
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 6

In this Problem Sheet we used the Gram-Schmidt Procedure to find an orthonormal basis, found
the spectral decomposition of a matrix and investigated some of the properties of certain types of
complex matrix. The solutions have been written so that the thinking involved is clear, and so they
do not necessarily represent the most ‘elegant’ solutions.

1. Calculating the orthonormal basis using the Gram-Schmidt procedure should have posed no
difficulties. One of the orthonormal bases that you could have found is:

e1 = 1√
2




1
0
1
0


 , e2 = 1√

5




0
2
0
1


 and e3 = 1√

55




−5
−1
5
2


 .

To verify that this new basis is indeed orthonormal, you need to work out the nine inner products
that can be formed using these vectors. The easy way to do this is to construct a matrix P with your
new basis vectors as the column vectors, for then, we can form the matrix product

PtP =




— et
1 —

— et
2 —

— et
3 —





 e1 e2 e3


 =




et
1e1 et

1e2 et
1e3

et
2e1 et

2e2 et
2e3

et
3e1 et

3e2 et
3e3


 .

Hence, as we are using the Euclidean inner product, we note that xty = 〈x,y〉, and so

PtP =



〈e1, e1〉 〈e1, e2〉 〈e1, e3〉
〈e2, e1〉 〈e2, e2〉 〈e2, e3〉
〈e3, e1〉 〈e3, e2〉 〈e3, e3〉


 .

Thus, if the new basis is orthonormal, we should find that PtP = I. So, calculating PtP (this is all
that you need to do!) we get the identity matrix, I and so the verification is complete. (Notice that
as P is real and PtP = I, it is an orthogonal matrix.)

To calculate the [3-dimensional] hyperplane corresponding to this subspace of R4, you should
expand the determinant equation ∣∣∣∣∣∣∣∣

1 0 1 0
0 2 0 1
−5 −1 5 2
w x y z

∣∣∣∣∣∣∣∣
= 0.

Notice that to make the determinant easier to evaluate, we use the new basis as it contains more zeros
and we also take the normalisation constants out of each row (indeed, you should expand along row 1
as that is easiest). Consequently, we find that the required Cartesian equation is w−2x−y+4z = 0.
(Using substitution, you can check this equation by verifying that the components of your vectors
satisfy it.)

2. We are asked to prove the following theorems. Firstly,

Theorem: If A is a symmetric matrix with real entries, then all eigenvalues of A are real.

Proof: We know from the lectures that if a matrix is Hermitian, then all eigenvalues of
the matrix are real. So, if we can establish that A is Hermitian, then it will follow that
all eigenvalues of A are real. To do this, we note that as A is a matrix with real entries,
A∗ = A and as A is symmetric, At = A too. Now, A is Hermitian if A† = A, and this is
clearly the case since

A† = (A∗)t = At = A,

using the two properties of A noted above.
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Secondly,

Theorem: If A is a normal matrix and all of the eigenvalues of A are real, then A is
Hermitian.

Proof: We know from the lectures that if a matrix A is normal, then there is a unitary
matrix P such that the matrix P†AP = D is diagonal. Indeed, as P is unitary, P†P =
PP† = I and so, A = PDP†. Further, the entries of D are the eigenvalues of A, and we
are told that in this case they are all real, therefore D† = D. Now, to establish that A is
Hermitian, we have to show that A† = A. To do this we start by noting that as (P†)† = P,

A† = (PDP†)† = (P†)†(PD)† = P(PD)† = PD†P†,

by two applications of the (AB)† = B†A† rule. But, we know that D† = D in this case,
and so

A† = PD†P† = PDP† = A,

and so A is Hermitian (as required).

Thirdly,

Theorem: If P is a unitary matrix, then all eigenvalues of P have a modulus of one.

Proof: Let λ be any eigenvalue of P, and let x be an eigenvector of P corresponding to
λ, i.e. Px = λx. As P is unitary, P†P = I, and so

x†P†Px = x†Ix = x†x.

But, using the (AB)† = B†A† rule, we can also see that

x†P†Px = (Px)†(Px) = (λx)†(λx) = λ∗λx†x = |λ|2x†x.

Equating these two expressions we find

|λ|2x†x = x†x =⇒ (|λ|2 − 1)x†x = 0.

But, as x is an eigenvector, x†x = ‖x‖2 6= 0,1 this gives |λ|2 = 1, and so |λ| = 1 (as
required).

3. For the matrix A you should have found that the eigenvalues were 2, −2, 16, and that the
corresponding eigenvectors were of the form [0, 1, 0]t, [−1, 0, 1]t, [1, 0, 1]t respectively. We want an
orthogonal matrix P, and so we require that the eigenvectors form an orthonormal set. They are
obviously orthogonal, and so normalising them we find the matrices

P = 1√
2




0 −1 1√
2 0 0

0 1 1


 and D =




2 0 0
0 −2 0
0 0 16


 ,

where PtAP = D (Verify this!).2

1For those of you who are pedantic, you may care to notice that when we write x†x = 0 (say) the right-hand side
of this equality is not a scalar but a 1× 1 matrix, i.e. x†x = [0]. We have implicitly adopted the convention that such
1× 1 matrices can be equated with the single scalar which they contain as, in practice, no confusion results. Really, we
should say x†x =

�‖x‖2� which is not equal to [0] in this case, and so ‖x‖2 6= 0. Similar remarks will apply whenever
we use this trick, although I shall not mention it again. Probably.

2Notice that as A is symmetric, it is a normal matrix (as AtA = A2 = AAt) and so you should have expected it to
be orthogonally diagonalisable!
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Now, as P is an orthogonal matrix, PtP = I = PPt and so we can see that A = PDPt. Then,
writing the columns of P (i.e. our orthonormal eigenvectors) as x1, x2 and x3, we have

A = PDPt =


 x1 x2 x3







2 0 0
0 −2 0
0 0 16







— xt
1 —

— xt
2 —

— xt
3 —




=


 x1 x2 x3







— 2xt
1 —

— −2xt
2 —

— 16xt
3 —


 ,

which on expanding gives us the required result, i.e.

A = 2x1xt
1 + (−2)x2xt

2 + 16x3xt
3 = 2E1 + (−2)E2 + 16E3,

where Ei = xixt
i for i = 1, 2, 3. Multiplying these out, we find that the appropriate matrices are:

E1 =




0 0 0
0 1 0
0 0 0


 , E2 = 1

2




1 0 −1
0 0 0
−1 0 1


 and E3 = 1

2




1 0 1
0 0 0
1 0 1


 .

A quick calculation should then convince you that these matrices have the property that

EiEj =
{

Ei for i = j
0 for i 6= j

,

for i, j = 1, 2, 3.
To establish the next result, we consider any three matrices E1, E2 and E3 with this property,

and three arbitrary real numbers α1, α2 and α3. Now, observe that:

(α1E1 + α2E2 + α3E3)2 = (α1E1 + α2E2 + α3E3)(α1E1 + α2E2 + α3E3)

= α2
1E1E1 + α2

2E2E2 + α2
3E3E3 :as EiEj = 0 for i 6= j.

= α2
1E1 + α2

2E2 + α2
3E3 :as EiEj = Ei for i = j.

Consequently, using a similar argument, i.e.

(α1E1 + α2E2 + α3E3)3 = (α1E1 + α2E2 + α3E3)2(α1E1 + α2E2 + α3E3)

= (α2
1E1 + α2

2E2 + α2
3E3)(α1E1 + α2E2 + α3E3) :from above.

= α3
1E1E1 + α3

2E2E2 + α3
3E3E3 :as EiEj = 0 for i 6= j.

= α3
1E1 + α3

2E2 + α3
3E3 :as EiEj = Ei for i = j.

we obtain the desired result.
To find a matrix B such that B3 = A, we use the above result to see that

B3 = 2E1 + (−2)E2 + 16E3 = A,

implies that α3
1 = 2, α3

2 = −2 and α3
3 = 16, i.e.

B = 3
√

2E1 + 3
√−2E2 + 3

√
16E3.

Thus, as 3
√−2 = − 3

√
2 and 3

√
16 = 2 3

√
2, this gives us

B =
3
√

2
2




1 0 3
0 2 0
3 0 1


 .
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If you are very keen you can check that this is correct by multiplying it out!

Other Problems.

Here are the solutions for the other problems. As these were not covered in class the solutions will
be a bit more detailed.

4. We are given that the Taylor expansion of the exponential function, ex, is

ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·

for all x ∈ R. As we saw in lectures, we can define the exponential of A, an n× n Hermitian matrix,
by replacing each x in the above expression by A, i.e.

eA = I + A +
A2

2!
+

A

3!
+ · · ·

Now, as A is Hermitian, we can find its spectral decomposition which will be of the form

A =
n∑

i=1

λiEi,

where λi is an eigenvalue with corresponding eigenvector xi. The set of all such eigenvectors
{x1,x2, . . . ,xn} is taken to be orthonormal and so the matrices Ei = xix

†
i for 1 ≤ i ≤ n have

the property that

EiEj =
{

Ei for i = j
0 for i 6= j

,

which means that for any integer k ≥ 1, we can write3

Ak =
n∑

i=1

λk
i Ei.

(By the way, notice that if k = 0, we can use the theory given in the lectures to get

A0 =
n∑

i=1

λ0
i Ei =

n∑

i=1

Ei = I,

as one might expect.) So, using this formula to substitute for [integer] powers of A in our expression
for eA, we get

eA =
n∑

i=1

Ei +
n∑

i=1

λiEi +
1
2!

n∑

i=1

λ2
i Ei +

1
3!

n∑

i=1

λ3
i Ei + · · ·

and gathering up the coefficients of each matrix Ei it should be clear that

eA =
n∑

i=1

[
1 + λi +

λ2
i

2!
+

λ3
i

3!
+ · · ·

]
Ei.

Thus, as the eigenvalues of an Hermitian matrix are all real, we can use the Taylor expansion of ex

given above to deduce that

eA =
n∑

i=1

eλiEi,

as required.

3If you don’t believe me see the Aside below.
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To verify that this function has the property that e2A = eAeA (which is analogous to the property
that e2x = exex when x ∈ R), we write

eAeA =

[
n∑

i=1

eλiEi

][
n∑

i=1

eλiEi

]
,

which on expanding yields

eAeA =
n∑

i=1

e2λiEi,

where we have used the fact that e2x = exex when x ∈ R.4 Now, clearly, if A is Hermitian with
eigenvalues λi and corresponding eigenvectors given by xi, then

Axi = λixi,

for 1 ≤ i ≤ n. But, this implies that the matrix 2A is Hermitian with eigenvalues 2λi and corre-
sponding eigenvectors given by xi, as

(2A)xi = (2λi)xi,

for 1 ≤ i ≤ n. Consequently, the right-hand-side of our expression for eAeA is just the spectral
decomposition of the matrix e2A and so

eAeA = e2A,

as required.

Aside: We want to prove that the spectral decomposition of an n × n normal matrix, A, has the
property that

Ak =
n∑

i=1

λk
i Ei,

where, as usual we take

A =
n∑

i=1

λiEi,

and the matrices Ei for 1 ≤ i ≤ n have the property that

EiEj =
{

Ei for i = j
0 for i 6= j

.

To do this, we can use induction on k:

• Induction Hypothesis: If A is an n× n normal matrix and k ≥ 1, then

Ak =
n∑

i=1

λk
i Ei,

where the relationship between A, λi and the matrices Ei for 1 ≤ i ≤ n is as described above.

• Basis: In the case where k = 1, the Induction Hypothesis just gives the spectral decomposition,
and so we have established the basis case.

• Induction Step: Suppose that the Induction Hypothesis is true for k. We want to show that

Ak+1 =
n∑

i=1

λk+1
i Ei.

4Recall that Hermitian matrices have real eigenvalues!
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To do this, we write Ak+1 as AkA and apply the Induction Hypothesis to get

Ak+1 = AkA =

[
n∑

i=1

λk
i Ei

][
n∑

i=1

λiEi

]
,

which, on expanding the right-hand-side and using the standard properties of the matrices Ei

gives

Ak+1 =
n∑

i=1

λk+1
i Ei,

which is what we were after.

Thus, by the Principle of Induction, if A is an n × n normal matrix as described above and k ≥ 1,
then

Ak =
n∑

i=1

λk
i Ei,

as required.

5. We are asked to establish that for any two matrices A and B, (AB)† = B†A†. To do this, we refer
to the (i, j)th element of the m× n matrix A (where i = 1, 2, . . . , m and j = 1, 2, . . . , n) as aij , and
the (i, j)th element of the n × r matrix B (where i = 1, 2, . . . , n and j = 1, 2, . . . , r) as bij . This
means that the ith row of the matrix A is given by the vector [ai1, ai2, . . . , ain] and the jth column
of the matrix B is given by the vector [b1j , b2j , . . . , bnj ]t. Thus, the (i, j)th element of the matrix AB
(for i = 1, 2, . . . ,m and j = 1, 2, . . . , r) will be given by

ai1b1j + ai2b2j + · · ·+ ainbnj .

Consequently, the (j, i)th element of the complex conjugate transpose of the matrix AB, i.e. (AB)†,
will be a∗i1b

∗
1j + a∗i2b

∗
2j + · · ·+ a∗inb∗nj .

On the other hand, the jth row of the matrix B† is given by the complex conjugate transpose of
the jth column vector of B, i.e. [b∗1j , b

∗
2j , . . . , b

∗
nj ], and the ith column of the matrix A† is given by

the complex conjugate transpose of the ith row vector of A, i.e. [a∗i1, a
∗
i2, . . . , a

∗
in]t. Thus, the (j, i)th

element of the matrix B†A† will be given by

b∗1ja
∗
i1 + b∗2ja

∗
i2 + · · ·+ b∗nja

∗
in,

which is the same as above. Thus, as the (j, i)th elements of the matrices (AB)† and B†A† are equal
(for all i = 1, 2, . . . , m and j = 1, 2, . . . , r), (AB)† = B†A† as required.

In particular, notice that if A and B are real matrices, then A∗ = A, B∗ = B and (AB)∗ = AB.
This means that using this rule we have (AB)† = B†A†, implying [(AB)∗]t = (B∗)t(A∗)t, and hence
(AB)t = BtAt as required.

6. We are allowed to assume that if A is an n×n matrix with complex entries, then det(A∗) = det(A)∗.
For such a matrix, we are then asked to prove that det(A†) = det(A)∗. This is easy because we know
that det(A) = det(At)5 and so using these two results:

det(A†) = det((At)∗) = det(At)∗ = det(A)∗,

as required.
To establish the other two results, we use this new result. Firstly, if A is Hermitian, we want to

show that det(A)∗ is real. So, as A is Hermitian,

A = A† =⇒ det(A) = det(A†) =⇒ det(A) = det(A)∗,

5This is obvious as we can expand a determinant along any row or column to get the answer.
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but this means that det(A) is equal to its complex conjugate and so it is real (as required). Secondly,
if A is unitary, we want to show that | det(A)| = 1. So, as A is unitary, AA† = I and consequently,

det(AA†) = det(I) ⇒ det(A) det(A†) = 1 ⇒ det(A) det(A)∗ = 1 ⇒ |det(A)|2 = 1 ⇒ |det(A)| = 1,

as required.
When A is a real n × n matrix, we note that A = A∗ and the determinant of a real matrix is

obviously real, i.e. det(A) = det(A)∗. Thus, the result at the beginning is trivial as det(A∗) =
det(A) = det(A)∗, and so the corresponding result is det(A) = det(A) [!]. The first theorem then
gives

det(A†) = det(A)∗ =⇒ det([A∗]t) = det(A) =⇒ det(At) = det(A),

[which we knew already]. Now, as an Hermitian matrix, A with real entries is symmetric (i.e.
A = A† = (A∗)t = At) and det(A)∗ = det(A), the second theorem becomes: if A is symmetric, then
det(A) is real [obvious as det(A) is always real if A is real]. Whilst, as a unitary matrix, A with real
entries is orthogonal (i.e. I = AA† = A(A∗)t = AAt), the third theorem becomes: if A is orthogonal,
then | det(A)| = 1 [which is not unexpected, but at least we have seen it now].

7. We are asked to prove the following theorems. Firstly,

Theorem: If A is invertible, then so is A†. In particular, (A†)−1 = (A−1)†.

Proof: As the matrix A is invertible, there is a matrix A−1 such that AA−1 = I. Taking
the complex conjugate transpose, this gives

(AA−1)† = I† ⇒ (A−1)†A† = I,

and so there exists a matrix, namely (A−1)†, which acts as the inverse of A† and so A† is
invertible, as required. In particular, as A† is invertible, there is a matrix (A†)−1 such that
(A†)−1A† = I. Taking this and the last part of the previous calculation, on subtracting
we get:

[(A−1)† − (A†)−1]A† = 0,

where the right-hand-side is the zero matrix. Now, multiplying both sides by (A†)−1 (say)
and rearranging, we get (A−1)† = (A†)−1 as required.

Secondly,

Theorem: If A is a unitary matrix, then A† is unitary too.

Proof: As the matrix A is unitary, AA† = I. But, we know that (A†)† = A and so, on
substitution, we get (A†)†(A†) = I which entails that A† is unitary, as required.

Harder Problems.

Here are the solutions for the harder problems. Again, as these were not covered in class the solutions
will be a bit more detailed.

8. We are asked to prove that an n × n matrix, A with complex entries is unitary iff its column
vectors form an orthonormal set in Cn with the [complex] Euclidean inner product (i.e. the inner
product where for two vectors x = [x1, x2, . . . , xn]t and y = [y1, y2, . . . , yn]t we have 〈x,y〉 = x1y

∗
1 +

x2y
∗
2 + · · ·+ xny∗n). To do this, we denote the column vectors of the matrix A by e1, e2, . . . , en, and

follow the observation in Question 1, i.e.

A†A =




— e†1 —

— e†2 —
...

— e†n —





 e1 e2 · · · en


 =




e†1e1 e†1e2 · · · e†1en

e†2e1 e†2e2 · · · e†2en
...

...
. . .

...
e†ne1 e†ne2 · · · e†nen




.
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Then, as we are using the (complex) Euclidean inner product, we note that x†y = 〈x,y〉∗, and so

A†A =




〈e1, e1〉∗ 〈e1, e2〉∗ · · · 〈e1, en〉∗
〈e2, e1〉∗ 〈e2, e2〉∗ · · · 〈e2, en〉∗

...
...

. . .
...

〈en, e1〉∗ 〈en, e2〉∗ · · · 〈en, en〉∗


 .

Thus, clearly, A†A = I iff the vectors e1, e2, . . . , en form an orthonormal set, i.e. A is unitary iff the
column vectors of A form an orthonormal set (as required).

9. We are asked to prove that if A = A†, then for every vector in Cn, the entry in the 1× 1 matrix
x†Ax is real. To do this, we let P be the 1× 1 matrix given by x†Ax. This means that

P† = (x†Ax)† =⇒ P† = x†(x†A)† =⇒ P† = x†A†x.

But, as A is Hermitian, A = A† and so P = P†. Then, as P is a 1 × 1 matrix we have P = Pt,
which means that P = P† implies P = P∗. Consequently, the single element in P = x†Ax is real (as
required).

10. Suppose that λ and µ are distinct eigenvalues of a Hermitian matrix A. We are asked to prove
that if x is an eigenvector corresponding to λ and y is an eigenvector corresponding to µ, then

x†Ay = λx†y and x†Ay = µx†y.

To do this,6 we note that, by stipulation,

Ax = λx and Ay = µy,

and so, clearly, taking the second of these and multiplying both sides by x†, we get x†Ay = µx†y (as
required). Also, we can see that taking the first of these and multiplying both sides by y† we get

y†Ax = λy†x.

Thus, taking the complex conjugate transpose of this expression we get

(y†Ax)† = (λy†x)† =⇒ x†(y†A)† = λ∗(y†x)† =⇒ x†A†y = λ∗x†y,

and so as A is Hermitian, A† = A and λ∗ = λ,7 which means that x†Ay = λx†y (as required).
We are then asked to use this result to prove that if A is a normal matrix, then the eigenvectors

from different eigenspaces are orthogonal. But, clearly, we are not entitled to use this result because
not all normal matrices are Hermitian.8 Consequently, the book I stole this question from is being a
bit optimistic, as although the previous result does hold for normal matrices, we have yet to establish
it. So, let us start by proving this result for normal matrices. We shall then discuss what is meant
by ‘the eigenvectors from different eigenspaces are orthogonal’ as this was not really mentioned in
the lectures and you may not know what you are being asked to prove [!]. Then we shall prove the
result in question9

So, let us start by showing that if A is a normal matrix with eigenvectors x and y corresponding
to distinct eigenvalues λ and µ, then

x†Ay = λx†y and x†Ay = µx†y.

6Some of you may think that there is an error in this question as these formulae seem to imply that λ = µ contrary
to the assumption that λ 6= µ. But, this is clearly not the case since distinct eigenvalues of a Hermitian matrix have
orthogonal eigenvectors and so, as this entails that x†y = 0 we should not conclude that λ = µ.

7Recall that Hermitian matrices have real eigenvalues.
8For example, anti-Hermitian matrices (i.e. matrices such that A† = −A) are normal (as AA† = −A2 = A†A) but

are clearly not Hermitian.
9Although once we have done the other two things this is very quick!
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To do this, we [again] note that, by stipulation,

Ax = λx and Ay = µy,

and so, clearly, taking the second of these and multiplying both sides by x†, we get x†Ay = µx†y
(as required).10 However, the other result is harder to prove because, in general, normal matrices do
not have real eigenvalues11 and so we cannot proceed as we did in the earlier proof. Indeed, to prove
the remaining result we have to establish the following two results:

Lemma: If A is a normal matrix, then A− λI is a normal matrix too.

Proof: We need to establish that A− λI is a normal matrix, to do this we observe that

(A− λI)†(A− λI) = (A† − λ∗I)(A− λI) = A†A− λ∗A− λA† + λ∗λI,

and
(A− λI)(A− λI)† = (A− λI)(A† − λ∗I) = AA† − λA† − λ∗A + λλ∗I.

Then, on subtracting these two results we find that

(A− λI)†(A− λI)− (A− λI)(A− λI)† = A†A− AA† = 0,

because the matrix A is normal. Consequently, rearranging this we get

(A− λI)†(A− λI) = (A− λI)(A− λI)†,

and so A− λI is normal, as required.

and

Lemma: If A is a normal matrix and x is an eigenvector corresponding to the eigenvalue
λ, then A†x = λ∗x.

Proof: As x is an eigenvector of the normal matrix A corresponding to the eigenvalue λ,
we know that

(A− λI)x = 0,

and multiplying both sides of this expression by x†(A− λI)† we get

x†(A− λI)†(A− λI)x = 0.

But, by the previous lemma, the matrix A−λI is normal too, and so this is equivalent to

x†(A− λI)(A− λI)†x = 0,

which, on using the (AB)† = B†A† rule becomes

[
(A− λI)†x

]† [
(A− λI)†x

]
= 0.

This, in turn, entails that12

(A− λI)†x = 0,

i.e. A†x = λ∗x, as required.13

10This obviously holds for all square matrices!
11For instance, recall that unitary matrices, which are themselves normal, generally have complex eigenvalues (al-

though as we saw in Question 2, these eigenvalues have a modulus of one).
12Bear in mind that (A− λI)†x will be a vector, and so the left-hand-side of the previous expression is effectively the

inner product of this vector with itself.
13That is, when considering the complex conjugate transpose of a normal matrix A, the eigenvectors of A remain

unchanged, but the eigenvalues are complex conjugated. Thus, our theorem about the eigenvalues of an Hermitian
matrix being real follows almost immediately from this result.
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Now that we have the result of this lemma, we multiply both sides by y† and take the complex
conjugate transpose of both sides as before, i.e.

(y†A†x)† = (λ∗y†x)† =⇒ x†(y†A†)† = λ(y†x)† =⇒ x†Ay = λx†y,

as required.
Now, the eigenspace of A corresponding to the eigenvalue λ is the vector space spanned by

the eigenvectors corresponding to λ. But, before we can proceed, we must bear in mind that the
eigenspace in question may not be one-dimensional. That is, if we have an eigenvalue of A which is
of multiplicity r, then we will find at most r linearly independent eigenvectors x1,x2, . . . ,xr corre-
sponding to this eigenvalue. Thus, in this case, the eigenspace of A corresponding to the eigenvalue
λ will be given by Lin{x1,x2, . . . ,xr}.14 However, no matter how many eigenvectors are associated
with a given eigenvalue, they must all satisfy the equation Axi = λxi (for i = 1, 2, . . . , r) and be
non-zero.

Thus, as you may have suspected, the theorem that we have been asked to prove is really just:
if A is a normal matrix with distinct eigenvalues λ and µ, then eigenvectors corresponding to these
eigenvalues are orthogonal. So, to prove this, we just subtract the two results that we proved above
to get

(λ− µ)x†y = 0,

and as λ 6= µ, x†y = 〈x,y〉 = 0, which implies that these eigenvectors are orthogonal, as required.15

14As mentioned in the question, eigenspaces are subspaces of Cn (if A is an n × n matrix). This can be seen either
by noting that the eigenspace corresponding to the eigenvalue λ is the null-space of the matrix A−λI, or directly using
Theorem 2.4. Alternatively, you can amuse yourself by showing that the eigenspace is closed under scalar multiplication
and vector addition, as demanded by Theorem 1.4.

15I told you that it would be quick! Incidentally, this is what the question I told you about hinted at. Obviously, it
was being very optimistic...
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