
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 3

In this Problem Sheet, we looked at some problems on real inner product spaces. In particular, we
saw that many different inner products can be defined on a given vector space. We also used the
Gram-Schmidt procedure to generate an orthonormal basis.

1. We are asked to verify that the Euclidean inner product of two vectors x = [x1, x2, . . . , xn]t and
y = [y1, y2, . . . , yn]t in Rn, i.e.

〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn,

is indeed an inner product on Rn. To do this, we must verify that it satisfies the definition of an
inner product, i.e.

Definition: An inner product on a real vector space V is a function that associates a
real number 〈u,v〉 with each pair of vectors u and v in V in such a way that:

a. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0.

b. 〈u,v〉 = 〈v,u〉.
c. 〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉.

for all vectors u,v,w ∈ V and all scalars α and β.

Thus, taking any three vectors x = [x1, x2, . . . , xn]t, y = [y1, y2, . . . , yn]t and z = [z1, z2, . . . , zn]t in
Rn and any two scalars α and β in R we have:

a. 〈x,x〉 = x2
1 + x2

2 + · · ·+ x2
n which is the sum of the squares of n real numbers and as such it is

real and non-negative. Further, to show that 〈x,x〉 = 0 iff x = 0, we note that:

• LTR: If 〈x,x〉 = 0, then x2
1 + x2

2 + · · · + x2
n = 0. But, this is the sum of n non-negative

numbers and so it must be the case that x1 = x2 = · · · = xn = 0. Thus, x = 0.

• RTL: If x = 0, then x1 = x2 = · · · = xn = 0. Thus, 〈x,x〉 = 0.

(as required).

b. Obviously, 〈x,y〉 = x1y1 + x2y2 + · · ·+ xnyn = y1x1 + y2x2 + · · ·+ ynxn = 〈y,x〉.
c. We note that the vector αx + βy is given by [αx1 + βy1, αx2 + βy2, . . . , αxn + βyn]t and so:

〈αx + βy, z〉 = (αx1 + βy1)z1 + (αx2 + βy2)z2 + · · ·+ (αxn + βyn)zn

= α(x1z1 + x2z2 + · · ·+ xnzn) + β(y1z1 + y2z2 + · · ·+ ynzn)
∴ 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉

Consequently, the Euclidean inner product is an inner product on Rn (as expected).
We are now given n positive real numbers w1, w2, . . . , wn and vectors x and y as given above,

and we are asked to verify that the formula

〈x,y〉 = w1x1y1 + w2x2y2 + · · ·wnxnyn,

also defines an inner product on Rn. So, we proceed as above by taking any three vectors x, y and
z in Rn and any two scalars α and β in R, and show that this formula also satisfies the definition of
an inner product. Thus, as

a. 〈x,x〉 = w1x
2
1 +w2x

2
2 + · · ·+wnx2

n which is the sum of the squares of n real numbers multiplied
by the appropriate positive real number and, as such, it is real and non-negative. Further, to
show that 〈x,x〉 = 0 iff x = 0, we note that:
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• LTR: If 〈x,x〉 = 0, then w1x
2
1 + w2x

2
2 + · · · + wnx2

n = 0. But, this is the sum of n non-
negative numbers multiplied by the appropriate positive real number and so it must be
the case that x1 = x2 = · · · = xn = 0. Thus, x = 0.

• RTL: If x = 0, then x1 = x2 = · · · = xn = 0. Thus, 〈x,x〉 = 0.

(as required).

b. Obviously, 〈x,y〉 = w1x1y1+w2x2y2+ · · ·+wnxnyn = w1y1x1+w2y2x2+ · · ·+wnynxn = 〈y,x〉.
c. We note that the vector αx + βy is given by [αx1 + βy1, αx2 + βy2, . . . , αxn + βyn]t and so:

〈αx + βy, z〉 = w1(αx1 + βy1)z1 + w2(αx2 + βy2)z2 + · · ·+ wn(αxn + βyn)zn

= α(w1x1z1 + w2x2z2 + · · ·+ wnxnzn) + β(w1y1z1 + w2y2z2 + · · ·+ wnynzn)
∴ 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉

this formula defines an inner product too (as required).1

2. To derive the vector equation of a plane in R3 with normal n and going through the point with
position vector a we refer to the diagram in Figure 1. In this, the vector r represents any point in
the plane, and so the vector formed by r−a must lie in the plane. As such, this vector is orthogonal

0

r

r-a

a

n

Figure 1: The plane in R3 with normal n and going through the point with position vector a.

to the normal2 n and so we have
〈r− a,n〉 = 0.

But, by the third property of inner products (see Question 1), this means that

〈r,n〉 = 〈a,n〉,

which is the desired vector equation. To obtain the Cartesian equation of the plane, we write
r = [x, y, z]t and expand the inner products in the vector equation to get

a1x + a2y + a3z = p,

where a = [a1, a2, a3]t and p is the real number given by 〈a,n〉. If we now stipulate that n is a unit
vector (where we denote this fact by writing n as n̂), then we have ‖n̂‖ = 1. This means that when
we write the inner product represented by p in terms of the angle between the vectors a and n̂, we
get

p = 〈a, n̂〉 = ‖a‖‖n̂‖ cos θ = ‖a‖ cos θ,

and looking at Figure 2, we can see that this implies that p represents the perpendicular distance
from the plane to the origin.

1This is often called the weighted Euclidean inner product and the n positive real numbers w1, w2, . . . , wn are called
the weights.

2As, by definition, the normal is orthogonal to all vectors in the plane.
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0

n

a

plane

θ

ap

Figure 2: A ‘side-view’ of the plane in Figure 1. We write ‖a‖ = a and notice how simple trigonometry
dictates that p = a cos θ is the perpendicular distance from the plane to the origin.

Aside: In the last part of this question, some people make the error of supposing that what we have
done so far justifies the assertion that p is the shortest distance from the plane to the origin. This is
true, although a further argument is needed to establish this fact, namely:

Let p′ denote any distance from the plane to the origin. That is, by simple trigonometry
(see Figure 3), we can see that p = p′ cos θ. Thus, as cos θ ≤ 1 this gives us p ≤ p′, i.e. p
is always smaller than (or equal to) p′.

0

n

plane

θ

p p’

Figure 3: A ‘side-view’ of the plane in Figure 1. Notice how simple trigonometry dictates that
p = p′ cos θ, and this leads us to the conclusion that p is also the shortest distance from the origin.

We are also asked to calculate the quantities considered above for a particular plane, namely the one
with normal [2, 1, 2]t and going through the point with position vector [1, 2, 1]t. The vector equation
of this plane is given by: 〈

r,




2
1
2




〉
=

〈


1
2
1


 ,




2
1
2




〉
,

where r is a vector representing any point in the plane. Now, if we let r = [x, y, z]t and evaluate the
inner products in the vector equation we get

2x + y + 2z = 6,

which is the Cartesian equation of the plane in question. Lastly, we normalise the normal vector, i.e.
as ‖[2, 1, 2]t‖2 = 9, we set

n̂ =
1
3




2
1
2


 ,

and so the perpendicular distance from the plane to the origin is

p = 〈a, n̂〉 =
1
3

〈


1
2
1


 ,




2
1
2




〉
=

6
3

= 2,
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where there is no need to calculate the inner product here as it is just the left-hand-side of the
Cartesian equation of the plane!

3. We are asked to prove that for all vectors x and y in a real inner product space the equalities

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2,

and
‖x + y‖2 − ‖x− y‖2 = 4〈x,y〉,

hold. To do this we note that the norm of a vector z, denoted by ‖z‖, is defined by

‖z‖2 = 〈z, z〉,

and that real inner products have the properties given by the Definition stated in Question 1. Thus,
firstly, we have

‖x + y‖2 + ‖x− y‖2 = 〈x + y,x + y〉+ 〈x− y,x− y〉
= 〈x + y,x〉+ 〈x + y,y〉+ 〈x− y,x〉 − 〈x− y,y〉
= 〈x,x〉+ 〈y,x〉+ 〈x,y〉+ 〈y,y〉+ 〈x,x〉 − 〈y,x〉 − 〈x,y〉+ 〈y,y〉
= 2〈x,x〉+ 2〈y,y〉

∴ ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

and secondly, we have

‖x + y‖2 − ‖x− y‖2 = 〈x + y,x + y〉 − 〈x− y,x− y〉
= 〈x + y,x〉+ 〈x + y,y〉 − 〈x− y,x〉+ 〈x− y,y〉
= 〈x,x〉+ 〈y,x〉+ 〈x,y〉+ 〈y,y〉 − 〈x,x〉+ 〈y,x〉+ 〈x,y〉 − 〈y,y〉
= 2〈y,x〉+ 2〈x,y〉

∴ ‖x + y‖2 − ‖x− y‖2 = 4〈x,y〉

as required.

We are also asked to give a geometric interpretation of the significance of the first equality in R3.
To do this, we draw a picture of the plane in R3 which contains the vectors x and y (see Figure 4).
Having done this, we see that the vector x and y can be used to construct the sides of a parallelogram

0

x x

y

y

x-y

x+y

Figure 4: The plane in R3 which contains the vectors x and y. Notice that the vectors x + y and
x− y form the diagonals of a parallelogram.

whose diagonals are the vectors x+y and x−y.3 In this context, the quantities in our first equality
measure the lengths of the sides and diagonals of this parallelogram, and so we can interpret it as
saying:

‘The sum of the squares of the sides of a parallelogram is equal to the sum of the squares
of the diagonals.’

3This is effectively the ‘parallelogram rule’ for adding two vectors x and y, or indeed, subtracting them.
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Aside: Notice that, if x and y are orthogonal, then the shape in Figure 4 would be a rectangle. In
this case, the first equality still has the same interpretation, although now, the lengths ‖x + y‖ and
‖x−y‖ are equal since the second equality tells us that ‖x+y‖2−‖x−y‖2 = 0. (To my knowledge,
there is no ‘nice’ interpretation of the second equality in the [general] parallelogram case.)

4. We are asked to consider the subspace PRn of FR where we let x0, x1, . . . , xn be n + 1 fixed and
distinct real numbers. In this case, we are required to show that for all vectors p and q in PRn the
formula

〈p,q〉 =
n∑

i=0

p(xi)q(xi),

defines an inner product on PRn . As we are working in a subspace of real function space, all of the
quantities involved will be real and so all that we have to do is show that this formula satisfies all of
the conditions in the Definition given in Question 1. Thus, taking any three vectors p, q and r in
PRn and any two scalars α and β in R we have:

a. Clearly, since it is the sum of the squares of n + 1 real numbers, we have

〈p,p〉 =
n∑

i=0

[p(xi)]2 ≥ 0,

and it is real too. Further, to show that 〈p,p〉 = 0 iff p = 0 (where here, 0 is the zero
polynomial), we note that:

• LTR: If 〈p,p〉 = 0, then we have

n∑

i=0

[p(xi)]2 = 0,

and as the right-hand-side of this expression is the sum of n + 1 non-negative numbers, it
must be the case that p(xi) = 0 for i = 0, 1, . . . , n. However, this does not trivially imply
that p = 0 since the xi could be roots of the polynomial p, i.e. we could conceivably have
p(xi) = 0 for i = 0, 1, . . . , n and p 6= 0. So, to show that the LTR part of our biconditional
is satisfied we need to discount this possibility, and this can be done by using the following
argument:

Assume, for contradiction, that p 6= 0. That is, assume that p(x) is a non-zero
polynomial (i.e. at least one of the n+1 coefficients in p(x) = a0+a1x+· · ·+anxn

is non-zero). Now, we can deduce that:
– Since p(xi) = 0 for i = 0, 1, . . . , n, this polynomial has n + 1 distinct roots

given by x = x0, x1, . . . , xn.
– Since p(x) is a polynomial of degree at most n, it can have no more than n

distinct roots.
But, these two claims are contradictory and so it cannot be the case that p 6= 0.

Thus, p = 0.

• RTL: If p = 0, then p is the polynomial that maps all x ∈ R to zero (i.e. it is the zero
function) and as such, we have p(xi) = 0 for i = 0, 1, . . . , n. Thus, 〈p,p〉 = 0.

(as required).

b. It should be clear that 〈p,q〉 = 〈q,p〉 since:

〈p,q〉 =
n∑

i=0

p(xi)q(xi) =
n∑

i=0

q(xi)p(xi) = 〈q,p〉.
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c. We note that the vector αp + βq is just another polynomial and so:

〈αp + βq, r〉 =
n∑

i=0

[αp(xi) + βq(xi)] r(xi)

= α
n∑

i=0

p(xi)r(xi) + β
n∑

i=0

q(xi)r(xi)

∴ 〈αp + βq, r〉 = α〈p, r〉+ β〈q, r〉
as required.

Consequently, the formula given above does define an inner product on PRn (as required).

5. We are asked to prove the following:

Theorem: Let x and y be any two non-zero vectors. If x and y are orthogonal, then
they are linearly independent.

Proof: We are given that the two vectors x and y are non-zero and that they are
orthogonal, i.e. 〈x,y〉 = 0. To establish that they are linearly independent, we shall show
that the vector equation

αx + βy = 0,

only has a trivial solution, namely α = β = 0. To do this, we note that taking the inner
product of this vector equation with y we get:

〈αx + βy,y〉 = 〈0,y〉
∴ α〈x,y〉+ β〈y,y〉 = 0 :as 〈0,y〉 = 0.
∴ β〈y,y〉 = 0 :as x is orthogonal to y.
∴ β = 0 :as 〈y,y〉 6= 0 since y 6= 0.

and substituting this into the vector equation above, we get αx = 0 which implies that
α = 0 since x 6= 0. Thus, our vector equation only has a trivial and so the vectors x and
y are linearly independent (as required).

To see why the converse of this result, i.e.

Let x and y be any two non-zero vectors. If x and y are linearly independent, then they
are orthogonal.

does not hold we consider the two vectors [1, 0]t and [1, 1]t in the vector space R2. These two vectors
are a counter-example to the claim above since they are linearly independent (as one is not a scalar
multiple of the other), but they are not orthogonal (as 〈[1, 0]t, [1, 1]t〉 = 1 + 0 = 1 6= 0). Some
examples of the use of this result and another counter-example to the converse are given in Question
7.

6. To show that the set of vectors S = {1,x,x2} ⊆ P[0,1]
2 is linearly independent, we note that the

Wronskian of these functions is given by

W (x) =

∣∣∣∣∣∣

1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣
= 2.

Thus, as this is non-zero for all x ∈ [0, 1], it is non-zero for some x ∈ [0, 1], and hence this set of
functions is linearly independent (as required).

As such, these vectors will form a basis for the vector space P[0,1]
2 and we can use the Gram-

Schmidt procedure to construct an orthonormal basis for this space. So, using the formula

〈f ,g〉 =
∫ 1

0
f(x)g(x)dx,

to define an inner product on this vector space, we find that
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• Taking v1 = 1, we get

‖v1‖2 = 〈v1,v1〉 =
∫ 1

0
1 dx = [x]10 = 1,

and so we set e1 = 1.

• Taking v2 = x, we construct the vector u2 where

u2 = v2 − 〈v2, e1〉e1 = x− 1
2 1,

since

〈v2, e1〉 = 〈x,1〉 =
∫ 1

0
x dx =

[
x2

2

]1

0

=
1
2
.

Then, we need to normalise this vector, i.e. as

‖u2‖2 = 〈u2,u2〉 =
∫ 1

0

(
x− 1

2

)2

dx =

[
1
3

(
x− 1

2

)3
]1

0

=
1
12

,

we set e2 =
√

3(2x− 1).

• Taking v3 = x2, we construct the vector u3 where

u3 = v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2 = x2 − x + 1
6 1,

since

〈v3, e1〉 = 〈x2,1〉 =
∫ 1

0
x2 dx =

[
x3

3

]1

0

=
1
3
,

and,

〈v3, e2〉 = 〈x2,
√

3(2x− 1)〉 =
√

3
∫ 1

0
x2(2x− 1) dx =

√
3

[
x4

2
− x3

3

]1

0

=
1√
12

.

Then, we need to normalise this vector, i.e. as

‖u3‖2 = 〈u3,u3〉 =
∫ 1

0

(
x2 − x +

1
6

)2

dx

=
∫ 1

0

(
x4 − 2x3 +

4
3
x2 − 1

3
x +

1
36

)
dx

=
[
x5

5
− x4

2
+

4
9
x3 − x2

6
+

x

36

]1

0

∴ ‖u3‖2 =
1

180
,

we set e3 =
√

5(6x2 − 6x + 1).

Consequently, the set of vectors,
{
1,
√

3(2x− 1),
√

5(6x2 − 6x + 1)
}

,

is an orthonormal basis for P[0,1]
2 .

Lastly, we are asked to find a matrix A which will allow us to transform between coordinate
vectors that are given relative to these two bases. That is, we are asked to find a matrix A such that,
for any vector v ∈ P[0,1]

2 ,
[v]S = A[v]S′

where S′ is the orthonormal basis. To do this, we note that a general vector given with respect to
the basis S would be given by

v = α11 + α2x + α3x2,
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and we could represent this by a vector in R3, namely [α1, α2, α3]tS , which is the coordinate vector
of v relative to the basis S, i.e. [v]S .4 Whereas, a general vector given with respect to the basis S′

would be given by
v = α′11 + α′2

√
3(2x− 1) + α′3

√
5(6x2 − 6x + 1),

and we could also represent this by a vector in R3, namely [α′1, α
′
2, α

′
3]

t
S′ , which is the coordinate

vector of v relative to the basis S′, i.e. [v]S′ .5 Thus, the matrix that we seek relates these two
coordinate vectors and will therefore be 3 × 3. To find the numbers which this matrix will contain
we note that, ultimately, the vector v is the same vector regardless of whether it is represented with
respect to S or S′. As such, we note that

α11 + α2x + α3x2 = α′11 + α′2
√

3(2x− 1) + α′3
√

5(6x2 − 6x + 1),

and so equating the coefficients of 1,x,x2 on both sides we find that

α1 = α′1 −
√

3α′2 +
√

5α′3,

α2 = 2
√

3α′2 − 6
√

5α′3,

α3 = 6
√

5α′3,

respectively. Thus, we can write

[v]S =




α1

α2

α3




S

=




1 −√3
√

5
0 2

√
3 −6

√
5

0 0 6
√

5







α′1
α′2
α′3




S′

= A[v]S′ ,

in terms of the matrix A given in the question.

Other Problems

The Other Problems on this sheet were intended to give you some further insight into what sort of
formulae can be used to define inner products on certain subspaces of function space.

7. We are asked to consider the vector space of all smooth functions defined on the interval [0, 1],6

i.e. S[0,1]. Then, using the inner product defined by the formula

〈f ,g〉 =
∫ 1

0
f(x)g(x) dx,

we are asked to find the inner products of the following pairs of functions and comment on the
significance of these results in terms of the relationship between orthogonality and linear independence
established in Question 5.

• The functions f : x → cos(2πx) and g : x → sin(2πx) have an inner product given by:

〈f ,g〉 =
∫ 1

0
cos(2πx) sin(2πx) dx =

1
2

∫ 1

0
sin(4πx) dx =

1
2

[
−cos(4πx)

4π

]1

0

= 0,

where we have used the double-angle formula sin(2θ) = 2 sin θ cos θ to simplify the integral.
Further, we note that:

– As this inner product is zero, the functions cos(2πx) and sin(2πx) are orthogonal.

– As there is no α ∈ R such that cos(2πx) = α sin(2πx), the functions cos(2πx) and sin(2πx)
are linearly independent.

4See Definition 3.10.
5Again, see Definition 3.10.
6That is, the vector space formed by the set of all functions that are defined in the interval [0, 1] and whose first

derivatives exist at all points in this interval.
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But, this is what we should expect from the result in Question 5.

• The functions f : x → x and g : x → ex have an inner product given by:

〈f ,g〉 =
∫ 1

0
xex dx = [xex]10 −

∫ 1

0
ex dx = e− [ex]10 = e− (e− 1) = 1,

where we have used integration by parts. Further, we note that:

– As this inner product is non-zero, the functions x and ex are not orthogonal.

– As there is no α ∈ R such that x = αex, the functions x and ex are linearly independent.

Clearly, this is a counter-example to the converse of the result in Question 5.

• The functions f : x → x and g : x → 3x have an inner product given by:

〈f ,g〉 =
∫ 1

0
3x2 dx = 3

[
x3

3

]1

0

= 1.

Further, we note that:

– As this inner product is non-zero, the functions x and 3x are not orthogonal.

– As the functions x and 3x are scalar multiples of one another, they are linearly dependent.

But, this is what we should expect from [the contrapositive of] the result in Question 5.

8. We are asked to consider the subspace PR2 of FR. Then, taking two general vectors in this space,
say p and q, where for all x ∈ R,

p(x) = a0 + a1x + a2x
2 and q(x) = b0 + b1x + b2x

2,

respectively, we are required to show that the formula

〈p,q〉 = a0b0 + a1b1 + a2b2,

defines an inner product on PR2 . As we are working in a subspace of real function space, all of the
quantities involved will be real and so all that we have to do is show that this formula satisfies all of
the conditions in the Definition given in Question 1. Thus, taking any three vectors p, q and r in
PR2 and any two scalars α and β in R we have:

a. 〈p,p〉 = a2
0 + a2

1 + a2
2 which is the sum of the squares of three real numbers and as such it is

real and non-negative. Further, to show that 〈p,p〉 = 0 iff p = 0 (where here, 0 is the zero
polynomial), we note that:

• LTR: If 〈p,p〉 = 0, then a2
0 + a2

1 + a2
2 = 0. But, this is the sum of the squares of three

real numbers and so it must be the case that a0 = a1 = a2 = 0. Thus, p = 0.

• RTL: If p = 0, then a0 = a1 = a2 = 0. Thus, 〈p,p〉 = 0.

(as required).

b. Obviously, 〈p,q〉 = a0b0 + a1b1 + a2b2 = b0a0 + b1a1 + b2a2 = 〈q,p〉.
c. We note that the vector αp + βq is just another quadratic and so:

〈αp + βq, r〉 = (αa0 + βb0)c0 + (αa1 + βb1)c1 + (αa2 + βb2)c2

= α(a0c0 + a1c1 + a2c2) + β(b0c0 + b1c1 + b2c2)
∴ 〈αp + βq, r〉 = α〈p, r〉+ β〈q, r〉

where r : x → c0 + c1x + c2x
2 for all x ∈ R.
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Consequently, the formula given above does define an inner product on PR2 (as required).

Harder Problems

The Harder Problems on this sheet were intended to give you some more practice in proving results
about inner product spaces. In particular, we justify the assertion made in the lectures that several
results that hold in real inner product spaces also hold in the complex case. We also investigate some
other results related to the Cauchy-Schwarz inequality.

9. We are asked to verify that the Euclidean inner product of two vectors x = [x1, x2, . . . , xn]t and
y = [y1, y2, . . . , yn]t in Cn, i.e.

〈x,y〉 = x1y
∗
1 + x2y

∗
2 + · · ·xny∗n

is indeed an inner product on Cn. To do this, we must verify that it satisfies the definition of an
inner product, i.e.

Definition: An inner product on a complex vector space V is a function that associates
a complex number 〈u,v〉 with each pair of vectors u and v in V in such a way that:

a. 〈u,u〉 is a non-negative real number (i.e. 〈u,u〉 ≥ 0) and 〈u,u〉 = 0 iff u = 0.

b. 〈u,v〉 = 〈v,u〉∗.
c. 〈αu + βv,w〉 = α〈u,w〉+ β〈v,w〉.

for all vectors u,v,w ∈ V and all scalars α and β.

Thus, taking any three vectors x = [x1, x2, . . . , xn]t, y = [y1, y2, . . . , yn]t and z = [z1, z2, . . . , zn]t in
Cn and any two scalars α and β in C we have:

a. Clearly, using the definition of the modulus of a complex number,7 we have:

〈x,x〉 = x1x
∗
1 + x2x

∗
2 + · · ·+ xnx∗n = |x1|2 + |x2|2 + · · ·+ |xn|2 ≥ 0,

as it is the sum of n non-negative real numbers and it is real too. Further, to show that
〈x,x〉 = 0 iff x = 0, we note that:

• LTR: If 〈x,x〉 = 0, then

x1x
∗
1 + x2x

∗
2 + · · ·+ xnx∗n = |x1|2 + |x2|2 + · · ·+ |xn|2 = 0.

But, this is the sum of n non-negative real numbers and so it must be the case that
|x1| = |x2| = · · · = |xn| = 0. However, this means that x1 = x2 = · · · = xn = 0 and so
x = 0.

• RTL: If x = 0, then x1 = x2 = · · · = xn = 0. Thus, 〈x,x〉 = 0.

(as required).

b. Obviously, 〈x,y〉 = x1y
∗
1 + x2y

∗
2 + · · ·+ xny∗n = (y1x

∗
1 + y2x

∗
2 + · · ·+ ynx∗n)∗ = 〈y,x〉∗.

c. We note that the vector αx + βy is given by [αx1 + βy1, αx2 + βy2, . . . , αxn + βyn]t and so:

〈αx + βy, z〉 = (αx1 + βy1)z∗1 + (αx2 + βy2)z∗2 + · · ·+ (αxn + βyn)z∗n
= α(x1z

∗
1 + x2z

∗
2 + · · ·+ xnz∗n) + β(y1z

∗
1 + y2z

∗
2 + · · ·+ ynz∗n)

∴ 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉
7The modulus of a complex number z, denoted by |z|, is defined by the formula |z|2 = zz∗. Writing z = a + ib

(where a, b ∈ R) we note that |z|2 = (a + ib)(a − ib) = a2 + b2 ≥ 0. Consequently, we can see that |z|2 is real and
non-negative.
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Consequently, the Euclidean inner product is an inner product on Cn (as expected).

Further, we are reminded that the norm of a vector x ∈ Cn, denoted by ‖x‖, is defined by the
formula

‖x‖ =
√
〈x,x〉,

and we are asked to use this to prove that the following theorems hold in any complex inner product
space. Firstly, we have:

Theorem: [The Cauchy-Schwarz Inequality] If x and y are vectors in Cn, then

|〈x,y〉| ≤ ‖x‖ ‖y‖.

Proof: For any vectors x and y in Cn and an arbitrary scalar α ∈ C, we can write:

‖x + αy‖2 ≥ 0
∴ 〈x + αy,x + αy〉 ≥ 0
∴ 〈x,x + αy〉+ α〈y,x + αy〉 ≥ 0
∴ 〈x,x〉+ α∗〈x,y〉+ α〈y,x〉+ αα∗〈y,y〉 ≥ 0

∴ ‖x‖2 + 2Re[α∗〈x,y〉] + |α|2‖y‖2 ≥ 0

where we have used the fact that

α∗〈x,y〉+ α〈y,x〉 = α∗〈x,y〉+ [α∗〈x,y〉]∗ = 2Re[α∗〈x,y〉],
which is two times the real part of α∗〈x,y〉.8 Now, the quantities 〈x,y〉 and α in this
expression will be complex numbers and so we can write them in polar form, i.e.

〈x,y〉 = Reiφ and α = reiθ,

where R = |〈x,y〉| and r = |α| are real numbers.9 So, writing the left-hand-side of our
inequality as

∆ = ‖x‖2 + 2Re
[
rRei(φ−θ)

]
+ r2‖y‖2,

and noting that α was an arbitrary scalar, we can choose α so that its argument (i.e. θ)
is such that θ = φ, i.e. we now have

∆ = ‖x‖2 + 2rR + r2‖y‖2.

But, this is a real quadratic in r, and so we can see that:

• Either: ∆ > 0 for all values of r in which case, the quadratic function represented
by ∆ never crosses the r-axis and so it will have no real roots (i.e. the roots will be
complex),

• Or: ∆ ≥ 0 for all values of r in which case, the quadratic function represented by
∆ never crosses the r-axis, but it is tangential to it at some value of r, and so we
will have repeated real roots.

So, considering the general real quadratic ar2 + br + c, we know that it has roots given
by:

r =
−b±√b2 − 4ac

2a
,

and this gives no real roots, or repeated real roots, if b2 − 4ac ≤ 0. Consequently, our
conditions for ∆ are equivalent to saying that

4R2 − 4‖x‖2‖y‖2 ≤ 0,

8As, if we have a complex number z = a + ib (where a, b ∈ R), then z + z∗ = (a + ib) + (a− ib) = 2a and a = Re z.
9Since, if z = reiθ, then |z|2 = zz∗ = (reiθ)(re−iθ) = r2.
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which on re-arranging gives
|〈x,y〉|2 ≤ ‖x‖2‖y‖2,

where we have used the fact that R = |〈x,y〉|. Thus, taking square roots and noting that
both ‖x‖ and ‖y‖ are non-negative, we get

|〈x,y〉| ≤ ‖x‖ ‖y‖,

as required.

and secondly, we have:

Theorem: [The Triangle Inequality] If x and y are vectors in Cn, then

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof: For any vectors x and y in Cn we can write:

‖x + y‖2 = 〈x + y,x + y〉
= 〈x,x + y〉+ 〈y,x + y〉
= 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉

∴ ‖x + y‖2 = ‖x‖2 + 2Re[〈x,y〉] + ‖y‖2

where we have used the fact that

〈x,y〉+ 〈y,x〉 = 〈x,y〉+ 〈x,y〉∗ = 2Re[〈x,y〉],

which is two times the real part of 〈x,y〉. Now, the quantity, 〈x,y〉 is complex and so we
can write

〈x,y〉 = Reiφ,

and, as in the previous proof, this means that R = |〈x,y〉|. But, then we have

Re[〈x,y〉] = Re[Reiφ] = R cosφ ≤ R = |〈x,y〉|,

since eiφ = cosφ+ i sinφ (Euler’s formula) and cosφ ≤ 1. So, our expression for ‖x+y‖2

can now be written as

‖x + y‖2 ≤ ‖x‖2 + 2|〈x,y〉|+ ‖y‖2,

which, on applying the Cauchy-Schwarz inequality gives

‖x + y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2,

or indeed,
‖x + y‖2 ≤ (‖x‖+ ‖y‖)2.

Thus, taking square roots on both sides and noting that both ‖x‖ and ‖y‖ are non-
negative, we get

‖x + y‖ ≤ ‖x‖+ ‖y‖,
as required.

and thirdly, bearing in mind that two vectors x and y are orthogonal, written x ⊥ y, if 〈x,y〉 = 0,
we have:
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Theorem: [The Generalised Theorem of Pythagoras] If x and y are vectors in Cn and
x ⊥ y, then ‖x + y‖2 = ‖x‖2 + ‖y‖2.

Proof: For any vectors x and y in Cn, we know from the previous proof that

‖x + y‖2 = ‖x‖2 + 2Re[〈x,y〉] + ‖y‖2.

Now, if these vectors are orthogonal, then 〈x,y〉 = 0, and so this expression becomes

‖x + y‖2 = ‖x‖2 + ‖y‖2,

as required.

10. We are told to use the Cauchy-Schwarz inequality, i.e.

|〈x,y〉| ≤ ‖x‖‖y‖,

for all vectors x and y in some vector space to prove that

(a cos θ + b sin θ)2 ≤ a2 + b2,

for all real values of a, b and θ. As we only need to consider real values of a, b and θ, we shall work
in Rn. Further, we shall choose n = 2 as the question revolves around spotting that you need to
consider the two vectors [a, b]t and [cos θ, sin θ]t. So, using these, we find that

∣∣∣∣
〈[

a
b

]
,

[
cos θ
sin θ

]〉∣∣∣∣ ≤
∥∥∥∥
[

a
b

]∥∥∥∥
∥∥∥∥
[

cos θ
sin θ

]∥∥∥∥ ,

which gives

|a cos θ + b sin θ| ≤
√

a2 + b2
√

cos2 θ + sin2 θ,

Now noting that cos2 θ + sin2 θ = 1 (trigonometric identity) and squaring both sides we get

(a cos θ + b sin θ)2 ≤ a2 + b2,

as required.

11. We are asked to prove that the equality in the Cauchy-Schwarz inequality holds iff the vectors
involved are linearly dependent, that is, we are asked to prove that

Theorem: For any two vectors x and y in a vector space V : The vectors x and y are
linearly dependent iff |〈x,y〉| = ‖x‖ ‖y‖

Proof: Let x and y be any two vectors in a vector space V . We have to prove an ‘iff’
statement and so we have to prove it ‘both ways,’ i.e.

• LTR: If the vectors x and y are linearly dependent, then [without loss of generality,
we can assume that] there is a scalar α such that x = αy. As such, we have

|〈x,y〉| = |〈αy,y〉| = |α〈y,y〉| = |α|‖y‖2,

and,
‖x‖ ‖y‖ = ‖αy‖ ‖y‖ = |α|‖y‖2.

So, equating these two expressions we get |〈x,y〉| = ‖x‖ ‖y‖, as required.
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• RTL: Assume that the vectors x and y are such that

|〈x,y〉| = ‖x‖ ‖y‖.

Considering the proof of the Cauchy-Schwarz inequality in Question 9, we can see
that this equality holds in the case where

‖x + αy‖2 ≥ 0,

i.e. there exists a scalar α such that

‖x + αy‖2 = 〈x + αy,x + αy〉 = 0.

(In particular, this is the scalar α = reiθ where θ = φ and r gives the repeated root
of the real quadratic ∆.) But, this equality can only hold if x + αy = 0 and this
implies that x = −αy, i.e. x and y are linearly dependent, as required.

Thus, the vectors x and y are linearly dependent iff |〈x,y〉| = ‖x‖ ‖y‖, as required.
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