
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 4

In this Problem Sheet, we revised how to find the eigenvalues and eigenvectors of a matrix and the
circumstances under which matrices are diagonalisable. We also used these skills in our study of
age-specific population growth.

1. To find the characteristic polynomial, p(λ), of the matrix A, we use

p(λ) = det(A− λI) =

∣∣∣∣∣∣

1− λ 0 a
0 1− λ 0
1 0 2− λ

∣∣∣∣∣∣
This determinant can be evaluated by doing a co-factor expansion along the top row, and this yields

p(λ) = (1− λ)2(2− λ)− a(1− λ) = (1− λ) {(1− λ)(2− λ)− a}
which will be useful in a moment. But, multiplying out the brackets instead of factorising, we find
that the characteristic polynomial is

p(λ) = −λ3 + 4λ2 + (a− 5)λ + 2− a.

Notice that, as expected from the lectures, the characteristic polynomial of a 3× 3 matrix is a cubic
where the λ3 term has a coefficient of (−1)3 = −1. (Further, if you look at Question 11, we should
expect that the constant term, i.e. 2 − a, gives the value of det(A) — and you can verify that it
does!)

We are now asked to show that the matrix A is diagonalisable when a = 0, but not when a = −1
4 .

To do this, recall that an n×n matrix A is diagonalisable iff it has n linearly independent eigenvectors.
So, we have to establish that if a = 0 the matrix A has three linearly independent eigenvectors, but
if a = −1

4 it doesn’t.

When a = 0: From our earlier analysis of the characteristic polynomial it should be clear that in this
case the matrix A has eigenvalues given by λ = 1, 1, 2. (That is the eigenvalue λ = 1 is of multiplicity
two.) Now, if a matrix has distinct eigenvalues, then the eigenvectors corresponding to these distinct
eigenvalues are linearly independent1 and so as there must be at least one eigenvector corresponding
to each eigenvalue2 and so, we have at least two linearly independent eigenvectors already. But, to
diagonalise A we require three and so, the question is actually asking whether this matrix has enough
linearly independent eigenvectors corresponding to λ = 1, i.e. two.3 To show that this is indeed the
case when a = 0, we can find out precisely what the eigenvectors corresponding to the eigenvalue
λ = 1 are.

So, to find the eigenvectors x corresponding to this eigenvalue, we have to solve the simultaneous
equations which, in matrix form, are given by the expression

(A− I)x = 0

(Note, by definition, the trivial solution to this system of simultaneous equations, i.e. x = 0, is not
an eigenvector corresponding to λ = 1.) That is, we have




0 0 0
0 0 0
1 0 1







x
y
z


 = 0

1See, for example, Question 2, or its generalisation in Question 8.
2That is, for each eigenvalue, we can always find an eigenspace with a dimension of at least one with this eigenvector

serving as a basis for this space. Obviously, to get an eigenspace whose dimension is greater than one, we require that
the corresponding eigenvalue has multiplicity (i.e. it is a repeated root of the characteristic polynomial).

3Indeed, in terms of the previous footnote, this is just asking whether the eigenspace corresponding to the multiplic-
itous eigenvalue has a sufficiently large dimension — in this case two — to yield an eigenbasis containing two linearly
independent eigenvectors.
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which gives us one equation, namely x + z = 0, in three variables. So, taking y and z to be the two
free parameters we find that eigenvectors corresponding to λ = 0 will have the form

x =



−z
y
z


 = z



−1
0
1


 + y




0
1
0




Consequently, two linearly independent eigenvectors corresponding to λ = 1 would be [−1, 0, 1]t and
[0, 1, 0]t. Thus, we can find three linearly independent eigenvectors which can be used as the column
vectors of an invertible matrix P, and so the matrix A is diagonalisable if a = 0 (as required).

When a = −1
4 : From our earlier analysis of the characteristic polynomial it should be clear that in

this case, the matrix A has eigenvalues given by

(1− λ){(1− λ)(2− λ) + 1
4} = 0

and solving this we find that λ = 1, 3
2 , 3

2 . (That is, the eigenvalue λ = 3
2 is of multiplicity two.) As in

the previous case, we know that we are going to get at least two linearly independent eigenvectors
— one corresponding to λ = 1 and at least one corresponding to λ = 3

2 . So, to show that A is not
diagonalisable, it is sufficient to show that, in fact, there is only one linearly independent eigenvector
corresponding to λ = 3

2 .
To do this, we note that the eigenvectors x corresponding to this eigenvalue, can be found by

solving the simultaneous equations which, in matrix form, are given by the expression

(A− 3
2 I)x = 0

(Again, note that by definition, the trivial solution to this system of simultaneous equations, i.e.
x = 0, is not an eigenvector corresponding to λ = 3

2 .) That is, we have


−1

2 0 −1
4

0 −1
2 0

1 0 1
2







x
y
z


 = 0

which gives us three equations, namely

−1
2x− 1

4z = 0
−1

2y = 0
x + 1

2z = 0

But, the top equation is only the bottom equation multiplied by −1
2 and so, really, we just have

two equations in three variables. So, taking z to be the free parameter we find that eigenvectors
corresponding to λ = 3

2 have the form

x =



−1

2z
0
z


 = z



−1

2
0
1




Consequently, we can only find one linearly independent eigenvector corresponding to λ = 3
2 , say

[−1
2 , 0, 1]t. Thus, as we can not find three linearly independent eigenvectors which could be used

as the column vectors of an invertible matrix P, the matrix A is not diagonalisable if a = −1
4 (as

required).

2. Let us consider a general4 matrix A (which is square and at least 2 × 2) that has two distinct
eigenvalues λ1 and λ2.5 Also, x1 and x2 are eigenvectors of A corresponding to the eigenvalues λ1

and λ2 respectively, i.e. they must be such that

Ax1 = λ1x1 and Ax2 = λ2x2

4The restriction that the matrix should be 2× 2 is irrelevant and possibly distracting.
5This is the generalisation mentioned in the question above. If A is an n × n matrix, then it may have just two

distinct (and multiplicitous) eigenvalues or it may have many distinct eigenvalues (some of which may be multiplicitous)
of which we are just considering two. The proof that is presented here does not depend on such details.
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and we have to show that these vectors are linearly independent. To do this we consider the vector
equation

α1x1 + α2x2 = 0

where we can establish that the set of vectors {x1,x2} is linearly independent if this equation only
has the trivial solution α1 = α2 = 0. So that we can solve this equation for α1 and α2 using all of
the information that we have about x1 and x2, we now multiply this equation by the matrix A , i.e.

α1Ax1 + α2Ax2 = A0 =⇒ α1λ1x1 + α2λ2x2 = 0

where we have used the eigenvalue-eigenvector relations above in the second step. Consequently, if
we multiply our original vector equation by λ1 (say, assuming [without loss of generality] that λ1 6= 0)
and subtract it from the vector equation above we get

α2(λ2 − λ1)x2 = 0

where as x2 6= 0 (it is an eigenvector) and λ1 6= λ2 it must be the case that α2 = 0. Substituting this
into our original vector equation we get

α1x1 = 0

and as x1 6= 0 (it is an eigenvector too) we get α1 = 0. Clearly, the solution that we have found, i.e.
α1 = α2 = 0, is the only solution that this pair of vector equations is going to yield and so the set
{x1,x2} is linearly independent (as required).

3. To verify that v1 is an eigenvector of the Leslie matrix L, you should have shown that Lv1 = λ1v1.
This is easily accomplished as

Lv1 =




a1 a2 a3 · · · an−1 an

b1 0 0 · · · 0 0
0 b2 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · bn−1 0







1
b1/λ1

b1b2/λ2
1

...
b1b2 . . . bn−1/λn−1

1




=




λ1

b1

b1b2/λ1
...

b1b2 . . . bn−1/λn−2
1




= λ1




1
b1/λ1

b1b2/λ2
1

...
b1b2 . . . bn−1/λn−1

1




= λ1v1.

Notice that we have used two facts from the handout for Lecture 8, namely that

a1 + a2b1/λ1 + a3b1b2/λ2
1 + · · ·+ anb1b2 . . . bn−1/λn−1

1 = λ1q(λ1)

and q(λ1) = 1.

4. Clearly, given the information in the question, the required Leslie matrix is

L =
[

1 4
1/2 0

]

and the initial population distribution vector is x(0) = [1000, 1000]t. To find an exact formula for
x(k), the population distribution vector after k time periods (in this case, after 5k years), we need to
evaluate

x(k) = Lkx(0).

Obviously, we do this by diagonalising the matrix L, and so finding the eigenvalues and eigenvectors
we obtain

P =
[

4 −2
1 1

]
, P−1 = 1

6

[
1 2
−1 4

]
and D =

[
2 0
0 −1

]
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where P−1LP = D. Thus, L = PDP−1 and so, Lk is given by

Lk = (PDP−1)(PDP−1) . . . (PDP−1)︸ ︷︷ ︸
k times

= PDkP−1

as P−1P = I. This means x(k) = PDkP−1x(0), and so

x(k) =
[

4 −2
1 1

] [
2k 0
0 (−1)k

] [
1/6 1/3
−1/6 2/3

] [
1000
1000

]

=
[

4 · 2k −2(−1)k

2k (−1)k

] [
500
500

]

∴ x(k) = 500
[

4 · 2k − 2(−1)k

2k + (−1)k

]

is the required expression.6

We are now asked to check that

lim
k→∞

x(k)

λk
1

= cv1

for some constant c, where in this case λ1 = 2 is the unique positive real eigenvalue and v1 = [4, 1]t

is an eigenvector of the Leslie matrix corresponding to this eigenvalue. Thus, dividing both sides of
our exact expression for x(k) by 2k we obtain

x(k)

2k
= 500

[
4− 2(−1/2)k

1 + (−1/2)k

]

and so in the limit as k →∞, (−1/2)k → 0, which means that

lim
k→∞

x(k)

2k
= 500

[
4
1

]

as required.7

5. Clearly, given the information in the question, the required Leslie matrix is

L =




0 1/4 1/2
1/2 0 0
0 1/4 0


 .

Calculating the characteristic polynomial, you should find that the eigenvalues of L are the roots of
the cubic equation:

λ3 − 1
8
λ− 1

16
= 0.

To solve this, you have to use ‘trial and error’, and this should lead you to the conclusion that λ = 1/2
is a root. Further, as the theory in the handout for Lecture 8 guarantees that the Leslie matrix will
have only one positive real eigenvalue, this must be it.8

We now notice that the Leslie matrix has two successive fertile classes, and so the theory in the
handout for Lecture 8 tells us that the eigenvalue which we have calculated is dominant.9 This means

6Incidentally, notice that the second line of this calculation tells us that the first entry of P−1x(0) is 500.
7With reference to the previous footnote, observe that the constant c is 500. This is what we expect from the theory

given in the handout for Lecture 8.
8Incidentally, dividing the cubic by the factor λ − 1/2 gives us a quadratic equation, namely λ2 + 1

2
λ + 1

8
= 0, to

solve for the other two eigenvalues. Doing this we find that they are λ = 1
4
(−1± i).

9Recall that an eigenvalue, λ1 of a matrix L is dominant if λ1 > |λi| where the λi are the other eigenvalues of L.

In this case, the moduli of the other eigenvalues are given by 1
4
| − 1 ± i| = 1

4

√
12 + 12 =

√
2

4
= 1

2
√

2
< 1

2
. Thus the

eigenvalue λ = 1/2 is dominant, as expected.
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that we can describe the long-term behaviour of the population distribution of this species using the
results in the handout for Lecture 8, i.e. for large k,

x(k) ' cλk
1v1 and x(k) ' λ1x(k−1).

But, to do this, we need an eigenvector, v1, corresponding to our unique positive real eigenvalue, so
using the result of Question 3, we get

v1 =




1
b1/λ1

b1b2/λ2
1


 =




1
(1/2)/(1/2)

(1/2)(1/4)/(1/2)2


 =




1
1

1/2




as here, λ1 = 1/2. Thus, the long-term behaviour of the population distribution of this species is
given by

x(k) ' c(1
2)k




1
1

1/2


 and x(k) ' 1

2x
(k−1).

Consequently, we can see that, in the long run, the proportion of the population in each age class
becomes steady in the ratio 1 : 1 : 1

2 and that the population in each age class decreases by 50%
every time period (i.e. every ten years). Further, as the population is decreasing in this way, the
species in question will ultimately become extinct.

Other Problems

The Other Problems on this sheet were intended to give you some further insight into the consequences
of our model of age-specific population growth.

6. We are given the Leslie matrix

L =




0 0 6
1/2 0 0
0 1/3 0


 .

This question is about what happens when you do not have a dominant eigenvalue, and clearly, we
don’t have one here because we do not have two successive fertile classes. Calculating the eigenvalues
as asked, you should have found that the characteristic polynomial is 1− λ3. Thus, the eigenvalues
are the roots of the equation

λ3 = 1

This has one real root, namely λ = 1, and two complex roots (which are complex conjugates because
the equation has real coefficients) given by

λ = e±2πi/3 = −1
2
±
√

3
2

i.

(These are found by noting that 1 = e2πni and taking n = −1, 0, 1.) Now, the modulus of these
complex roots is given by

|λ|2 =
(

1
2

)2

+

(
±
√

3
2

)2

=
1
4

+
3
4

= 1 =⇒ |λ| = 1

which is equal to the value of the unique positive real eigenvalue given by λ = 1, thus this eigenvalue
is not dominant (as expected).

Calculating L3 as asked, you should have found that

L3 =




0 0 6
1/2 0 0
0 1/3 0







0 0 6
1/2 0 0
0 1/3 0







0 0 6
1/2 0 0
0 1/3 0




=




0 0 6
1/2 0 0
0 1/3 0







0 2 0
0 0 3

1/6 0 0


 =




1 0 0
0 1 0
0 0 1


 .
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This tells us that the population distribution vector x(k), which is given by x(k) = Lkx(0), will evolve
as follows:

x(1) = Lx(0), x(2) = L2x(0), x(3) = L3x(0)

But, L3 = I, and so x(3) = x(0)! Thus,

x(4) = L4x(0) = LL3x(0) = Lx(0) = x(1), x(5) = L5x(0) = L2x(0) = x(2), x(6) = L6x(0) = x(0),

and, repeating this argument for k ≥ 7 we conclude that:

x(k) =





x(0) for k = 0, 3, 6, . . .

x(1) for k = 1, 4, 7, . . .

x(2) for k = 2, 5, 8, . . .

Thus, the population distribution exhibits a cyclical behaviour which repeats itself every three time
periods.

This seems to contradict the key result of from the handout for Lecture 8 where we established
that in the infinite time limit there will be a fixed proportion of the population in each age class (where
the relevant proportion is given by the ratio of the elements in the eigenvector v1 corresponding to
the unique real positive eigenvalue of the Leslie matrix). But, of course, the contradiction is only
apparent as the analysis in the handout for Lecture 8 presupposes that the unique real positive
eigenvalue is dominant, and as we have seen, this is not the case here.

7. We are asked to show that the net reproduction rate, given by

R = a1 + a2b1 + a3b1b2 + · · ·+ anb1b2 . . . bn−1,

is the average number of daughters born to a female during her expected lifetime. To do this, we
consider how many daughters are ‘produced’ in the lifetime of a certain generation. Here, a generation
is the class of females who are born in a certain time period (i.e. a period of L/n years in our model,
where L is the maximum age of a female) and, let us assume that N females are born in the time
period that we are considering.10 Now, a1 is the average number of daughters born to a female when
she is in the first age class, and so this generation would be expected to produce a1N daughters in
this initial time period of L/n years. However, only a fraction (i.e. b1) of these females will live for
more than L/n years and hence make it into the second age class. Thus, only b1N of the females in
this generation will pass into the second age class. But, on average, those that do survive will have a2

daughters, and so during this second time period this generation would be expected to produce a2b1N
daughters. Thus, after two time periods, i.e. 2L/n years, we would expect this generation to have
produced a1N + a2b1N daughters. Repeating this argument we would expect that this generation
would ultimately produce

a1N + a2b1N + a3b1b2N + · · ·+ anb1b2 . . . bn−1N

daughters.11 Now, this is the total number of daughters born to the N females in this generation
during its lifetime. Thus, the net reproduction rate, R, which is defined as the average number
of daughters born to a female during her expected lifetime, is just this quantity divided by N (as
required).

Now, assuming that two consecutive ai are non-zero, we are asked to show that the population
is eventually increasing iff its net reproduction rate is greater than 1. To ‘cash this out’, we notice
that the two consecutive fertile classes guarantee the existence of a dominant real positive eigenvalue
(our λ1) and so we know that the long term behaviour is given by

x(k) ' cλk
1v1.

10So, obviously, these N females are all in the first age class during this time period.
11Notice that the series terminates because there is absolutely no chance of a female living for more than L years (by

assumption) and so the expected number of daughters from a female in the ith age class, where i > n, is zero.
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So, the population is eventually increasing if λ1 > 1. This means that we have to show that λ1 > 1
iff R > 1. To do this, we use the hint and recall that q(λ1) = 1, i.e.

q(λ1) =
a1

λ1
+

a2b1

λ2
1

+
a3b1b2

λ3
1

+ · · ·+ anb1b2 . . . bn−1

λn
1

= 1

and comparing this with our expression for R, i.e.

R = a1 + a2b1 + a3b1b2 + · · ·+ anb1b2 . . . bn−1.

we can construct a [quick!] argument for the required result, namely:

• RTL: When R > 1, q(λ1) = 1 can only be satisfied if λ > 1, as required.

• LTR: When R < 1, q(λ1) = 1 can only be satisfied if λ < 1. Thus, [by the contrapositive of
this,] we have: if λ ≥ 1, then R ≥ 1 and hence the required result.

(Too quick?) But, this result is obvious anyway, because demographically, each female must ‘produce’
[on average] at least one daughter in her lifetime for the population to increase!

Harder Problems

The Harder Problems on this sheet gave you the opportunity to prove some other theorems concerning
the eigenvalues and eigenvectors of a matrix.

8. In this question, we generalise the result of Question 2 and consider a general12 matrix A (which is
square and at least m×m) that has n ≤ m distinct eigenvalues λ1, λ2, . . . , λn. We are then required
to show that: If x1,x2, . . . ,xn are the eigenvectors corresponding to these eigenvalues, then the set of
vectors {x1,x2, . . . ,xn} is linearly independent. This can be done by [finite] induction13 on k where
we consider the linear independence of the set of vectors {x1,x2, . . . ,xk} with 2 ≤ k ≤ n, i.e.

• Induction Hypothesis: Let A be an [at least] m × m matrix that has n ≤ m distinct
eigenvalues λ1, λ2, . . . , λn with corresponding eigenvectors x1,x2, . . . ,xn. If 2 ≤ k ≤ n, then
the set of vectors {x1,x2, . . . ,xk} is linearly independent.

• Basis: In the case where k = 2, we must show that if A is a square matrix (which is at least
2× 2) that has two distinct eigenvalues λ1 and λ2 with corresponding eigenvectors x1 and x2,
then the set of vectors {x1,x2} is linearly independent. But, we have already done this in
Question 2.

• Induction Step: Suppose that 2 ≤ k < n and that the Induction Hypothesis is true for k,
we want to show that if 2 < k + 1 ≤ n, then the set of vectors {x1,x2, . . . ,xk,xk+1} is linearly
independent. To do this, consider the vector equation

α1x1 + α2x2 + · · ·+ αkxk + αk+1xk+1 = 0

and as in Question 2, we multiply through by the matrix A to get

α1Ax1 + α2Ax2 + · · ·+ αkAxk + αk+1Axk+1 = A0

But, we have k + 1 eigenvalue-eigenvector relations, i.e.

Ax1 = λ1x1, Ax2 = λ2x2, . . . , Axk = λkxk and Axk+1 = λk+1xk+1

which therefore gives us a second vector equation

α1λ1x1 + α2λ2x2 + · · ·+ αnλkxk + αk+1λk+1xk+1 = 0
12Again, the restriction that the matrix should be n×n is irrelevant (but in this case, it is not particularly distracting).
13Alternatively, you could follow Anton and Rorres and use a proof by contradiction.
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Consequently, if we multiply our original vector equation by λk+1 and subtract it from this new
vector equation we get

α1(λ1 − λk+1)x1 + α2(λ2 − λk+1)x2 + · · ·+ αk(λk − λk+1)xk = 0

Now, by the Induction Hypothesis, the set of vectors {x1,x2, . . . ,xk} is linearly independent
which means that the coefficients in this vector equation must be zero, i.e.

α1(λ1 − λk+1) = α2(λ2 − λk+1) = · · · = αk(λk − λk+1) = 0

and as the eigenvalues λ1, λ2, . . . , λk are distinct this implies that α1 = α2 = · · · = αk = 0. So,
substituting this into the original vector equation, we get

αk+1xk+1 = 0

and as xk+1 6= 0 (it is an eigenvector), we have αk+1 = 0 too. Consequently, our orig-
inal vector equation has the trivial solution as its only solution and so the set of vectors
{x1,x2, . . . ,xk,xk+1} is linearly independent.

Thus, by the Principle of Induction, if A is an m ×m matrix that has n ≤ m distinct eigenvalues
λ1, λ2, . . . , λn with corresponding eigenvectors x1,x2, . . . ,xn and 2 ≤ k ≤ n, then the set of vectors
{x1,x2, . . . ,xk} is linearly independent, as required.

9. For an n × n matrix A, we are asked to prove that: A is diagonalisable iff A has n linearly
independent eigenvectors. As this is an ‘if and only if’ claim, we have to prove it both ways:

LTR: We assume that the matrix A is diagonalisable, and so there is an invertible matrix, say P ,
with column vectors denoted by p1,p2, . . . ,pn, i.e.

P =


p1 p2 · · · pn




such that P−1AP gives a diagonal matrix, say D, where

D =




λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




It follows from the way that we have chosen P and D that AP = PD, which means that as

AP =


Ap1 Ap2 · · · Apn




and

PD =


p1 p2 · · · pn







λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 =


λ1p1 λ2p2 · · · λnpn




it must be the case that the successive columns of AP and PD are equal, i.e.

Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn−1 = λn−1pn−1 and Apn = λnpn

Now, as P is invertible, we can deduce that:

• all of the column vectors of P must be non-zero and so the vectors p1,p2, . . . ,pn are eigenvectors
of A corresponding to the eigenvalues λ1, λ2, . . . , λn.
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• det(P) must be non-zero and so the set of vectors {p1,p2, . . . ,pn} is linearly independent.

Thus, the matrix A has n linearly independent eigenvectors (as required).

RTL: Assume that the matrix A has n linearly independent eigenvectors p1,p2, . . . ,pn corresponding
to the eigenvalues λ1, λ2, . . . , λn and let the matrix P be such that

P =


p1 p2 · · · pn




Multiplying the two matrices A and P together, we get

AP =


Ap1 Ap2 · · · Apn




and we know that we have n eigenvalue-eigenvector relations, i.e.

Ap1 = λ1p1, Ap2 = λ2p2, . . . , Apn−1 = λn−1pn−1 and Apn = λnpn

which on substituting gives

AP =


λ1p1 λ2p2 · · · λnpn


 =


p1 p2 · · · pn







λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn


 = PD

where D is the diagonal matrix with the eigenvalues λ1, λ2, . . . , λn along its ‘main’ diagonal. Further,
as the column vectors of P are linearly independent, det(P) is non-zero, and so the matrix P is
invertible. Consequently, we can re-write the above expression as P−1AP = D, which means that the
matrix A is diagonalisable (as required).

10. We are asked to prove that: λ = 0 is an eigenvalue of a matrix A iff A is not invertible. To do
this we just note that if λ = 0 is an eigenvalue of the matrix A , it is the case that

det(A− 0I) = 0

which is equivalent to asserting that det(A) = 0, i.e. the matrix A is not invertible and vice versa (as
required).14

11. We are asked to prove that: If A is an n× n matrix, then

det(A− λI) = (−1)nλn + c1λ
n−1 + · · ·+ cn−1λ + cn

where the ci (1 ≤ i ≤ n) are constants. To do this, we note that the eigenvalues of an n× n matrix
A are such that

Ax = λx

for some vector x = [x1, x2, . . . , xn]t 6= 0. But, re-writing this as

(A− λI)x = 0

and denoting the column vectors of the matrix A − λI by u1,u2, . . . ,un we find that this matrix
equation is equivalent to the vector equation

x1u1 + x2u2 + · · ·+ xnun = 0
14Notice that this result should be obvious as the eigenvalues are the numbers which make the columns of the matrix

A−λI linearly dependent. Consequently, if λ = 0 is an eigenvalue, the columns of the matrix A are linearly dependent,
and so this matrix is not invertible (as det(A), say, will then be zero).

9



Now, as x 6= 0, we have non-trivial solutions to this vector equation and so the eigenvalues must be
such that they make the column vectors of the matrix A− λI linearly dependent. That is, if λ is an
eigenvalue of the matrix A, then the matrix A − λI has linearly dependent columns and this means
that det(A− λI) = 0 (i.e. the matrix A− λI is not invertible).

Next, we note that the matrix A−λI, which has column vectors u1,u2, . . . ,un say, can be written
as

A− λI =




u11 u12 · · · u1n

u21 u22 · · · u2n
...

...
. . .

...
un1 un2 · · · unn


 =




a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
. . .

...
an1 an2 · · · ann − λ




and will have a determinant given by15

det(A− λI) =
∑
π

π̃u1j1u2j2 · · ·unjn

where the summation is over all n! permutations π of the ordered n-tuple (j1, j2, . . . , jn) with 1 ≤
ji ≤ n for all i such that 1 ≤ i ≤ n and π̃ is +1 or −1 if the permutation π is even or odd
respectively. In particular, it should be clear that if we chose to write this summation out, we would
get a polynomial in λ of degree n as the the term in the summation corresponding to the permutation
where the ordered n-tuple is (1, 2, . . . , n) is

(a11 − λ)(a22 − λ) · · · (ann − λ)

and as this permutation is even, π̃ = +1.16 Consequently, we can see that as the eigenvalues satisfy
the equation det(A−λI) = 0, they must also satisfy the equation p(λ) = 0 where p(λ) is a polynomial
in λ of degree n. Also notice that the λn term in this summation will have a coefficient of (−1)n. As
such, [including multiplicity and the possibility that some eigenvalues are complex,] there must be n
solutions17 λ1, λ2, . . . , λn to these equations, and as such they will be roots of the polynomial p(λ),
i.e. we have

p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

which on expanding would give us a polynomial of the desired degree.
But, we are not quite there yet. So far, we have shown that the eigenvalues can be seen as

solutions of
det(A− λI) = 0 or p(λ) = 0

However, this only guarantees that
det(A− λI) = kp(λ)

for some constant k. Although, we have also found that the λn term in the expansion of det(A− λI)
must have a coefficient of (−1)n and so it should be clear that the same term in the polynomial p(λ)
will have this coefficient too. Thus, for the equality above to hold, it must be the case that k = 1.
Consequently, it should be obvious that if we expand our expression for p(λ), we will get

det(A− λI) = p(λ) = (−1)nλn + c1λ
n−1 + · · ·+ cn−1λ + cn

for some constants ci where 1 ≤ i ≤ n (as required).

Further, if we let λ = 0 in this expression it reduces to

det(A) = cn

(as required).

15For example, see Anton and Rorres, pp. 81-5.
16You should convince yourself that every other possible permutation leads to a term in the summation which has at

most n− 1 [linear] factors involving λ.
17That is, eigenvalues.
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