Thus, by contradiction, S can not span V (as
required).11

(d) If S is a set of n vectors that spans an n-dimensional vector space V , then S is a basis for V .

Proof: As S is a set of n vectors that spans an n-dimensional vector space V , to show that S is a
basis for V , we only need to establish that it is a linearly independent set.

To do this, we assume, for contradiction, that S is linearly dependent. That is, there is a
vector in S that can be written as a linear combination of the other vectors in S. So, by
(b), we can remove this vector from S to get a set S′ which contains n − 1 vectors but
still spans V . But, this is contrary to (c) which tells us that a set containing n− 1 < n
vectors cannot span an n-dimensional space such as V . Thus, by contradiction, S must
be linearly independent.

Consequently, as S also spans V , it is a basis for V (as required).12

Other problems

The Other Problems on this sheet were intended to give you some further insight into what kinds of
sets form vector spaces.

5. The set S1,1,1 = {[x, y, z]t ∈ R3 | x + y + z = 0} is a subspace of R3. To see why, refer to
the first Example of Section 1.4.2 where I proved that all sets of the form Sa,b,c = {[x, y, z]t ∈
R3 | ax + by + cz = 0} are subspaces of R3. Geometrically, S1,1,1 is the set of all points on the plane
with Cartesian equation x + y + z = 0. (Note that this plane clearly goes through the origin.)

The set S1,1,1,1 = {[x, y, z]t ∈ R3 | x + y + z = 1} is not a subspace of R3. To see why, refer
to either the second or third Examples of Section 1.4.2 where I proved that all sets of the form
Sa,b,c,r = {[x, y, z]t ∈ R3 | ax + by + cz = r 6= 0} are not subspaces of R3. Geometrically, S1,1,1,1

is the set of all points on the plane with Cartesian equation x + y + z = 1. (Note that this plane
clearly does not go through the origin, and so the set in question does not contain the null vector.
Consequently, it should be obvious that this subset of R3 is not a subspace.)

6. The set S1 = {[x, 0, 0]t ∈ R3 | x ∈ R} is a subspace of R3. To see this, we note that for two general
vectors x = [x, 0, 0]t and y = [y, 0, 0]t and a general scalar α (where, obviously, x, y, α ∈ R) we have:

• It is closed under vector addition as

x + y =




x
0
0


 +




y
0
0


 =




x + y
0
0


 ,

10Notice that we have n simultaneous equations relating the m variables γ1, γ2, . . . , γm.
11Notice that this result is related to Theorem 2.14: We have just shown that if we have a set containing less vectors

than a basis, then the set cannot span the space. However, Theorem 2.14 tells us that if we have a set containing more
vectors than a basis, then the set cannot be linearly independent.

12Notice that this result is related to Theorem 2.17: We have just shown that a set of n vectors that spans an
n-dimensional space is a basis for that space, whereas Theorem 2.17 tells us that a set of n linearly independent vectors
in an n-dimensional space is a basis for that space. Consequently, a set of n vectors in an n-dimensional space V only
needs to span V or be linearly independent to be a basis for V .
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and so x + y ∈ S1 as x + y ∈ R.

• It is closed under scalar multiplication as

αx = α




x
0
0


 =




αx
0
0


 ,

and so αx ∈ S1 as αx ∈ R.

and so it is a subspace of R3 by Theorem 1.4. Geometrically, this set corresponds to the line which is
the intersection of the planes y = 0 and z = 0, i.e. the x-axis. (Of course, we can represent this line
as the intersection of many different pairs of planes,13 but I have just chosen the ‘simplest’ pair.)

The set S2 = {[x, y, z]t ∈ R3 | xz = 0} is not a subspace of R3. To see this note that the vectors
[1, 0, 0]t and [0, 0, 1]t are in S2, but their vector sum, namely




1
0
0


 +




0
0
1


 =




1
0
1


 ,

is not in S2 (as 1 × 1 = 1 6= 0). Consequently, this set is not closed under vector addition and is
therefore not a subspace. Geometrically, as the condition xz = 0 means that x = 0 or z = 0, this
set corresponds to the union of the yz and xy-planes. (Notice that, as in Problem 2, when trying to
find a counter-example in the ‘union of two subspaces’ case, you have to take a vector from each of
the subspaces.)

7. We consider four sets which are defined in terms of a vector a of the form [a2, b2, c2]t. In the
vector spaces R3 and C3, the role of the additive identity is played by the null vector [0, 0, 0]t. So, for
the subsets in question to be vector spaces, Definition 1.1(A0) requires that they contain this vector,
which rules out S2 and S4 straightaway as they require that a, b, c 6= 0.

Also, the vector [1, 1, 1]t is contained in all four sets, and Definition 1.1(AI) requires that a vector
space contains the additive inverse of such vectors, namely [−1,−1,−1]t. So this condition rules out
S1 and S2 as a, b, c ∈ R means a2, b2, c2 ≥ 0.

Consequently, S1, S2 and S4 cannot be vector spaces. Let us now establish that the remaining
subset, namely S3, is indeed a vector space. To do this, as it will be a subspace of C3, we only need
to show that it satisfies Theorem 1.4. So, for two general vectors x = [a2

1, b
2
1, c

2
1]

t and y = [a2
2, b

2
2, c

2
2]

t

and a general scalar γ (where, obviously, a1, b1, c1, a2, b2, c2, γ ∈ C) we have:

• It is closed under vector addition as

x + y =




a2
1

b2
1

c2
1


 +




a2
2

b2
2

c2
2


 =




a2
1 + a2

2

b2
1 + b2

2

c2
1 + c2

2


 ,

and so x + y ∈ S3 as a2
1 + a2

2, b
2
1 + b2

2, c
2
1 + c2

2 ∈ C.

• It is closed under scalar multiplication as

γx = γ




a2
1

b2
1

c2
1


 =




γa2
1

γb2
1

γc2
1


 ,

and so γx ∈ S3 as γa2
1, γb2

1, γc2
1 ∈ C.

Thus, S3 is a subspace of C3.

13For example, the x-axis is also the intersection of the planes y + z = 0 and y − z = 0.
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8. Using Definition 2.3, it should be clear that if the three given linear spans are subsets of some
vector space V ,

Lin{1} = {α · 1 | for all scalars α}, Lin{0} = {0} and Lin∅ = ∅,

Now, Lin{1} is a vector space by Theorem 2.4, and looking at Section 1.4.1 we can see that Lin{0} =
{0} is the [trivial] vector space, whereas Lin∅ = ∅ is not a vector space.

Only vector spaces can have bases, and a basis for Lin{1} would be {1}, which means that it is
a one-dimensional vector space. However, as Lin{0} = {0}, we cannot find a basis for this vector
space, although by Definition 2.16, we can stipulate that it is a zero-dimensional vector space.14

Harder problems

The Harder Problems on this sheet were intended to give you some further practice in proving results
about vector spaces.

9. We are asked to prove parts (2) and (3) of Theorem 1.2. We shall do them in turn, firstly:

Theorem 1.2 (2): The additive inverse of a vector u ∈ V , namely −u, is such that
(−1) · u = −u.

Proof: To show that (−1) · u = −u we demonstrate that u + (−1) · u = 0 (i.e. (AI) is
satisfied). This can be done by noting that:

u + (−1) · u = 1 · u + (−1) · u :by (M1)
= (1 + (−1)) · u :by (MD2)
= 0 · u :as 1 + (−1) = 0

∴ u + (−1) · u = 0 :by Theorem 1.2 (1)

as required.

and secondly:

Theorem 1.2 (3): If α · u = 0, then α = 0 or u = 0.

Proof: We are given that α ·u = 0 and we need to establish that this implies that α = 0
or u = 0. To do this, we note that there are two possible cases, namely:

• If α = 0, then we have α · u = 0 · u = 0 by Theorem 1.2 (1).

• If α 6= 0, then we can write

α−1 · (α · u) = (α−1α) · u :by (MA)
= 1 · u :as α−1α = 1

∴ α−1 · (α · u) = u :by (M1)

However, we also have

α−1 · (α · u) = α−1 · 0 :as α · u = 0

∴ α−1 · (α · u) = 0 :by Theorem 1.2 (1)

Thus, equating these two expressions, we get u = 0.

Consequently, if α · u = 0, then α = 0 or u = 0 (as required).

14To see why this is so, look at the discussion which follows Definition 2.16.
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where these results hold for any vector u in the vector space V and all scalars, α.

10. We are asked to show that the set Sa,b,c,r = {x = [x1, x2, x3]t ∈ R3 | ax1 + bx2 + cx3 = r} where
a, r 6= 0, b = 0 and c can take any value, is not a subspace of R3 by finding a counter-example. This
can be done in one of two ways:15

• We can add the vector [r/a, 0, 0]t ∈ Sa,b,c,r to itself to get the vector [2r/a, 0, 0]t which is not
in Sa,b,c,r (since 2r + 0 + 0 = 2r 6= r) and as such Sa,b,c,r is not closed under vector addition.

• We can multiply the vector [r/a, 0, 0]t by any scalar α (where α 6= 1) to get the vector
[αr/a, 0, 0]t which is not in Sa,b,c,r (since αr + 0 + 0 = αr 6= r) and as such Sa,b,c,r is not
closed under scalar multiplication

Thus, by [the contrapositive of] Theorem 1.4, Sa,b,c,r is not a subspace of R3.

11. We are asked to show that the vector space {0} is the only vector space containing just one
vector. Let us consider the case where {0} is a subspace of a larger vector space V . Clearly any
other set containing just one vector, say x 6= 0, will be {x} ⊆ V , and this cannot be a vector space
as it doesn’t contain an additive identity as required by Definition 1.1(A0). Further, the vector space
{0} is itself unique as, by Theorem 1.2(1), the additive identity 0 ∈ V is unique.

12. We are asked to prove the following theorem: If V is a subspace of a finite dimensional vector
space W , then V is finite dimensional. Further, dim(V ) ≤ dim(W ), and in particular, dim(V ) =
dim(W ) iff V = W .

Proof: Let V be a subspace of the finite dimensional vector space W . To prove that V must be
finite dimensional too we perform the following construction (note that j ≥ 1):

• Step 0: If V = {0}, then V is finite dimensional and we have finished. If V 6= {0}, then we
choose a vector v1 ∈ V .

• Step j: If V = Lin{v1, . . . ,vj}, then V is finite dimensional and we are finished. If V 6=
Lin{v1, . . . ,vj}, then choose a vector vj+1 ∈ V such that vj+1 6∈ Lin{v1, . . . ,vj}.

After each step, as long as the process continues, we have constructed a set of vectors where no vector
in the set is in the linear span of the other vectors. Thus, after each step we have constructed a
linearly independent set of vectors by Theorem 2.9. Indeed, this linearly independent set of vectors
is contained within W (as V ⊆ W ) and so, by [the contrapositive of] Theorem 2.14, it cannot contain
more vectors than a basis of W . Thus, as W is finite dimensional the number of vectors that this
set contains must be finite too (i.e. the construction above must terminate) and consequently, V is
finite dimensional (as required).

Now, if we take a basis S = {v1,v2, . . . ,vm} ⊆ V ⊆ W of V , then dim(V ) = m and either S is also
a basis for W or it is not. That is, either

• S is a basis for W and dim(V ) = dim(W ), or

• S is not a basis for W but, by Theorem 2.9, we can add vectors to the linearly independent set
S to make it a basis for W , i.e. dim(V ) < dim(W ).

Consequently, it must be the case that dim(V ) ≤ dim(W ). In particular, to establish that dim(V ) =
dim(W ) iff V = W , we have:

• LTR: If dim(V ) = dim(W ), then S (a basis for V ) is a set of m linearly independent vectors
in an m-dimensional space W , and so, by Theorem 2.17, S is a basis for W too. Consequently,
as the vectors in S span both V and W , we have V = Lin(S) = W .

• RTL: If V = W , then obviously dim(V ) = dim(W ).

as required.
15There is, of course, no need to do both.
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