
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 10

In this Problem Sheet, we calculated some left and right inverses and verified the theorems about
them given in the lectures. We also calculated an SGI and proved one of the theorems that apply to
such matrices.

1. To find the equations that u, v, w, x, y and z must satisfy so that

[
1 −1 1
1 1 2

]


u v
w x
y z


 =

[
1 0
0 1

]
,

we expand out this matrix equation to get

u− w + y = 1
u + w + 2y = 0

and
v − x + z = 0
v + x + 2z = 1

and notice that we have two independent sets of equations. Hence, to find all of the right inverses of
the matrix,

A =
[

1 −1 1
1 1 2

]
,

i.e. all matrices R such that AR = I, we have to solve these sets of simultaneous equations. Now, as
each of these sets consist of two equations in three variables, we select one of the variables in each
set, say y and z, to be free parameters.1 Thus, ‘mucking about’ with the equations, we find

2u = 1− 3y
2w = −1− y

and
2v = 1− 3z
2x = 1− z

and so, all of the right inverses of the matrix A are given by

R =
1
2




1− 3y 1− 3z
−1− y 1− z

2y 2z


 ,

where y, z ∈ R. (You might like to verify this by checking that AR = I, the 2× 2 identity matrix.)

We are also asked to verify that the matrix equation Ax = b has a solution for every vector b =
[b1, b2]t ∈ R2. To do this, we note that for any such vector b ∈ R2, the vector x = Rb is a solution
to the matrix equation Ax = b since

A(Rb) = (AR)b = Ib = b.

Consequently, for any one of the right inverses calculated above (i.e. any choice of y, z ∈ R) and any
vector b = [b1, b2]t ∈ R2, the vector

x = Rb =
1
2




1− 3y 1− 3z
−1− y 1− z

2y 2z




[
b1

b2

]
=

1
2




b1 + b2

−b1 + b2

0


− yb1 + zb2

2




3
1
−2


 ,

is a solution to the matrix equation Ax = b as

Ax =
[
1 −1 1
1 1 2

]



1
2




b1 + b2

−b1 + b2

0


− yb1 + zb2

2




3
1
−2






 =

[
b1

b2

]
+ 0 = b.

1If you choose different variables to be the free parameters, you will get a general form for the right inverse that
looks different to the one given here. However, they will be equivalent.
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Thus, we can see that the infinite number of different right inverses available to us give rise to an
infinite number of different solutions to the matrix equation Ax = b.

Indeed, the choice of right inverse [via the parameters y, z ∈ R] only affects the solutions through
vectors in Lin{[3, 1,−2]t} which is the null space of the matrix A. As such, the infinite number of
different solutions only differ due to the relationship between the choice of right inverse and the
corresponding vector in the null space of A.

2. To find the equations that u, v, w, x, y and z must satisfy so that

[
u v w
x y z

]


1 1
−1 1
1 2


 =

[
1 0
0 1

]
,

we expand out this matrix equation to get

u− v + w = 1
u + v + 2w = 0

and
x− y + z = 0
x + y + 2z = 1

and notice that we have two independent sets of equations. Hence, to find all of the left inverses of
the matrix,

A =




1 1
−1 1
1 2


 ,

i.e. all matrices L such that LA = I, we have to solve these sets of simultaneous equations. Now, as
each of these sets consist of two equations in three variables, we select one of the variables in each
set, say w and z, to be free parameters.2 Thus, ‘mucking about’ with the equations, we find

2u = 1− 3w
2v = −1− w

and
2x = 1− 3z
2y = 1− z

and so, all of the left inverses of the matrix A are given by

L =
1
2

[
1− 3w −1− w 2w
1− 3z 1− z 2z

]
,

where w, z ∈ R.3 (You might like to verify this by checking that LA = I, the 2× 2 identity matrix.)

Using this, we can find the solutions of the matrix equation Ax = b for an arbitrary vector b =
[b1, b2, b3]t ∈ R3 since

Ax = b =⇒ LAx = Lb =⇒ Ix = Lb =⇒ x = Lb.

Therefore, the desired solutions are given by:

x = Lb =
1
2

[
1− 3w −1− w 2w
1− 3z 1− z 2z

]


b1

b2

b3


 =

1
2

[
b1 − b2

b1 + b2

]
− 3b1 + b2 − 2b3

2

[
w
z

]
,

and this appears to give us an infinite number of solutions (via w, z ∈ R) contrary to the second part
of Question 10. But, we know that the matrix equation Ax = b is consistent (i.e. has solutions) if

2If you choose different variables to be the free parameters, you will get a general form for the left inverse that looks
different to the one given here. However, they will be equivalent.

3Having done Question 1, this should look familiar since if A is an m × n matrix of rank m, then it has a right
inverse — i.e. there is an n ×m matrix R such that AR = I (see Question 11). Now, taking the transpose of this we
have RtAt = I — i.e. the m× n matrix Rt is a left inverse of the n×m rank m matrix At (see Question 10). Thus, it
should be clear that the desired left inverses are given by Rt where R was found in Question 1.
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and only if b ∈ R(A). Hence, since ρ(A) = 2, we know that the range of A is a plane through the
origin given by

b = [b1, b2, b3]t ∈ R(A) ⇐⇒
∣∣∣∣∣∣

b1 b2 b3

1 −1 1
1 1 2

∣∣∣∣∣∣
= 0 ⇐⇒ 3b1 + b2 − 2b3 = 0.

That is, if the matrix equation Ax = b has a solution, then 3b1 + b2 − 2b3 = 0 and, as such, this
solution is given by

x =
1
2

[
b1 − b2

b1 + b2

]
,

which is unique (i.e. independent of the choice of left inverse via w, z ∈ R).

Alternatively, you may have noted that given the above solutions to the matrix equation Ax = b, we
can multiply through by A to get

Ax =
1
2




2b1

2b2

3b1 + b2


− 3b1 + b2 − 2b3

2




w + z
−w + z
w + 2z


 .

Thus, it should be clear that the vector x will only be a solution to the system of equations if

3b1 + b2 − 2b3 = 0,

as this alone makes Ax = b. Consequently, when x represents a solution, it is given by

x =
1
2

[
b1 − b2

b1 + b2

]
,

which is unique.

3. To show that the matrix

A =
[

1 −1 1
1 1 1

]
,

has no left inverse, we have two methods available to us:

Method 1: A la Question 2, a left inverse exists if there are u, v, w, x, y and z that satisfy
the matrix equation




u v
w x
y z




[
1 −1 1
1 1 1

]
=




1 0 0
0 1 0
0 0 1


 .

Now, expanding out the top row and looking at the first and third equations, we require
u and v to be such that u + v = 1 and u + v = 0. But, these equations are inconsistent,
and so there are no solutions for u and v, and hence, no left inverse.

Method 2: From the lectures (or Question 10), we know that an m × n matrix has a
left inverse if its rank is n. Now, this is a 2× 3 matrix and so for a left inverse to exist,
we require that it has a rank of three. But, its rank can be no more than min{2, 3} = 2,
and so this matrix cannot have a left inverse.

Similarly, to show that the matrix has a right inverse, we use the analogue of Method 2.4 So, from
the lectures (or Question 11), we know that an m×n matrix has a right inverse if and only if its rank

4Or, we could use the analogue of Method 1, but it seems pointless here as we are just trying to show that the right
inverse exists. (Note that using this method we would have to show that the six equations were consistent. But, to do
this, we would probably end up solving them and finding the general right inverse in the process — which is exactly
what the question says we need not do!)
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is m. Now, this is a 2× 3 matrix and so for a right inverse to exist, we require that it has a rank of
two. In this case, the matrix has two linearly independent rows5 and so it has the required rank, and
hence a right inverse. Further, to find one of these right inverses, we use the formula R = At(AAt)−1

from the lectures (or Question 11). Thus, as

AAt =
[
1 −1 1
1 1 1

] 


1 1
−1 1
1 1


 =

[
3 1
1 3

]
=⇒ (AAt)−1 =

1
8

[
3 −1
−1 3

]
,

we get

R = At(AAt)−1 =
1
8




1 1
−1 1
1 1




[
3 −1
−1 3

]
=

1
8




2 2
−4 4
2 2


 .

So, tidying up, we get

R =
1
4




1 1
−2 2
1 1


 .

(Again, you can check that this is a right inverse of A by verifying that AR = I, the 2 × 2 identity
matrix.)

4. We are asked to find the strong generalised inverse of the matrix

A =




1 4 5 3
2 3 5 1
3 2 5 −1
4 1 5 −3


 .

To do this, we note that if the column vectors of A are denoted by x1, x2, x3 and x4, then

x3 = x1 + x2 and x4 = −x1 + x2,

where the first two column vectors of the matrix, i.e. x1 and x2, are linearly independent. Conse-
quently, ρ(A) = 2 and so we use these two linearly independent column vectors to form a 4×2 matrix
B of rank two, i.e.

B =




1 4
2 3
3 2
4 1


 .

We then seek a 2× 4 matrix C such that A = BC and ρ(C) = 2, i.e.

C =
[

1 0 1 −1
0 1 1 1

]
.

(Notice that this matrix reflects how the column vectors of A are linearly dependent on the column
vectors of B.) The strong generalised inverse of A, namely AG, is then given by

AG = Ct(CCt)−1(BtB)−1Bt,

as we saw in the lectures (or Question 13). So, we find that

CCt =
[

1 0 1 −1
0 1 1 1

]



1 0
0 1
1 1
−1 1


 =

[
3 0
0 3

]
=⇒ (CCt)−1 =

1
3

[
1 0
0 1

]
,

5Notice that the two row vectors are not scalar multiples of each other.
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and so,

Ct(CCt)−1 =
1
3




1 0
0 1
1 1
−1 1




[
1 0
0 1

]
=

1
3




1 0
0 1
1 1
−1 1


 ,

whereas,

BtB =
[

1 2 3 4
4 3 2 1

]



1 4
2 3
3 2
4 1


 =

[
30 20
20 30

]
=⇒ (BtB)−1 =

1
50

[
3 −2
−2 3

]
,

and so,

(BtB)−1Bt =
1
50

[
3 −2
−2 3

] [
1 2 3 4
4 3 2 1

]
=

1
50

[ −5 0 5 10
10 5 0 −5

]
=

1
10

[ −1 0 1 2
2 1 0 −1

]
.

Thus,

AG = Ct(CCt)−1(BtB)−1Bt =
1
30




1 0
0 1
1 1
−1 1




[ −1 0 1 2
2 1 0 −1

]
=

1
30




−1 0 1 2
2 1 0 −1
1 1 1 1
3 1 −1 −3


 ,

is the required strong generalised inverse.6 (You may like to check this by verifying that AGAAG = AG,
or indeed that AAGA = A. But, then again, you may have better things to do.)

5. We are asked to show that: If A has a right inverse, then the matrix At(AAt)−1 is the strong
generalised inverse of A. To do this, we start by noting that, by Question 11, as A has a right inverse
this matrix exists. So, to establish the result, we need to show that this matrix satisfies the four
conditions that need to hold for a matrix AG to be a strong generalised inverse of the matrix A and
these are given in Definition 19.1, i.e.

1. AAGA = A.

2. AGAAG = AG.

3. AAG is an orthogonal projection of Rm onto R(A).

4. AGA is an orthogonal projection of Rn parallel to N(A).

Now, one way to proceed would be to show that each of these conditions are satisfied by the matrix
At(AAt)−1.7 But, to save time, we shall adopt a different strategy here and utilise our knowledge of
weak generalised inverses. That is, noting that all right inverses are weak generalised inverses,8 we
know that they must have the following properties:

• ARA = A.

• AR is a projection of Rm onto R(A).

• RA is a projection of Rn parallel to N(A).

6In Questions 1 (and 2), we found that a matrix can have many right (and left) inverses. However, the strong
generalised inverse of a matrix is unique. (See Question 12.)

7This will establish that the matrix At(AAt)−1 is a strong generalised inverse of A. The fact that it is the strong
generalised inverse of A then follows by the result proved in Question 12.

8See the handout for Lecture 18.
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and it is easy to see that RAR = R as well since

RAR = R(AR) = RI = R.

Thus, we only need to establish that the projections given above are orthogonal, i.e. we only need
to show that the matrices AR and RA are symmetric. But, as we are only concerned with the right
inverse given by At(AAt)−1, this just involves noting that:

• Since AR = I, we have (AR)t = It = I too, and so AR = (AR)t.

• [RA]t = [At(AAt)−1A]t = At[At(AAt)−1]t = At[(AAt)−1]t[At]t = At(AAt)−1A = RA.9

Consequently, the right inverse of A given by the matrix At(AAt)−1 is the strong generalised inverse
of A (as required).

Further, we are asked to show that x∗ = At(AAt)−1b is the solution of Ax = b nearest to the origin.
To do this, we recall that if an m×n matrix A has a right inverse, then the matrix equation Ax = b
has a solution for all vectors b ∈ Rm.10 Indeed, following the analysis of Question 1, it should be
clear that these solutions can be written as

x = At(AAt)−1b + u,

where u ∈ N(A).11 Now, the vector At(AAt)−1b is in the range of the matrix At and so, since
R(At) = N(A)⊥, the vectors At(AAt)−1b and u are orthogonal. Thus, using the Generalised Theorem
of Pythagoras, we have

‖x‖2 = ‖At(AAt)−1b + u‖2 = ‖At(AAt)−1b‖2 + ‖u‖2 =⇒ ‖x‖2 ≥ ‖At(AAt)−1b‖2,

as ‖u‖2 ≥ 0. That is, x∗ = At(AAt)−1b is the solution of Ax = b nearest to the origin (as required).12

Other Problems.

In the Other Problems, we looked at a singular values decomposition and investigated how these can
be used to calculate strong generalised inverses. We also look at some other results concerning such
matrices.

6. To find the singular values decomposition of the matrix

A =




0 1
1 0
1 1


 ,

we note that the matrix given by

A†A =
[
0 1 1
1 0 1

]


0 1
1 0
1 1


 =

[
2 1
1 2

]
,

has eigenvalues given by
∣∣∣∣
2− λ 1

1 2− λ

∣∣∣∣ = 0 =⇒ (2− λ)2 − 1 = 0 =⇒ λ = 2± 1,

and the corresponding eigenvectors are given by:
9Notice that this is the only part of the proof that requires the use of the ‘special’ right inverse given by the matrix

At(AAt)−1!
10See Questions 1 and 11.
11Notice that multiplying this expression by A we get

Ax = AAt(AAt)−1b + Au = b + 0 = b,

which confirms that these vectors are solutions.
12I trust that it is obvious that the quantity ‖x‖ measures the distance of the solution x from the origin.
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• For λ = 1: The matrix equation (A†A− λI)x = 0 gives

[
1 1
1 1

] [
x
y

]
= 0,

and so we have x + y = 0. Thus, taking x to be the free parameter, we can see that the
eigenvectors corresponding to this eigenvalue are of the form x[1,−1]t.

• For λ = 3: The matrix equation (A†A− λI)x = 0 gives

[−1 1
1 −1

] [
x
y

]
= 0,

and so we have x − y = 0. Thus, taking x to be the free parameter, we can see that the
eigenvectors corresponding to this eigenvalue are of the form x[1, 1]t.

So, an orthonormal13 set of eigenvectors corresponding to the positive eigenvalues λ1 = 1 and λ2 = 3
of the matrix A†A is {y1,y2} where

y1 =
1√
2

[
1
−1

]
and y2 =

1√
2

[
1
1

]
.

Thus, by Theorem 19.4, the positive eigenvalues of the matrix AA† are λ1 = 1 and λ2 = 3 too14 and
the orthonormal set of eigenvectors corresponding to these eigenvalues is {x1,x2} where15

x1 =
1√
1




0 1
1 0
1 1


 1√

2

[
1
−1

]
=

1√
2



−1
1
0


 ,

and

x2 =
1√
3




0 1
1 0
1 1


 1√

2

[
1
1

]
=

1√
6




1
1
2


 .

Consequently, having found two appropriate sets of orthonormal eigenvectors corresponding to the
positive eigenvalues of the matrices A†A and AA†, we can find the singular values decomposition of
the matrix A as defined in Theorem 19.5, i.e.

A =
√

λ1 x1y
†
1 +

√
λ2 x2y

†
2

=
√

1
1√
2



−1
1
0


 1√

2

[
1 −1

]
+
√

3
1√
6




1
1
2


 1√

2

[
1 1

]

∴ A =
1
2



−1 1
1 −1
0 0


 +

1
2




1 1
1 1
2 2


 .

(Note: you can verify that this is correct by adding these two matrices together and checking that
you do indeed get A.)

13Notice that the eigenvectors that we have found are already orthogonal and so we just have to ‘normalise’ them.
(You should have expected this since the matrix A†A is Hermitian with two distinct eigenvalues.)

14Note that since AA† is a 3× 3 matrix it has three eigenvalues and, in this case, the third eigenvalue must be zero.
15Using the fact that

xi =
1√
λi

Ayi,

as given by Theorem 19.4.

7



Hence, to calculate the strong generalised inverse of A, we use the result given in Theorem 19.6 to
get

AG =
1√
λ1

y1x
†
1 +

1√
λ2

y2x
†
2

=
1√
1

1√
2

[
1
−1

]
1√
2

[−1 1 0
]
+

1√
3

1√
2

[
1
1

]
1√
6

[
1 1 2

]

=
1
2

[−1 1 0
1 −1 0

]
+

1
6

[
1 1 2
1 1 2

]

∴ AG =
1
3

[−1 2 1
2 −1 1

]
.

Thus, using Theorem 19.2, the orthogonal projection of R3 onto R(A) is given by

AAG =




0 1
1 0
1 1


 1

3

[−1 2 1
2 −1 1

]
=

1
3




2 −1 1
−1 2 1
1 1 2


 ,

and the orthogonal projection of R2 parallel to N(A) is given by

AGA =
1
3

[−1 2 1
2 −1 1

] 


0 1
1 0
1 1


 =

1
3

[
3 0
0 3

]
= I.

(Notice that both of these matrices are symmetric and idempotent.)

7. Given that the singular values decomposition of an m× n matrix A is

A =
k∑

i=1

√
λixiy

†
i ,

we are asked to prove that the matrix given by

k∑

i=1

1√
λi

yix
†
i ,

is the strong generalised inverse of A. To do this, we have to show that this expression gives a matrix
which satisfies the four conditions that ‘define’ a strong generalised inverse and these are given in
Definition 19.1, i.e.

1. AAGA = A.

2. AGAAG = AG.

3. AAG is an orthogonal projection of Rm onto R(A).

4. AGA is an orthogonal projection of Rn parallel to N(A).

We shall proceed by showing that each of these conditions are satisfied by the matrix defined above.16

16This will establish that this matrix is a strong generalised inverse of A. The fact that it is the strong generalised
inverse of A then follows by the result proved in Question 12.

8



1: It is fairly easy to see that the first condition is satisfied since

AAGA =




k∑

p=1

√
λpxpy†p







k∑

q=1

1√
λq

yqx†q




[
k∑

r=1

√
λrxry†r

]

=
k∑

p=1

k∑

q=1

k∑

r=1

√
λpλr

λs
xp(y†pyq)(x†qxr)y†r

=
k∑

p=1

√
λpxpy†p (As the xi and yi form orthonormal sets.)

∴ AAGA = A

as required.

2: It is also fairly easy to see that the second condition is satisfied since

AGAAG =




k∑

p=1

1√
λp

ypx†p







k∑

q=1

√
λqxqy†q




[
k∑

r=1

1√
λr

yrx†r

]

=
k∑

p=1

k∑

q=1

k∑

r=1

√
λq

λpλr
yp(x†pxq)(y†qyr)x†r

=
k∑

p=1

1√
λp

ypx†p (As the xi and yi form orthonormal sets.)

∴ AGAAG = AG

as required.

Remark: Throughout this course, when we have been asked to show that a matrix represents an
orthogonal projection, we have shown that it is [idempotent and] symmetric. But, we have only
developed the theory of orthogonal projections for real matrices and, in this case, our criterion
suffices. However, we could ask when a complex matrix represents an orthogonal projection, and we
may suspect that such matrices will be Hermitian. However, to avoid basing the rest of this proof on
mere suspicions, we shall now restrict our attention to the case where the eigenvectors xi and yi (for
i = 1, 2, . . . , k) of the matrices AA† and A†A are in Rm and Rn respectively.17 Under this assumption,
we can take the matrices xix

†
i and yiy

†
i (for i = 1, 2, . . . , k) to be xixt

i and yiyt
i respectively in the

proofs of conditions 3 and 4.18

3: To show that AAG is an orthogonal projection of Rm onto R(A), we note that AAG can be written
as

AAG =

[
k∑

i=1

√
λixiy

†
i

]


k∑

j=1

1√
λj

yjx
†
j


 =

k∑

i=1

k∑

j=1

√
λi

λj
xi(y

†
iyj)x

†
j =

k∑

i=1

xix
†
i ,

since the yj form an orthonormal set.19 Thus, AAG is idempotent as

(AAG)2 =

[
k∑

i=1

xix
†
i

]


k∑

j=1

xjx
†
j


 =

k∑

i=1

k∑

j=1

xi(x
†
ixj)x

†
j =

k∑

i=1

xix
†
i = AAG

since the xj form an orthonormal set and it is symmetric as

(AAG)t =

[
k∑

i=1

xixt
i

]t

=
k∑

i=1

(xixt
i)

t =
k∑

i=1

xixt
i = AAG

17Recall that, since the matrices AA† and A†A are Hermitian, we already know that their eigenvalues are real.
18Recall that we also adopted this position in Question 2 of Problem Sheet 8.
19Notice that this gives us a particularly simple expression for an orthogonal projection of Rm onto R(A).
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assuming that the xi are in Rm. Also, we can see that R(A) = R(AAG) as

• If u ∈ R(A), then there is a vector v such that u = Av. Thus, we can write

u =
k∑

i=1

√
λixiy

†
iv,

and multiplying both sides of this expression by AAG we get

AAGu =




k∑

j=1

xjx
†
j




[
k∑

i=1

√
λixiy

†
iv

]
=

k∑

j=1

k∑

i=1

√
λixj(x

†
jxi)y

†
iv =

k∑

i=1

√
λixiy

†
iv = u,

i.e. u = AAGu.20 Thus, u ∈ R(AAG) and so, R(A) ⊆ R(AAG).

• If u ∈ R(AAG), then there is a vector v such that u = AAGv. Thus, as we can write u =
A(AGv), we can see that u ∈ R(A) and so, R(AAG) ⊆ R(A).

Consequently, AAG is an orthogonal projection of Rm onto R(A) (as required).

4: To show that AGA is an orthogonal projection of Rn parallel to N(A), we note that AGA can be
written as

AGA =

[
k∑

i=1

1√
λi

yix
†
i

]


k∑

j=1

√
λjxjy

†
j


 =

k∑

i=1

k∑

j=1

√
λj

λi
yi(x

†
ixj)y

†
j =

k∑

i=1

yiy
†
i ,

since the xj form an orthonormal set.21 Thus, AGA is idempotent as

(AGA)2 =

[
k∑

i=1

yiy
†
i

]


k∑

j=1

yjy
†
j


 =

k∑

i=1

k∑

j=1

yi(y
†
iyj)y

†
j =

k∑

i=1

yiy
†
i = AGA,

since the yj form an orthonormal set and it is symmetric as

(AGA)t =

[
k∑

i=1

yiyt
i

]t

=
k∑

i=1

(yiyt
i)

t =
k∑

i=1

yiyt
i = AGA,

assuming the yi are in Rn. Also, we can see that N(A) = N(AGA) as

• If u ∈ N(A), then Au = 0 and so clearly, AGAu = 0 too. Thus, u ∈ N(AGA) and so,
N(A) ⊆ N(AGA).

• If u ∈ N(AGA), then AGAu = 0. As such, we have AAGAu = 0 and so, by 1, we have Au = 0.
Thus, N(AGA) ⊆ N(A).

Consequently, AAG is an orthogonal projection of Rn parallel to N(A) (as required).

8. Suppose that the real matrices A and B are such that ABtB = 0. We are asked to prove that
ABt = 0. To do this, we note that for any real matrix C with column vectors c1, c2, . . . , cm, the
diagonal elements of the matrix product CtC are given by ct

1c1, ct
2c2, . . . , ct

mcm. So, if CtC = 0, all
of the elements of the matrix CtC are zero and, in particular, this means that each of the diagonal
elements is zero. But then, for 1 ≤ i ≤ m, we have

ct
ici = ‖ci‖2 = 0 =⇒ ci = 0,

20Alternatively, as u = Av, we have AAGu = AAGAv and so, by 1, this gives AAGu = Av. Thus, again, AAGu = u,
as desired.

21Notice that this gives us a particularly simple expression for an orthogonal projection of Rn parallel to N(A).
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and so CtC = 0 implies that C = 0 as all of the column vectors must be null. Thus, noting that

ABtB = 0 =⇒ ABtBAt = 0 =⇒ (BAt)tBAt = 0,

we can deduce that BAt = 0. Consequently, taking the transpose of both sides of this expression we
have ABt = 0 (as required).

9. Let A be an m × n matrix. We are asked to show that the general least squares solution of the
matrix equation Ax = b is given by

x = AGb + (I− AGA)z,

where z is any vector in Rn. To do this, we note that a least squares solution to the matrix equation
Ax = b is a vector x which minimises the quantity ‖Ax − b‖. Thus, as we have seen before, the
vector Ax∗ obtained from an orthogonal projection of b onto R(A) will give such a least squares
solution. So, as AAG is an orthogonal projection onto R(A), we have

Ax∗ = AAGb =⇒ x∗ = AGb,

is a particular least squares solution. Consequently, the general form of a least squares solution to
Ax = b will be given by

x∗ = AGb + (I− AGA)z,

for any vector z ∈ Rn (as required).22

Harder Problems.

Here are some results from the lectures on generalised inverses that you might have tried to prove.

Note: In the next two questions we are asked to show that three statements are equivalent. Now,
saying that two statements p and q are equivalent is the same as saying p ⇔ q (i.e. p iff q). Thus,
if we have three statements p1, p2 and p3, and we are asked to show that they are equivalent, then
we need to establish that p1 ⇔ p2, p2 ⇔ p3 and p1 ⇔ p3. Or, alternatively, we can show that
p1 ⇒ p2 ⇒ p3 ⇒ p1. (Can you see why?)

10. We are asked to prove that the following statements about an m× n matrix A are equivalent:

1. A has a left inverse, i.e. there is a matrix L such that LA = I. (For example (AtA)−1At.)

2. Ax = b has a unique solution when it has a solution.

3. A has rank n.

Proof: We prove this theorem using the method described in the note above.

1 ⇒ 2: Suppose that the matrix A has a left inverse, L and that the matrix equation Ax = b has a
solution. By definition, L is such that LA = I, and so multiplying both sides of our matrix equation
by L we get

LAx = Lb =⇒ Ix = Lb =⇒ x = Lb.

Thus, a solution to the matrix equation Ax = b is Lb when it has a solution.

22Notice that this is the general form of a least squares solution to Ax = b since it satisfies the equation Ax∗ = AAGb
given above. Not convinced? We can see that this is the case since, using the fact that AAGA = A, we have

Ax∗ = A
�
AGb + (I− AGA)z

�
= AAGb + (A− AAGA)z = AAGb + (A− A)z = AAGb + 0 = AAGb,

as expected.
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However, a matrix A can have many left inverses and so, to establish the uniqueness of the
solutions, consider two [possibly distinct] left inverses L and L′. Using these, the matrix equation
Ax = b will have two [possibly distinct] solutions given by

x = Lb and x′ = L′b,

and so, to establish uniqueness, we must show that their difference, i.e. x− x′ = (L− L′)b, is 0. To
do this, we start by noting that

Ax− Ax′ = A(L− L′)b =⇒ b− b = A(L− L′)b =⇒ 0 = A(L− L′)b,

and so, the vector (L − L′)b ∈ N(A), i.e. the vectors x and x′ can only differ by a vector in N(A).
Then, we can see that:

• For any vector u ∈ N(A), we have Au = 0 and so LAu = 0 too. However, as LA = I, this
means that u = 0, N(A) ⊆ {0}.

• As N(A) is a vector space, 0 ∈ N(A), which means that {0} ⊆ N(A).

and so N(A) = {0}.23 Thus, the vectors x and x′ can only differ by the vector 0, i.e. we have
x − x′ = 0. Consequently, Lb is the unique solution to the matrix equation Ax = bwhen it has a
solution (as required).

2 ⇒ 3: The matrix equation Ax = 0 has a solution, namely x = 0, and so by 2, this solution is
unique. Thus, the null space of A is {0} and so η(A) = 0. Hence, by the Dimension Theorem, the
rank of A is given by

ρ(A) = n− η(A) =⇒ ρ(A) = n− 0 = n,

as required.

3 ⇒ 1: Suppose that the rank of the m× n matrix A is n. That is, the matrix AtA is invertible (as
ρ(AtA) = ρ(A) and AtA is n× n) and so the matrix given by (AtA)−1At exists. Further, this matrix
is a left inverse since

[
(AtA)−1At

]
A = (AtA)−1AtA = (AtA)−1

[
AtA

]
= I,

as required.

Remark: An immediate consequence of this theorem is that if A is an m × n matrix with m < n,
then as ρ(A) = min{m,n} = m < n, A can have no left inverse. (Compare this with what we found
in Question 3.) Further, when m = n, A is a square matrix and so if it has full rank, it will have a
left inverse which is identical to the inverse A−1 that we normally consider.24

11. We are asked to prove that the following statements about an m× n matrix A are equivalent:

1. A has a right inverse, i.e. there is a matrix R such that AR = I. (For example At(AAt)−1.)

2. Ax = b has a solution for every b.

3. A has rank m.
23We should have expected this since, looking ahead to 3, we have ρ(A) = n if A is an m× n matrix. Thus, by the

rank-nullity theorem, we have

ρ(A) + η(A) = n =⇒ n + η(A) = n =⇒ η(A) = 0,

and so, the null space of A must be zero-dimensional, i.e. N(A) = {0}.
24Since if A is a square matrix with full rank, then it has a left inverse L such that LA = I and an inverse A−1 such

that A−1A = I. Equating these two expressions we get LA = A−1A, and so multiplying both sides by A−1 (say), we can
see that L = A−1 (as expected).
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Proof: We prove this theorem using the method described in the note above.

1 ⇒ 2: Suppose that the matrix A has a right inverse, R. Then, for any b ∈ Rm we have

b = Ib = (AR)b = A(Rb),

as AR = I. Thus, x = Rb is a solution to the matrix equation Ax = b for every b, as required.

2 ⇒ 3: Suppose that the matrix equation Ax = b has a solution for all b ∈ Rm. Recalling the fact
that the matrix equation Ax = b has a solution iff b ∈ R(A), this implies that R(A) = Rm. Thus,
the rank of A is m, as required.

3 ⇒ 1: Suppose that the rank of the m× n matrix A is m. That is, the matrix AAt is invertible (as
ρ(AAt) = ρ(A) and AAt is m×m) and so the matrix given by At(AAt)−1 exists. Further, this matrix
is a right inverse since

A
[
At(AAt)−1

]
= AAt(AAt)−1 =

[
AAt

]
(AAt)−1 = I,

as required.

Remark: An immediate consequence of this theorem is that if A is an m × n matrix with n < m,
then as ρ(A) = min{m,n} = n < m, A can have no right inverse. (Compare this with what we found
in Question 3.) Further, when m = n, A is a square matrix and so if it has full rank, it will have a
right inverse which is identical to the inverse A−1 that we normally consider.25

12. We are asked to prove that a matrix A has exactly one strong generalised inverse. To do this,
let us suppose that we have two matrices, G and H, which both have the properties attributed to
a strong generalised inverse of A. (There are four such properties, and they are given in Definition
19.1.) Thus, working on the first two terms of G = GAG, we can see that

G = GAG :Prop 2.
= (GA)tG :Prop 4. (As orthogonal projections are symmetric.)
= AtGtG

= (AHA)tGtG :Prop 1. (Recall that H is an SGI too.)
= AtHtAtGtG

= (HA)t(GA)tG

= (HA)(GA)G :Prop 4. (Again, as orthogonal projections are symmetric.)
= H(AGA)G

∴ G = HAG :Prop 1.

whereas, working on the last two terms of H = HAH, we have

H = HAH :Prop 2.
= H(AH)t :Prop 3. (As orthogonal projections are symmetric.)
= HHtAt

= HHt(AGA)t :Prop 1. (Recall that G is an SGI too.)
= HHtAtGtAt

= H(AH)t(AG)t

= H(AH)(AG) :Prop 3. (Again, as orthogonal projections are symmetric.)
= H(AHA)G

∴ H = HAG :Prop 1.

25Since if A is such a square matrix with full rank, then it has a right inverse R such that AR = I and an inverse A−1

such that AA−1 = I. Equating these two expressions we get AR = AA−1, and so multiplying both sides by A−1 (say),
we can see that R = A−1 (as expected).
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and we have made prodigious use of the fact that [for any two matrices X and Y,] (XY)t = YtXt.
Consequently, H = HAG = G, and so the strong generalised inverse of a matrix is unique (as required).

13. We are asked to consider an m× n matrix A that has been decomposed into the product of an
m × k matrix B and an k × n matrix C such that the ranks of B and C are both k. Under these
circumstances, we need to show that the matrix

AG = Ct(CCt)−1(BtB)−1Bt,

is a strong generalised inverse of A. To do this, we have to establish that this matrix satisfies the
four conditions that ‘define’ a strong generalised inverse AG of A and these are given in Definition
19.1, i.e.

1. AAGA = A.

2. AGAAG = AG.

3. AAG is an orthogonal projection of Rm onto R(A).

4. AGA is an orthogonal projection of Rn parallel to N(A).

We shall proceed by showing that each of these properties are satisfied by the matrix defined above.

1: It is easy to see that the first property is satisfied since

AAGA = BC
[
Ct(CCt)−1(BtB)−1Bt

]
BC

= B
[
CCt(CCt)−1

][
(BtB)−1BtB

]
C

∴ AAGA = BC = A,

as required.

2: It is also easy to see that the second property is satisfied since

AGAAG =
[
Ct(CCt)−1(BtB)−1Bt

]
BC

[
Ct(CCt)−1(BtB)−1Bt

]

= Ct(CCt)−1
[
(BtB)−1BtB

][
CCt(CCt)−1

]
(BtB)−1Bt

∴ AGAAG = Ct(CCt)−1(BtB)−1Bt = AG,

as required.

For the last two parts, we recall that an m×n matrix P is an orthogonal projection of Rn onto R(A)
[parallel to N(A)] if

a. P is idempotent (i.e. P2 = P).

b. P is symmetric (i.e. Pt = P).

c. R(P) = R(A).

So, using this, we have

3: To show that AAG is an orthogonal projection of Rm onto R(A), we note that AAG can be written
as

AAG =
[
BC

][
Ct(CCt)−1(BtB)−1Bt

]
= B

[
CCt(CCt)−1

]
(BtB)−1Bt = B(BtB)−1Bt.

Thus, AAG is idempotent as
(
AAG

)2 =
[
B(BtB)−1Bt

]2

=
[
B(BtB)−1Bt

][
B(BtB)−1Bt

]

= B(BtB)−1
[
BtB(BtB)−1

]
Bt

= B(BtB)−1Bt

∴
(
AAG

)2 = AAG,
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and it is symmetric as
(
AAG

)t =
[
B(BtB)−1Bt

]t

= B
[
(BtB)−1

]t
Bt

= B(BtB)−1Bt

∴
(
AAG

)t = AAG,

where we have used the fact that [for any matrices X and Y,] (XY)t = YtXt and [for any invertible
square matrix X,] (X−1)t = (Xt)−1. Also, we can see that R(AAG) = R(A) as

• If x ∈ R(A), then there is a vector y ∈ Rn such that x = Ay. But, from the first property, we
know that A = AAGA, and so x = AAGAy = AAG(Ay). Thus, there exists a vector, namely
z = Ay, such that x = AAGz and so x ∈ R(AAG). Consequently, R(A) ⊆ R(AAG).

• If x ∈ R(AAG), then there is a vector y ∈ Rm such that x = AAGy = A(AGy). Thus,
there exists a vector, namely z = AGy, such that x = Az and so x ∈ R(A). Consequently,
R(AAG) ⊆ R(A).

Thus, AAG is an orthogonal projection of Rm onto R(A), as required.

4: To show that AGA is an orthogonal projection of Rn parallel to N(A), we note that AGA can be
written as

AGA =
[
Ct(CCt)−1(BtB)−1Bt

][
BC

]
= Ct(CCt)−1

[
(BtB)−1BtB

]
C = Ct(CCt)−1C.

Thus, AGA is idempotent as
(
AGA

)2 =
[
Ct(CCt)−1C

]2

=
[
Ct(CCt)−1C

][
Ct(CCt)−1C

]

= Ct(CCt)−1
[
CCt(CCt)−1

]
C

= Ct(CCt)−1C

∴
(
AGA

)2 = AGA,

and it is symmetric as
(
AGA

)t =
[
Ct(CCt)−1C

]t

= Ct
[
(CCt)−1

]t
C

= Ct(CCt)−1C

∴
(
AGA

)t = AGA,

where we have used the fact that [for any matrices X and Y,] (XY)t = YtXt and [for any invertible
square matrix X,] (X−1)t = (Xt)−1. Also, we can see that R(AGA) = R(At) as

• If x ∈ R(At), then there is a vector y ∈ Rm such that x = Aty. But, from the first property,
we know that A = AAGA, and so x = (AAGA)ty = (AGA)tAty = AGAAty = AGA(Aty) (recall
that (AGA)t = AGA by the symmetry property established above). Thus, there exists a vector,
namely z = Aty, such that x = AGAz and so x ∈ R(AGA). Consequently, R(At) ⊆ R(AGA).

• If x ∈ R(AGA), then there is a vector y ∈ Rn such that x = AGAy = (AGA)ty = At(AG)ty =
At[(AG)ty] (notice that we have used the fact that (AGA)t = AGA again). Thus, there exists
a vector, namely z = (AG)ty, such that x = Atz and so x ∈ R(At). Consequently, R(AGA) ⊆
R(At).

Thus, AGA is an orthogonal projection of Rn onto R(At) parallel to R(At)⊥. However, recall that
R(At)⊥ = N(A), and so we have established that AGA is an orthogonal projection of Rn parallel to
N(A), as required.
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14. Let us suppose that Ax = b is an inconsistent set of equations. We are asked to show that
x = AGb is the least squares solution that is closest to the origin. To do this, we note that a least
squares solution to the matrix equation Ax = b is given by

x∗ = AGb + (I− AGA)z,

for any vector z (see Question 9) and we need to establish that, of all these solutions, the one given
by x∗ = AGb is closest to the origin. To do this, we use the fact that AG = AGAAG, to see that

AGb = AGAAGb = AGA(AGb),

and so AGb ∈ N(A)⊥.26 Then, as AGA is an orthogonal projection parallel to N(A), the matrix
I − AGA is an orthogonal projection onto N(A), and so we can see that (I − AGA)z ∈ N(A) for
all vectors z. Thus, the vectors given by AGb and (I − AGA)z are orthogonal, and so applying the
Generalised Theorem of Pythagoras, we get

‖x∗‖2 = ‖AGb‖2 + ‖(I− AGA)z‖2 =⇒ ‖x∗‖2 ≥ ‖AGb‖2,

as ‖(I− AGA)z‖2 ≥ 0. Consequently, the least squares solution given by x∗ = AGb is the one which
is closest to the origin.

Is it necessary that the matrix equation Ax = b is inconsistent? Well, clearly not! To see why, we
note that if the matrix equation Ax = b is consistent, i.e. b ∈ R(A), it will have solutions given by

x = AGb + u,

where u ∈ N(A).27 Then, since the vector AGb can be written as

AGb = AGAAGb = AGA(AGb),

we have AGb ∈ N(A)⊥ (as seen above), and so the vectors given by AGb and u are orthogonal. Thus,
applying the Generalised Theorem of Pythagoras, we get

‖x‖2 = ‖AGb + u‖2 = ‖AGb‖2 + ‖u‖2 =⇒ ‖x‖2 ≥ ‖AGb‖2,

as ‖u‖2 ≥ 0. So, once again, the solution x = AGb is the one which is closest to the origin.

26Too quick? Spelling this out, we see that there is a vector, namely y = AGb, such that AGAy = AGAAGb = AGb
and so AGb ∈ R(AGA). But, we know that AGA is an orthogonal projection parallel to N(A) and so R(AGA) = N(A)⊥.
Thus, AGb ∈ N(A)⊥, as claimed.

27We can see that these are the solutions since multiplying both sides of this expression by the matrix A we get

Ax = AAGb + Au = b + 0 = b,

where Au = 0 as u ∈ N(A) and AAGb = b as b ∈ R(A) and AAG is an orthogonal projection onto R(A).
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