
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 5

In this Problem Sheet we looked at some problems involving systems of differential equations. We
also started thinking about how matrices with complex eigenvalues could be manipulated and how
we could calculate functions of matrices other than integer powers and inverses.

1. As we are told that the vectors [1,−1, 1]t, [−3, 0, 1]t and [−1, 1, 0]t are eigenvectors of the matrix
A, to show that there is an invertible matrix P such that P−1AP is diagonal, it is sufficient to establish
that the matrix

P =




1 −3 −1
−1 0 1
1 1 0


 ,

which has column vectors given by the eigenvectors of A, is invertible. So, evaluating the determinant
of this matrix by performing a co-factor expansion along the second row we find that

det(P) = 1(0 + 1)− 1(1 + 3) = −3,

and so the matrix P is invertible (as required).
Indeed, in the next part of the question we will need to make use of the diagonal matrix D which

is given by P−1AP. The easiest way to find this matrix is to evaluate AP and use this to infer what
D is from the fact that AP = PD. That is, calculating

AP =




1 −2 −6
2 5 6
−2 −2 −3







1 −3 −1
−1 0 1
1 1 0


 =



−3 −9 −3
3 0 3
−3 3 0


 ,

we see that this new matrix is just the matrix P with its first, second and third columns multiplied
by the numbers −3, 3 and 3 respectively. Therefore, as AP = PD, the required diagonal matrix is

D =



−3 0 0
0 3 0
0 0 3


 ,

where, of course, the diagonal entries are the eigenvalues to which the given eigenvectors of A corre-
spond.

We are now asked to look at a system of coupled linear differential equations relating the functions
y1(t), y2(t) and y3(t). As the system in question is linear, we follow the method given in the handout
for Lectures 9 and 10 and write it as a matrix equation, i.e.

ẏ = Ay,

where y(t) = [y1(t), y2(t), y3(t)]t and the matrix A from the previous part [conveniently] corresponds
to the matrix of coefficients for this system. So, using the earlier analysis there is an invertible matrix
P such that P−1AP = D and so we can write

ẏ = PDP−1y =⇒ (P−1ẏ) = D(P−1y),

which on making the substitution z = P−1y yields the uncoupled system of linear differential equa-
tions

ż = Dz,

and this can easily be solved (see the handout for Lectures 9 and 10) to yield

z(t) =




Ae−3t

Be3t

Ce3t


 ,
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where A, B and C are arbitrary constants. Consequently, using the fact that y = Pz, we find that

y(t) = Pz(t) =




Ae−3t − (3B + C)e3t

−Ae−3t + Ce3t

Ae−3t + Be3t


 ,

is the general solution to this system of coupled linear differential equations.
Lastly, to find the particular solution associated with the initial conditions y1(0) = y2(0) = 1 and

y3(0) = 0, we have to find the appropriate values of A, B and C. So, noting that in this case,

y(0) =




1
1
0


 ,

and setting t = 0 in the general solution, we get a set of three simultaneous equations, i.e.

A− 3B − C = 1
−A + C = 1

A + B = 0

Solving these we find that A = 2
3 , B = −2

3 and C = 5
3 , which on substitution into our expression for

y(t) and simplifying yields

y(t) =
1
3




2e−3t + e3t

−2e−3t + 5e3t

2e−3t − 2e3t


 ,

which is the sought after particular solution.

2. The steady states of the system of differential equations represented by ẏ = F (y) are the solutions
to the equation ẏ = 0. Thus, solving the pair of quadratic simultaneous equations given by F (y) = 0,
i.e.

y1(2− 2y1 − y2) = 0
y2(2− 2y2 − y1) = 0

you should have found four steady states y∗ = [y∗1, y
∗
2]

t, namely [0, 0]t, [0, 1]t, [1, 0]t and
[

2
3 , 2

3

]t.
The question then asks you to show that the steady state

[
2
3 , 2

3

]t is asymptotically stable. To do
this, we use Theorem 9.7 from the handout for Lectures 9 and 10 and calculate the Jacobian of F (y)
so, bearing in mind that F (y) = [f1, f2]t, this is given by

DF (y) =




∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2


 =

[
2− 4y1 − y2 −y1

−y2 2− 4y2 − y1

]
,

which at the steady state y∗ =
[

2
3 , 2

3

]t, is

DF
([

2
3 , 2

3

]t
)

=



−4

3 −2
3

−2
3 −4

3


 .

It should now be straightforward to show that the eigenvalues of this matrix are −2 and −2/3, and
because these are both real and negative, Theorem 9.7 tells us that the steady state y∗ =

[
2
3 , 2

3

]t is
asymptotically stable.

3. In the handout for Lectures 9 and 10, we found that y∗ = [4, 0]t is a steady state of the system
of non-linear differential equations given by

ẏ1 = 4y1 − y2
1 − y1y2

ẏ2 = 6y2 − y2
2 − 3y1y2
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and we also found that the Jacobian of this system was given by

DF (y) =




∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2


 =

[
4− 2y1 − y2 −y1

−3y2 6− 2y2 − 3y1

]
.

Evaluating this Jacobian at the given steady state we get

DF(y∗) =
[−4 −4

0 −6

]
,

and you should be able to show that the eigenvalues of this matrix are −4 and −6. Consequently,
by Theorem 9.7, we can deduce that the steady state y∗ = [4, 0]t is asymptotically stable as these
eigenvalues are both negative real numbers.

4. Suppose that A is a real diagonalisable matrix whose eigenvalues are all non-negative, we need to
prove that there is a matrix B such that B2 = A. To do this, we use the fact that A is diagonalisable,
i.e. there exists a matrix P such that P−1AP = D is diagonal, and on re-arranging, this gives A =
PDP−1. Now, the matrix D has entries given by the eigenvalues of A, i.e. D = diag(λ1, λ2, . . . , λn),
and so we consider the matrix

B = Pdiag
(√

λ1,
√

λ2, . . . ,
√

λn

)
P−1,

where the square roots are unproblematic because the λi ≥ 0 for i = 1, 2, . . . , n. Thus, as

B2 = Pdiag
(√

λ1,
√

λ2, . . . ,
√

λn

)
P−1Pdiag

(√
λ1,

√
λ2, . . . ,

√
λn

)
P−1

= Pdiag
(√

λ1,
√

λ2, . . . ,
√

λn

)
diag

(√
λ1,

√
λ2, . . . ,

√
λn

)
P−1

= Pdiag (λ1, λ2, . . . , λn) P−1

= PDP−1

=⇒ B2 = A

we can see that our matrix B is such that B2 = A (as required).1

We are now asked whether the matrix B is unique, i.e. is the matrix B given above the only
matrix such that B2 = A? The answer is, of course, no it’s not. To see why, note that each of the
[non-zero] eigenvalues can give rise to two square roots, and so the diagonal matrix which we use to
construct B could be any one of the diagonal matrices which we can find using

diag
(
±

√
λ1,±

√
λ2, . . . ,±

√
λn

)
,

where we choose either the ‘+’ or the ‘−’ for each entry. That is, for an n × n matrix A we could
construct 2n different matrices B such that B2 = A.2

5. We are asked to show that the eigenvalues of the matrix

A =
[

1 1
−9 1

]
,

1Some of you may have claimed that a matrix B such that B2 = A can be formed from the spectral decomposition
of A, i.e.

B =
√

λ1E1 +
√

λ2E2 + · · ·+√
λnEn,

where Ei = xix
t
i and xi is an eigenvector of A corresponding to the eigenvalue λi for i = 1, 2, . . . , n. (You should

check that this expression for B will give A when squared.) However, recall that the spectral decomposition only exists
when the matrix A is unitarily diagonalisable (i.e. when A is a normal matrix) and not all diagonalisable matrices are
unitarily diagonalisable. Consequently, this line of reasoning is not general enough to answer the question.

2Provided, of course, all of the eigenvalues are non-zero. If m of the n eigenvalues are zero, then we can construct
2n−m different matrices B such that B2 = A. (In particular, this means that if A was an n×n matrix with n eigenvalues
which were all zero, then we could find only one (i.e. a unique) B such that B2 = A. But, there is only one diagonalisable
matrix A which can have n eigenvalues which were all zero, i.e. A = 0, and in this case the unique B would be 0 too!)
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are 1 ± 3i and hence find an invertible matrix P such that the matrix P−1AP = D is diagonal, i.e.
we need to find the eigenvectors corresponding to these eigenvalues as well. There are two ways of
doing this: the first is probably the most obvious, whereas the second is probably the easiest. Let us
look at them both in action:

Method 1: The most obvious way of doing this is to solve the determinant equation

det(A− λI) = 0,

as we know that the solutions will be the eigenvalues. In this case, we get

∣∣∣∣
1− λ 1
−9 1− λ

∣∣∣∣ = 0,

and expanding this out, we get

(1− λ)2 + 9 = 0 =⇒ 1− λ = ±3i =⇒ λ = 1± 3i,

which are, as expected, the required eigenvalues. To find the eigenvectors, we note that
they are the non-zero vectors x which are solutions to the matrix equation

(A− λI)x = 0.

So, if λ = 1 + 3i, we want a non-zero vector x = [x, y]t that satisfies

[−3i 1
−9 −3i

] [
x
y

]
= 0,

and so we require x and y such that 3ix = y, which means that (letting x be a free
parameter) the eigenvectors have the form x[1, 3i]t. Similarly, if λ = 1 − 3i, we want a
non-zero vector x = [x, y]t that satisfies

[
3i 1
−9 3i

] [
x
y

]
= 0,

and so we require x and y such that −3ix = y, which means that (again, letting x be a
free parameter) the eigenvectors have the form x[1,−3i]t. Consequently, setting x = 1 in
both of these expressions, we find that [1, 3i]t and [1,−3i]t are eigenvectors corresponding
to the eigenvalues 1 + 3i and 1− 3i respectively.

Method 2: However, the easiest way to do this is to note that the equation det(A−λI) = 0
gives us the eigenvalues as they are the numbers which make the columns of the matrix
A − λI linearly dependent.3 So, to verify that 1 ± 3i are eigenvalues of the matrix A we
just note that the matrix

A− (1± 3i)I =
[
1− (1± 3i) 1

−9 1− (1± 3i)

]
=

[∓3i 1
−9 ∓3i

]
,

has linearly dependent columns.4 Further, this method also gives us an easy way of
calculating the eigenvectors because an eigenvector corresponding to a given eigenvalue
λ is just any vector of coefficients which allows us to express the null vector in terms of

3Recall that this was how we motivated the use of the determinant equation in the lectures!
4That is, if we take 1 + 3i, the column vectors of the matrix A − (1 + 3i)I are [−3i,−9]t and [1,−3i]t which are

clearly linearly dependent, whereas if we take 1 − 3i, the column vectors of the matrix A − (1 − 3i)I are [3i,−9]t and
[1, 3i]t which are also clearly linearly dependent.
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the column vectors of A − λI.5 So, noting that the columns of A − (1 + 3i)I are linearly
dependent as the second is −3i times the first, we have

[−3i
−9

]
+ 3i

[
1
−3i

]
= 0,

and so [1, 3i]t is an eigenvector of A corresponding to the eigenvalue 1 + 3i (as before).
Similarly, noting that the columns of A − (1 − 3i)I are linearly dependent as the second
is 3i times the first, we have [

3i
−9

]
− 3i

[
1
3i

]
= 0,

and so [1,−3i]t is an eigenvector of A corresponding to the eigenvalue 1− 3i (as before).

Thus, with this information, we can find an invertible matrix P such that the matrix product P−1AP
gives a diagonal matrix D. For instance, the matrices

P =
[

1 1
3i −3i

]
and D =

[
1 + 3i 0

0 1− 3i

]
,

will do the job. To verify that P−1AP = D, you should check that AP = PD and observe that P is
invertible as it has linearly independent column vectors (i.e. det(P) 6= 0). If you really must calculate
the inverse of P, you should find that

P−1 =
1
6i

[
3i 1
3i −1

]
,

in this case.

Other problems

Here are the solutions for the other problems. As these were not covered in class the solutions will
be a bit more detailed. (Note that I use ε’s in these solutions to help you understand the definitions
given in the handout for Lectures 9 and 10 and as such, people who have done Real Analysis should
not interpret them too literally.)

6. We are asked to consider the differential equation,

ẏ = y2 + 3y − 10.

By Definition 9.1, the steady states occur when ẏ = 0, and so we must solve the quadratic equation

y2 + 3y − 10 = 0,

to find them. But this is just
(y + 5)(y − 2) = 0,

and so the steady states are y∗ = −5 and y∗ = 2.
To solve this differential equation we use the ‘separation of variables’ technique, that is, we write

∫
dy

(y + 5)(y − 2)
=

∫
dt,

5Recall from the lectures that solving the matrix equation,

(A− λI)x = 0,

for the eigenvectors of A corresponding to the eigenvalue λ is equivalent to writing x as [x1, x2, . . . , xn]t and finding the
coefficients x1, x2, . . . , xn which are solutions to the vector equation,

x1c1 + x2c2 + · · ·+ xncn = 0,

where the vectors c1, c2, . . . , cn are the column vectors of the matrix A− λI.
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and note that the left-hand-side can be expressed in terms of partial fractions, i.e.

−1
7

∫ [
1

y + 5
− 1

y − 2

]
dy =

∫
dt,

which in turn yields the solution

−1
7

[ln(y + 5)− ln(y − 2)] = t + c,

where c is an arbitrary constant. So, rearranging this gives

y + 5
y − 2

= Ae−7t or, y(t) =
2Ae−7t + 5
Ae−7t − 1

,

where A = e−7c.
Now, to gain our first insight into the stability of the steady states, we notice that for any [finite]

value of the arbitrary constant A, y → −5 as t → ∞. This seems to suggest that the steady state
y∗ = −5 is asymptotically stable. Further, we notice that there are no [finite] values of A for which
the steady state y∗ = 2 is realised. This is because in the limit t → ∞, in order to have y → 2, we
require an A such that

2 =
2A + 5
A− 1

,

which on rearranging yields the inconsistency −2 = 5! Thus, the steady state y∗ = 2 does not seem
to be asymptotically stable.6

Now, to discuss the asymptotic stability of the steady states properly, we need to consider how
these solutions depend on the initial condition y(0) ≡ y0. Clearly, this is related to the arbitrary
constant A by the equation

y0 =
2A + 5
A− 1

or, on rearranging, A =
y0 + 5
y0 − 2

.

Thus, substituting for A and simplifying, our solutions now take the form

y(t) =
y0(2e−7t + 5) + 10(e−7t − 1)
y0(e−7t − 1) + (5e−7t + 2)

.

Firstly, we note that if we start in the steady states, then we stay in them for all time, i.e.

• If y0 = 2, then y(t) = 2.

• If y0 = −5, then y(t) = −5.

Secondly, we notice that as t →∞, these solutions take the form

y(t) →
{ −5 if y0 6= 2

2 if y0 = 2

Thus, the steady state y∗ = −5 is asymptotically stable as there is an ε > 0 such that if |y(0)−y∗| < ε,
then y(t) → y∗ as t → ∞. For instance, if we take any ε in the range 0 < ε ≤ 7, say ε = 7, then
y(0) ≡ y0 will lie in the range |y0 − y∗| < 7, or −7 + y∗ < y0 < 7 + y∗. So, as we are considering the
case where y∗ = −5, we have −12 < y0 < 2 and we know that for these values of y0, y(t) → −5 as

6However, notice that if we remove the restriction that A is finite, this equation can be written as

2 =
2 + (5/A)

1− (1/A)
,

which gives us a consistent equation if A is ‘infinite.’ Thus, there are conditions under which the steady state y∗ = 2 is
realised. Of course, this must be the case, as systems which are started in a steady state remain in them for all time,
i.e. if we pick the initial condition to be y(0) = 2, then this will be a situation where the steady state y∗ = 2 is realised.
(Further, notice that y(0) = 2 implies that A will be ‘infinite’ as expected!) This is discussed in more detail in the next
paragraph.
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t → ∞. But, the steady state y∗ = 2 is not asymptotically stable as there is no such ε > 0 (i.e. we
only tend towards this steady state when we have y0 = 2 and this entails that ε = 0!).7

Thirdly, if you are very keen, you can notice that the steady state y∗ = −5 is globally asymptotically
stable. This is because every8 value of y0 gives us a y(t) that tends to y∗ = −5 as t →∞.

7. We are asked to find the steady states of the system of non-linear differential equations given by

ẋ = 2xy − 2y2

ẏ = x− y2 + 2

As always, the steady states occur when ẋ and ẏ are simultaneously equal to zero, i.e. when

2xy − 2y2 = 0

x− y2 + 2 = 0

So, to satisfy the first equation we require that y = 0 or x = y. Substituting the former into the
second equation gives x + 2 = 0 and so [x∗, y∗]t = [−2, 0]t is a steady state. Similarly, substituting
the latter into the second equation gives

y2 − y − 2 = 0 =⇒ (y − 2)(y + 1) = 0 =⇒ y = 2 or y = −1,

which as x = y, gives the steady states [2, 2]t and [−1,−1]t. Consequently, this system has three
steady states, namely [−2, 0]t, [2, 2]t and [−1,−1]t.

To examine the stability of these steady states, we need to look at the Jacobian of this system,
i.e.

DF ([x, y]t) =




∂f1

∂x
∂f1

∂y

∂f2

∂x
∂f2

∂y


 =

(
2y 2x− 4y
1 −2y

)
,

where we have used the fact that

F ([x, y]t) =
(

f1

f2

)
=

(
2xy − 2y2

x− y2 + 2

)
.

So, taking the steady states in turn, we have:

For [−2, 0]t: In this case, the Jacobian matrix is

DF([−2, 0]t) =
[
0 −4
1 0

]
,

and this has eigenvalues given by the determinant equation
∣∣∣∣
−λ −4
1 −λ

∣∣∣∣ = 0 =⇒ λ2 + 4 = 0.

So, the eigenvalues are ±2i and as these are not both real and negative, we cannot use
Theorem 9.7 from the handout for Lectures 9 and 10 to assess their stability. However,
we know from the lectures that these eigenvalues describe the evolution of the vector

7Incidentally, you may be wondering what Theorem 9.7 says about this case. Clearly, the Jacobian of the ‘system’
ẏ = f(t) = y2 + 3y − 10 is given by

DF (y) = (∂f/∂y) = (2y + 3) .

Now, when y∗ = −5, we get the 1× 1 matrix DF(−5) = [−7] and this has a negative real eigenvalue of −7 (Obviously!)
which implies that this steady state is asymptotically stable. But, when y∗ = 2, we get DF(2) = [7] and this matrix has
a non-negative real eigenvalue of 7 (Again, this is obvious.) which implies that this steady state is not asymptotically
stable.

8Except for a set of y0 of lower dimension, i.e. the set containing y0 = 2! This is clearly a set of lower dimension as
it represents a point (dimension zero) and all the other values of y0 form a set that represents a line (dimension one).
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h(t) = y(t) − y∗ and qualitatively,9 this behaves in the same way as solutions to the
linear system of differential equations given by

ḣ(t) = DF(y∗)h(t),

and we also know from the handout for Lectures 9 and 10 that linear systems of differential
equations have solutions of the form

h(t) = c1e
λ1tv1 + c2e

λ2tv2,

where, in this case, v1 and v2 are eigenvectors corresponding to the eigenvalues λ1 and
λ2 of DF(y∗) and the coefficients c1 and c2 are constants. Thus, using this information,
we can see that

h(t) = y(t)− y∗ = c1e
2itv1 + c2e

−2itv2,

where v1 and v2 are eigenvectors corresponding to the eigenvalues 2i and −2i respectively.
But, what does this mean? To answer this question, we calculate the eigenvectors of
DF(y∗) corresponding to the two eigenvalues and find that v1 = [2i, 1]t and v2 = [−2i, 1]t,
that is, we have

h(t) =
[
h1(t)
h2(t)

]
= c1e

2it

[
2i
1

]
+ c2e

−2it

[−2i
1

]
.

However, the presence of complex quantities is distracting and it would be nice if we could
somehow ‘eliminate’ them to get some idea of how the system is behaving. To do this,
we use the fact that eiθ = cos θ + i sin θ to write our expression for h(t) as

h(t) =
[
2i(c1 − c2) cos(2t)− 2(c1 + c2) sin(2t)
(c1 + c2) cos(2t) + i(c1 − c2) sin(2t)

]
,

and then note that any set of initial conditions y(0) (sufficiently close to y∗) that we
might wish to consider can be translated into initial conditions for h(t) (where ‖h(0)‖ is
correspondingly close to zero). So, taking an appropriate set of initial conditions for h(t),
say h(0) = [h1(0), h2(0)]t, we have

h(0) =
[
h1(0)
h2(0)

]
=

[
2i(c1 − c2)

c1 + c2

]
,

and substituting these into our expression for h(t) we get

h(t) =
[
h1(0) cos(2t)− 2h2(0) sin(2t)
h2(0) cos(2t) + 1

2h1(0) sin(2t)

]
,

where all of the quantities are now real. Thus, re-writing our result gives

h(t) = y(t)− y∗ = cos(2t)
[
h1(0)
h2(0)

]
− sin(2t)

2

[
4h2(0)
−h2(0)

]
,

which is, believe it or not, the equation of an elliptical helix centred on the vertical line
which passes through the point h = 0 (or y = y∗ in ‘y’-coordinates) if we choose our
axes appropriately — see Figure 1. Now, intuitively, a steady state y∗ is

• asymptotically stable if y(t) → y∗ (i.e. h(t) → 0) for initial conditions suitably close
to y∗, and

• asymptotically unstable if y(t) 6→ y∗ (i.e. h(t) 6→ 0) for initial conditions suitably
close to y∗,

9This means that for initial conditions that are suitably close to y∗ (i.e. initial conditions such that ‖h(0)‖ is
suitably close to zero) the solution that we get for h(t) should give us a good idea of how y(t) is behaving.
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Figure 1: An [exact] solution to the system of non-linear differential equations considered in Question
7. In this case, the initial conditions are close to the steady state y∗ = [x∗, y∗]t = [−2, 0]t —
specifically, the initial conditions for the solution indicated are y(0) = [x(0), y(0)]t = [−1.9, 0.1]t.
Notice that the curve is an elliptical helix which is centred on the steady state under consideration
as expected from our qualitative analysis.

where the latter usually indicates that we are going to get y(t) tending either to infinity,
or some other steady state, as t → ∞. In this case though, we have a solution that
‘circles’ around the steady state and this seems to fall somewhere between the two forms of
asymptotic behaviour noted above. However, formally, a steady state y∗ is asymptotically
stable if there is some ε > 0 such that ‖y(0) − y∗‖ < ε implies y(t) → y∗ as t → ∞.
So, formally, this steady state is not asymptotically stable as there is no ε > 0 such that
‖y(0)− y∗‖ < ε implies y(t) → y∗ as t →∞.

For [2, 2]t: In this case, the Jacobian matrix is

DF([2, 2]t) =
[
4 −4
1 −4

]
,

and this has eigenvalues given by the determinant equation
∣∣∣∣
4− λ −4

1 −4− λ

∣∣∣∣ = 0 =⇒ (4− λ)(−4− λ) + 4 = 0 =⇒ λ2 − 12 = 0.

So, the eigenvalues are ±√12 and as these are not both real and negative, we cannot use
Theorem 9.7 from the handout for Lectures 9 and 10 to assess their stability. But, using
a similar qualitative10 analysis to the one above, we can see that in this situation we have

h(t) = y(t)− y∗ = c1e
√

12tv1 + c2e
−√12tv2,

where v1 and v2 are eigenvectors corresponding to the eigenvalues
√

12 and −√12 of
DF(y∗) and the coefficients c1 and c2 are constants. Clearly, due to the increasing ex-
ponential in the first term, solutions which start close to this steady state will [almost
always11] move away from it and so this steady state is asymptotically unstable — see
Figure 2.

For [−1,−1]t: In this case, the Jacobian matrix is

DF([−1,−1]t) =
[−2 2

1 2

]
,

10See Footnote 9.
11This caveat is due to the fact that some initial conditions will make c1 = 0, and under such circumstances y(t) will

tend to y∗ (i.e. h(t) will tend to zero). However, this steady state is not asymptotically stable, since for any ε > 0,
there are initial conditions where ‖y(0)− y∗‖ < ε, but y(t) 6→ y∗ (due to the presence of the increasing exponential).

9
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Figure 2: Solutions to the system of non-linear differential equations considered in Question 7 with
initial conditions close to the steady state y∗ = [x∗, y∗]t = [2, 2]t — specifically, the initial conditions
for the solutions indicated are y(0) = [x(0), y(0)]t = [1.9, 1.9]t. The exact solution was obtained
by solving the non-linear equations (using Maple) and the approximate solution was obtained by
solving the ‘qualitatively similar’ linear equations. Notice that the approximate solution becomes
increasingly unreliable as t increases.

and this has eigenvalues given by the determinant equation
∣∣∣∣
−2− λ 2

1 2− λ

∣∣∣∣ = 0 =⇒ (2− λ)(−2− λ)− 2 = 0 =⇒ λ2 − 6 = 0.

So, the eigenvalues are ±√6 and as these are not both real and negative, we cannot use
Theorem 9.7 from the handout for Lectures 9 and 10 to assess their stability. But, again,
using a similar qualitative12 analysis to the one above, we can see that in this situation
we have

h(t) = y(t)− y∗ = c1e
√

6tv1 + c2e
−√6tv2,

where v1 and v2 are eigenvectors corresponding to the eigenvalues
√

6 and −√6 of DF(y∗)
and the coefficients c1 and c2 are constants. Clearly, due to the increasing exponential in
the first term, solutions which start close to this steady state will [almost always13] move
away from it and so this steady state is also asymptotically unstable — see Figure 3.

8. In Question 3, we considered the system of non-linear differential equations given in the handout
for Lectures 9 and 10 and of the four steady states that we found for this system, we have analysed
two. We now turn to the two steady states that are left over, namely (0, 0) and (1, 3).
Evaluating the Jacobian at the former of these steady states gives

DF(y∗) =
[
4 0
0 6

]
,

and so it should be obvious that the eigenvalues of this matrix are 4 and 6. So, as per the analysis
of Question 7, it should be clear that the presence of eigenvalues which are positive real numbers
indicates that the steady state (0, 0) is asymptotically unstable.
Evaluating the Jacobian at the latter of these steady states gives

DF(y∗) =
[−1 −1
−9 −3

]
,

12See Footnote 9.
13See Footnote 11.
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Figure 3: Solutions to the system of non-linear differential equations considered in Question 7 with
initial conditions close to the steady state y∗ = [x∗, y∗]t = [−1,−1]t — specifically, the initial
conditions for the solutions indicated are y(0) = [x(0), y(0)]t = [−0.9,−0.9]t. The exact solution
was obtained by solving the non-linear equations (using Maple) and the approximate solution was
obtained by solving the ‘qualitatively similar’ linear equations. Notice that the approximate solution
becomes increasingly unreliable as t increases.

and you should be able to show that the eigenvalues of this matrix are −2 +
√

10 and −2−√10. So,
as per the analysis of Question 7, it should be clear that as the first of these eigenvalues is a positive
real number (note that

√
10 > 2), the steady state (1, 3) is also asymptotically unstable.

Harder problems

Here are the solutions for the harder problems. Again, as these were not covered in class the solutions
will be a bit more detailed. (Note that, as in the Other Problems, I use ε’s in these solutions —
particularly in the ‘proofs’. People who have done Real Analysis will probably find the proofs a bit
unsatisfactory, but as this is a Methods course they cannot be made more precise here. As such, the
‘proofs’ should be regarded as a way of seeing what you would have to do without actually doing it
in any detail.)

9. We are asked to show that (0, 0) is a steady state of the general system of linear differential
equations given by ẏ = Ay where A is a 2 × 2 matrix. To do this, we take y = [0, 0]t = 0 and note
that this gives ẏ = A0 = 0, i.e. it is a steady state (as required). Further, we are asked to show that
this steady state is asymptotically stable iff det(A) > 0 and Tr(A) < 0. But, to do this, we need to
note a Lemma:

Lemma: If A is a 2 × 2 matrix with eigenvalues λ1 and λ2, then det(A) = λ1λ2 and
Tr(A) = λ1 + λ2.

Proof: Let A be the 2× 2 matrix given by

A =
[
a b
c d

]
,

i.e. det(A) = ad− bc and Tr(A) = a+d. The eigenvalues of this matrix can be calculated
by solving the determinant equation det(A− λI) = 0, i.e.

∣∣∣∣
a− λ b

c d− λ

∣∣∣∣ = 0 =⇒ (a− λ)(d− λ)− bc = 0 =⇒ λ2 − (a + d)λ + ad− bc = 0.

11



and we can solve this quadratic equation by using the ‘formula’. That is, the eigenvalues
are

λ1 =
1
2

{
a + d +

√
(a + d)2 − 4(ad− bc)

}
,

and,

λ2 =
1
2

{
a + d−

√
(a + d)2 − 4(ad− bc)

}
,

which implies that
λ1 + λ2 = a + d = Tr(A),

and,

λ1λ2 =
1
4

{
(a + d)2 − [

(a + d)2 − 4(ad− bc)
]}

= ad− bc = det(A),

(as required).

and make two observations:

Observation 1: We take the matrix A to be real and so the equation that is used
to find the eigenvalues has real coefficients. As such, the solutions must be a pair of
[not necessarily distinct] real numbers or a pair of complex numbers that are complex
conjugates.

Observation 2: The solution of the system of linear differential equations in question
will be of the form

y(t) = Aeλ1tv1 + Beλ2tv2,

where v1 and v2 are eigenvectors corresponding to the eigenvalues λ1 and λ2 respectively
and the coefficients A and B are constants.

With this information available, we are now in a position to establish the result:

Theorem: Let A be a real 2 × 2 matrix and let ẏ = Ay. The steady state y∗ = 0 is
asymptotically stable iff det(A) > 0 and Tr(A) < 0.

Proof: This is an ‘if and only if’ statement and so we have to prove it both ways:

LTR: As the steady state y∗ = 0 is asymptotically stable, there must be an ε > 0 such
that if ‖y(0)− y∗‖ < ε, then y(t) → 0 as t →∞. But, this means that the solution

y(t) = Aeλ1tv1 + Beλ2tv2,

of the system of linear differential equations given by ẏ = Ay is such that y(t) → 0 as
t →∞ for appropriate sets of initial conditions, i.e.

• Either: λ1 and λ2 are both real and negative. Thus, Tr(A) = λ1 + λ2 < 0 and
det(A) = λ1λ2 > 0.

• Or: λ1 and λ2 are both complex and form a complex conjugate pair, i.e. λ1 = α+iβ
and λ2 = α − iβ with α, β ∈ R and α < 0.14 Thus, Tr(A) = λ1 + λ2 = 2α < 0 and
det(A) = λ1λ2 = α2 + β2 > 0.

Consequently, the two possible cases lead to the desired conclusion.

RTL: Given that Tr(A) < 0 and det(A) > 0 we can see that λ1 + λ2 < 0 and λ1λ2 > 0.
But, for these two inequalities to hold, it must be the case that:

14This is because in the complex case, the solution to the system of linear differential equations being considered is

y(t) = eαt
�
Aeiβtv1 + Be−iβtv2

�
,

and this will only tend to 0 as t →∞ if α < 0.

12



• Either: λ1 and λ2 are both real negative numbers, in which case there will be an
ε > 0 such that ‖y(0)− y∗‖ < ε and y(t) → 0 as t →∞. Thus, the steady state is
asymptotically stable.

• Or: λ1 and λ2 are complex and form a complex conjugate pair, i.e. λ1 = α+ iβ and
λ2 = α− iβ with α, β ∈ R and α < 0. Thus, as the solution to the linear system of
differential equations is given by

y(t) = eαt
(
Aeiβtv1 + Be−iβtv2

)
,

in this case, there will be an ε > 0 such that ‖y(0)−y∗‖ < ε and y(t) → 0 as t →∞.
Thus, the steady state is asymptotically stable.

Consequently, the two possible cases lead to the desired conclusion.

Lastly, we are asked to show that if either det(A) < 0 or Tr(A) > 0, then this steady state is unstable,
that is,

Theorem: Let A be a real 2×2 matrix and let ẏ = Ay. If either det(A) < 0 or Tr(A) > 0,
then the steady state y∗ = 0 is unstable.

Proof: We have two cases to consider, i.e. the case where det(A) < 0 and the case where
Tr(A) > 0, and in both of these cases we have to establish that the steady state y∗ = 0
is unstable.

• If det(A) < 0, then λ1λ2 < 0. That is, λ1 > 0 and λ2 < 0, or λ1 < 0 and λ2 > 0.15

Clearly, whichever of these two possibilities obtains, we are going to have one positive
eigenvalue and consequently, an increasing exponential in the [general] solution. As
such, there will be no ε > 0 such that ‖y(0) − y∗‖ < ε and y(t) → 0 as t → ∞.16

Thus, the steady state is not asymptotically stable.
• If Tr(A) > 0, then λ1 + λ2 > 0 and so there are two possibilities:

– λ1 and λ2 are both real, in which case, at least one of them must be positive.
Thus, there will be [at least one] increasing exponential in the [general] solution
and as such, there will be no ε > 0 such that ‖y(0)− y∗‖ < ε and y(t) → 0 as
t →∞.17 Consequently, the steady state is not asymptotically stable.

– λ1 and λ2 are both complex and form a complex conjugate pair, say α ± iβ
where α, β ∈ R. In this case, as λ1 + λ2 = 2α > 0, we have α > 0 and so the
solution to the linear system of differential equations, i.e.

y(t) = eαt
(
Aeiβtv1 + Be−iβtv2

)
,

contains an increasing exponential. As such, there will be no ε > 0 such that
‖y(0) − y∗‖ < ε and y(t) → 0 as t → ∞.18 Thus, the steady state is not
asymptotically stable.

Thus, if Tr(A) > 0, the steady state is not asymptotically stable.

(As required.)

10. Our general model of population dynamics in the presence of two competing species was given
(in Section 2 of the handout for Lectures 9 and 10) as

ẏ1 = a1y1 − b1y
2
1 − c1y2y1

ẏ2 = a2y2 − b2y
2
2 − c2y1y2

15The assumption that det(A) < 0 precludes the possibility of two complex eigenvalues which form a complex
conjugate pair, say α± iβ, as this can only occur if det(A) = λ1λ2 = α2 + β2 ≥ 0.

16Since, for any ε > 0, there will be some initial conditions where ‖y(0)− 0‖ < ε, but y(t) 6→ 0 (due to the presence
of the increasing exponential).

17See Footnote 16.
18See Footnote 16.
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where a1, a2, b1, b2, c1and c2 are all positive numbers. So, to show that y∗1 = (a1/b1, 0) and y∗2 =
(0, a2/b2) are steady states of this system of non-linear differential equations, we just have to verify
that they satisfy ẏ1 = ẏ2 = 0. That is, y∗1 and y∗2 should make the right-hand-sides of the equations

ẏ1 = y1(a1 − b1y1 − c1y2)
ẏ2 = y2(a2 − b2y2 − c2y1)

simultaneously zero, which they obviously do.19 Further, to show that y∗2 will be asymptotically
stable or unstable depending on the sign of the quantity

∆ =
a1

c1
− a2

b2
,

we need to examine the eigenvalues of the Jacobian at this steady state. So, to calculate the Jacobian
in this general setting, we use the fact that

F ([y1, y2]t) =
(

f1

f2

)
=

(
a1y1 − b1y

2
1 − c1y2y1

a2y2 − b2y
2
2 − c2y1y2

)
,

to discover that

DF ([y1, y2]t) =




∂f1

∂y1

∂f1

∂y2

∂f2

∂y1

∂f2

∂y2


 =

(
a1 − 2b1y1 − c1y2 −c1y1

−c2y2 a2 − 2b2y2 − c2y1

)
.

Thus, at the steady state y∗2 = [0, a2/b2]t, the Jacobian matrix is given by

DF([0, a2/b2]t) =
1
b2

[
a1b2 − a2c1 0
−a2c2 −a2b2

]
,

and so we can calculate the eigenvalues by solving the determinant equation given by det(A−λI) = 0,
i.e. ∣∣∣∣

a1b2 − a2c1 − b2λ 0
−a2c2 −a2b2 − b2λ

∣∣∣∣ = 0 =⇒ (a1b2 − a2c1 − b2λ)(a2b2 − b2λ) = 0,

which means that the eigenvalues are λ = −a2 which is negative (as a2 is positive) and

λ = c1

(
a1

c1
− a2

b2

)
= c1∆,

using the definition of ∆ given above. Now, as c1 is positive and ∆ is real it should be clear that:

• If ∆ < 0, then we have two negative real eigenvalues and the steady state y∗2 will be asymptot-
ically stable.

• If ∆ > 0, then we have a positive real eigenvalue and so the steady state y∗2 will be asymptoti-
cally unstable.20

which is the desired result.
Further, in the special case where ∆ = 0, we can examine the behaviour of solutions with initial

conditions close to the steady state y∗2 by considering the linear system of differential equations which

19Alternatively, you could set the right-hand-sides equal to zero and solve the resulting simultaneous equations for
the steady states. If you did this, you would find that the steady states were (0, 0), (a1/b1, 0), (0, a2/b2) and�

a2c1 − a1b2

c1c2 − b1b2
,
a1c2 − a2b1

c1c2 − b1b2

�
.

Clearly, the second and third of these steady states are y∗1 and y∗2 , as desired.
20Since, for any ε > 0, there will be some initial conditions where ‖y(0)−y∗2‖ < ε, but y(t) 6→ y∗2 (due to the presence

of the increasing exponential).
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qualitatively describe the evolution of this system. In this case, we find that these solutions take the
form

y(t)− y∗2 = Ae−a2tv1 + Bv2,

where A and B are arbitrary constants and v1 and v2 are eigenvectors corresponding to the eigen-
values λ1 = −a2 and λ2 = c1∆ = 0. Thus, as t → ∞, the right-hand-side of this expression doesn’t
tend to zero and so we can see that the system is [formally] asymptotically unstable in this case too.

To explain this condition in terms of the model, we write our system of coupled non-linear
differential equations as

ẏ1

y1
= a1 − b1y1 − c1y2 and

ẏ2

y2
= a2 − b2y2 − c2y1,

and recall that a1 and a2 are the growth rates of the populations y1 and y2 respectively in the absence
of any growth-inhibiting factors (such as limitations on space, scarcity of natural resources or one
species preying on another.) The growth inhibiting factors that we consider in this model then fall
into two categories, namely:

• b1 and b2 which measure the effect of ‘external’ factors on the populations y1 and y2 respectively
(such as limitations on space and scarcity of natural resources). That is, as these populations
grow, the environment will cause them to die out.

• c1 and c2 which measure the effect of ‘internal’ factors on the populations y1 and y2 respectively
(such as how effectively one of the species can prey on the other). For example, if the population
of species 1 grows, there will be more of them for species 2 to prey upon causing the population
of species 1 to be reduced at a greater rate. Further, if species 2 grows, there will be more of
them to prey upon species 1 and this also leads to a reduction in the population of species 1.
(And, of course, vice versa.)

Obviously, the evolution of both of these populations as they interact will be very sensitive to both
the initial populations and the relative values of the six positive constants in the model. Indeed, this
part of the question sets out to explore this sensitivity in a limited range of situations. The first of
these involves situations where we start close to the steady state y∗2, and we discuss this in the next
two paragraphs. The second involves situations where we start close to the steady state y∗1, and we
shall discuss this at the end of the question.

If we start close to the steady state y∗2 = [0, a2/b2]t, then the initial population of species 1 and
2 will be close to 0 and a2/b2 respectively. As such, the population of species 1 is unlikely to be
affected by ‘external’ factors and the population of species 2 is unlikely to be affected by ‘internal’
factors,21 which means that our equations can be written as

ẏ1

y1
' a1 − c1y2 and

ẏ2

y2
' a2 − b2y2,

or indeed, as
ẏ1

y1
' c1

[
a1

c1
− y2

]
and

ẏ2

y2
' b2

[
a2

b2
− y2

]
.

Further, the quantity y2 is close to a2/b2, and so this would imply that if we are sufficiently close to
the steady state y∗2 we could actually write these equations as

ẏ1

y1
' c1

[
a1

c1
− a2

b2

]
and

ẏ2

y2
' 0.

Now, under these circumstances, ẏ2 ' 0 and so the value of y2 will change very slowly with time,
however the population of species 1 will evolve according to

ẏ1 ' c1∆y1 =⇒ y1 ' Aec1∆t,

where A is an arbitrary constant and ∆ is defined as above. Clearly, this leads us to two conclusions:
21As, in both cases, these effects depend on y1, and this quantity is small as we are starting near y1 = 0.

15



• If ∆ > 0, then y1 will increase until the approximations used in this calculation cease to be
valid.

• If ∆ < 0, then y1 will decrease to zero (with the approximations used in this calculation
remaining valid).

Thus, although this analysis is not as ‘rigorous’ as the one above, it does give us some idea of how
to interpret the conditions that we derived earlier in terms of the model.

Now, note that the quantity a1 measures the growth rate of species 1 and the quantity a2/b2 gives
us a measure of the population of species 2 which is present. Also, c1 tells us how effective species
2 is at preying on species 1, so the quantity c1a2/b2 measures the rate at which species 1 is losing
members due to the presence of species 2. Now, this means that the quantity

a1 − c1
a2

b2
= c1

[
a1

c1
− a2

b2

]
= c1∆,

measures the net growth rate of species 1 bearing in mind that this population is being preyed on
by species 2. Further, this means that

• If ∆ > 0, then species 1 reproduces at a faster rate than the rate at which its population is
decreasing due to the presence of species 2 and so in this case, the population of species 1
cannot be kept in check by species 2, i.e. its population will start to increase.

• If ∆ < 0, then species 1 reproduces at a slower rate than the rate at which its population is
decreasing due to the presence of species 2 and so in this case, species 1 will eventually die out.

So, in terms of the model, the sign of ∆ indicates whether the growth rate of species 1 is greater (or
less) than the rate at which species 2 is preying upon it.

To find the corresponding result for y∗1 = [a1/b1, 0]t, we note that at this steady state, the Jacobian
matrix is given by

DF([a1/b1, 0]t) =
1
b1

[−a1b1 −a1c1

0 a2b1 − a1c2

]
,

and so we can calculate the eigenvalues by solving the determinant equation given by det(A−λI) = 0,
i.e. ∣∣∣∣

−a1b1 − b1λ −a1c1

0 a2b1 − a1c2 − b1λ

∣∣∣∣ = 0 =⇒ −b1(a1 + λ)(a2b1 − a1c2 − b1λ) = 0,

which means that the eigenvalues are λ = −a1 which is negative (as a1 is positive) and

λ = c2

(
a2

c2
− a1

b1

)
= c2∆′,

where ∆′ is the natural analogue of ∆. Now, as c2 is positive and ∆′ is real it should be clear that:

• If ∆′ < 0, then we have two negative real eigenvalues and the steady state y∗1 will be asymp-
totically stable.

• If ∆′ > 0, then we have a positive real eigenvalue and so the steady state y∗1 will be asymptot-
ically unstable.22

which is the desired result.
Further, in the special case where ∆′ = 0, we can examine the behaviour of solutions with initial

conditions close to the steady state y∗1 by considering the linear system of differential equations which
qualitatively describe the evolution of this system. In this case, we find that these solutions take the
form

y(t)− y∗1 = Ae−a1tv1 + Bv2,

22Since, for any ε > 0, there will be some initial conditions where ‖y(0)−y∗1‖ < ε, but y(t) 6→ y∗1 (due to the presence
of the increasing exponential).
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where A and B are arbitrary constants and v1 and v2 are eigenvectors corresponding to the eigen-
values λ1 = −a1 and λ2 = c2∆′ = 0. Thus, as t →∞, the right-hand-side of this expression doesn’t
tend to zero and so we can see that the system is [formally] asymptotically unstable in this case too.

To see what this means in terms of the model, we assume an analysis similar to the one above
and note that the quantity a2 measures the growth rate of species 2 and the quantity a1/b1 gives
us a measure of the population of species 1 which is present. Also, c2 tells us how effective species
1 is at preying on species 2, so the quantity c2a1/b1 measures the rate at which species 2 is losing
members due to the presence of species 1. Now, this means that the quantity

a2 − c2
a1

b1
= c2

[
a2

c2
− a1

b1

]
= c2∆′,

measures the net growth rate of species 2 bearing in mind that this population is being preyed on
by species 1. Further, this means that

• If ∆′ > 0, then species 2 reproduces at a faster rate than the rate at which its population
is decreasing due to the presence of species 1 and so in this case, the population of species 2
cannot be kept in check by species 1, i.e. its population will start to increase.

• If ∆′ < 0, then species 2 reproduces at a slower rate than the rate at which its population is
decreasing due to the presence of species 1 and so in this case, species 2 will eventually die out.

So, in terms of the model, the sign of ∆′ indicates whether the growth rate of species 2 is greater (or
less) than the rate at which species 1 is preying upon it.
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