
Further Mathematical Methods (Linear Algebra)

Solutions For Problem Sheet 8

In this sheet, we looked at orthogonal projections and how to analyse sets of data using least squares
fits. These latter questions were all fairly easy as they just involved ‘number crunching’.

1. Let X be the subspace of R3 spanned by the vectors [1, 2, 3]t and [1, 1,−1]t. We are asked to find
a matrix P such that Px is the orthogonal projection of x ∈ R3 onto X. To do this, we recall from
the lectures that:

If A is an m× n matrix of rank n, then the orthogonal projection onto R(A) is given by
P = A(AtA)−1At.

and so if we can find a matrix A such that R(A) = X, then the matrix which we seek will be

P = A(AtA)−1At.

So, since R(A) = CS(A), a suitable matrix would be

A =




1 1
2 1
3 −1


 ,

as this has rank two (since the vectors [1, 2, 3]t and [1, 1,−1]t are linearly independent) and R(A) = X.
Thus, the desired orthogonal projection is given by

AtA =
[
1 2 3
1 1 −1

]


1 1
2 1
3 −1


 =

[
14 0
0 3

]
=⇒ (AtA)−1 =

1
42

[
3 0
0 14

]
,

and so,

(AtA)−1At =
1
42

[
3 0
0 14

] [
1 2 3
1 1 −1

]
=

1
42

[
3 6 9
14 14 −14

]
.

Thus, the matrix

P = A(AtA)−1At =
1
42




1 1
2 1
3 −1




[
3 6 9
14 14 −14

]
=

1
42




17 20 −5
20 26 4
−5 4 41


 ,

will give us the sought after orthogonal projection onto X.

Note: We can check that this matrix does represent an orthogonal projection since it is clearly
symmetric (i.e. Pt = P) and it is also idempotent as

P2 = PP =
1

422




17 20 −5
20 26 4
−5 4 41







17 20 −5
20 26 4
−5 4 41


 =

1
42




17 20 −5
20 26 4
−5 4 41


 = P.

Indeed, if you are really keen, you can check that this matrix represents an orthogonal projection
onto X by noting that for any vector x ∈ R3 we have

42Px =




17 20 −5
20 26 4
−5 4 41







x1

x2

x3


 = x1




17
20
−5


 + x2




20
26
4


 + x3



−5
4
41


 ,

and showing that the set of vectors Lin{[17, 20,−5]t, [20, 26, 4]t, [−5, 4, 41]t} = X, as this will imply
that the vector Px is in X. (This can be done, for instance, by using these vectors to form the rows
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of a matrix and then performing row operations on this matrix until its rows give you a set of vectors
that clearly spans X.)1

2. We are given a real n × n matrix A which is orthogonally diagonalisable, i.e. there exists an
orthogonal matrix P such that

PtAP = D,

where D is a diagonal matrix made up from the eigenvalues of A and we are told that all of the
eigenvalues and eigenvectors of this matrix are real. The orthogonal matrix P has column vectors
given by the orthonormal set of vectors S = {x1,x2, . . . ,xn} where xi is the eigenvector corresponding
to the eigenvalue λi, i.e. Axi = λixi. As such, we have PPt = I and so, writing this out in full we
have:

I =




x1 x2 · · · xn







—— xt
1 ——

—— xt
2 ——
...

—— xt
n ——


 ,

which can be multiplied out to give (see the aside at the end of this question),

I = x1xt
1 + x2xt

2 + · · ·+ xnxt
n.

(Notice, that this is a spectral decomposition of the identity matrix.)2 Then, multiplying both sides
of this expression by A, we get

A = Ax1xt
1 + Ax2xt

2 + · · ·+ Axnxt
n,

which gives
A = λ1x1xt

1 + λ2x2xt
2 + · · ·+ λnxnxt

n.

Thus, defining the n× n matrix Ei to be such that Ei = xixt
i we get

A = λ1E1 + λ2E2 + · · ·+ λnEn,

which is a spectral decomposition of A.

To prove that the matrices Ei are such that

EiEj =

{
Ei if i = j

0 if i 6= j

we note that, by definition,
EiEj = xixt

ixjxt
j = 〈xi,xj〉xixt

j ,

where we have used our convention. Thus, as S is an orthonormal set, we have

〈xi,xj〉 =

{
1 if i = j

0 if i 6= j

and so,

EiEj =

{
1 · xixt

i if i = j

0 · xixt
j if i 6= j

which means that,

EiEj =

{
Ei if i = j

0 if i 6= j

where 0 is the n× n zero matrix (as required).

To show that the matrix Ei represents an orthogonal projection we note that since:
1But, life is too short.
2The identity matrix has λ = 1 (multiplicity n) as its eigenvalues. Also, each of the xi will be an eigenvector of the

identity matrix corresponding to this eigenvalue since Ixi = 1 · xi.
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• E2
i = EiEi = Ei (from above), the matrix Ei is idempotent and as such it represents a projection.

• Et
i = (xixt

i)
t = xixt

i = Ei, the matrix Ei is symmetric and so it represents an orthogonal
projection.

Thus, Ei represents an orthogonal projection (as required). Now, we know from the lectures that S
is a basis for Rn and so, any vector x ∈ Rn can be written as

x =
n∑

j=1

αjxj ,

which means that as Ei = xixt
i, and the vectors in S are orthonormal, we have

Eix =
n∑

j=1

αjEixj =
n∑

j=1

αj(xixt
i)xj =

n∑

j=1

αjxi(xt
ixj) =

n∑

j=1

αj〈xi,xj〉xi = αixi,

i.e. Ei orthogonally projects any vector in Rn onto Lin{xi} (as required). Consequently, we can see
that

Ax =
n∑

i=1

λiEix =
n∑

i=1

λiαixi,

and so the linear transformation represented by A takes the ‘component’ of x in the direction of each
eigenvector (i.e. αixi for each eigenvector xi) and multiplies it by a factor given by the corresponding
eigenvalue. (For example, if λi > 1, then the vector αixi is ‘stretched’ [or ‘dilated’] by a factor of λi.)
So, basically, the spectral decomposition allows us to describe linear transformations in terms of the
sum of the ‘components’ of a vector in the direction of each eigenvector scaled by the appropriate
eigenvalue. A simple illustration of this is given in Figure 1.

α x2 2

α x11

x2

x1

α x2 2λ2

α x11λ1
0 0

x x

Ax

Figure 1: This figure illustrates the results of Question 2 in R2. Notice that the eigenvectors x1 and
x2 are orthogonal (i.e. perpendicular) and have the same [i.e. unit] length. In the left-hand diagram
we see that the vector x = α1x1 + α2x2 can be decomposed into ‘components’ α1x1 and α2x2 in the
directions of the eigenvectors x1 and x2 respectively. Indeed, these two ‘components’ are given by
E1x and E2x [respectively]. In the right-hand diagram, the two ‘components’ have been multiplied
by the relevant eigenvalue (notice that 0 ≤ λ1 ≤ 1 and λ2 ≥ 1) and the sum of these new vectors
gives us the vector Ax as expected from the theory above.

Aside: You may be surprised that the matrix product PPt can be multiplied out to give:

PPt =




x1 x2 · · · xn







—— xt
1 ——

—— xt
2 ——
...

—— xt
n ——


 = x1xt

1 + x2xt
2 + · · ·+ xnxt

n,

3



a fact which we have just used in both the lectures and the previous question. I will not justify this
in any general way, but I will show why it holds in the case where P is a 3× 3 matrix. To see this,
suppose that the vectors x1,x2,x3 which constitute the columns of the matrix P are given by,

x1 =




x11

x12

x13


 , x2 =




x21

x22

x23


 , and x3 =




x31

x32

x33


 .

That is, the matrix product PPt is given by,

PPt =




x11 x21 x31

x12 x22 x32

x13 x23 x33







x11 x12 x13

x21 x22 x23

x31 x32 x33


 ,

and multiplying these two matrices together yields,

PPt =




∑
xi1xi1

∑
xi1xi2

∑
xi1xi3∑

xi2xi1
∑

xi2xi2
∑

xi2xi3∑
xi3xi1

∑
xi3xi2

∑
xi3xi3


 ,

where all of these summations run from i = 1 to 3. However, as we can add matrices by adding their
corresponding elements, this is the same as

PPt =




x11x11 x11x12 x11x13

x12x11 x12x12 x12x13

x13x11 x13x12 x13x13


 +




x21x21 x21x22 x21x23

x22x21 x22x22 x22x23

x23x21 x23x22 x23x23


 +




x31x31 x31x32 x31x33

x32x31 x32x32 x32x33

x33x31 x33x32 x33x33


 ,

which, you will notice, is just

PPt =




x11

x12

x13


 [

x11 x12 x13

]
+




x21

x22

x23


 [

x21 x22 x23

]
+




x31

x32

x33


 [

x31 x32 x33

]
,

i.e. we have,
PPt = x1xt

1 + x2xt
2 + x3xt

3,

if P is a 3× 3 matrix, as desired.

Note: In the solutions to Questions 3 to 7 we start by considering the system of equations which the
data would ‘ideally’ satisfy. That is, if there were no errors in the data, then given a rule with certain
parameters, we would expect to get values for these parameters which were solutions to this system
of equations. However, as there are errors in the data, this system of equations will be inconsistent,
and hence we will be unable to solve them for the parameters. This is why we look for a least squares
fit! The values of the parameters that we find using this analysis are the ones that minimise the
least squares error between the rule and the data. (Notice that, in general, these parameters will not
satisfy any of the equations that the data would ‘ideally’ satisfy.)3

3. The quantities x and y are related by a rule of the form y = ax + b for some constants a and b.
We are given some data, i.e.

x 1 2 3 4
y 5 3 2 1

3Indeed, this raises an interesting question: Do we need to check that each system of equations is actually inconsistent
before we apply this method? The answer is, of course, no. In the unlikely event (‘unlikely’ because surely no-one
would set a ‘least squares’ question that can be solved without using a least squares analysis) that the equations are
consistent (that is, in the case where the error terms are all zero), the least squares solution will still give the correct
answer. This is because, in such a situation, the least squares solution x∗ = (AtA)−1Atb will give the unique solution
to the set of equations that the data satisfy. To see why, look at Question 8. (For a further illustration of this idea, see
the remarks following Questions 5 and 7.
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and asked to find the least squares estimate of the parameters a and b in the rule above. To do this,
we note that ideally4 a and b would satisfy the system of equations

a + b = 5
2a + b = 3
3a + b = 2
4a + b = 1

and writing them in matrix form, i.e. setting

A =




1 1
2 1
3 1
4 1


 , x =

[
a
b

]
and b =




5
3
2
1


 ,

we let Ax = b, so that we can use the fact that x∗ = (AtA)−1Atb gives a least squares solution to
this system. Then, as

AtA =
[

1 2 3 4
1 1 1 1

]



1 1
2 1
3 1
4 1


 =

[
30 10
10 4

]
=⇒ (AtA)−1 =

1
20

[
4 −10
−10 30

]
,

and

Atb =
[

1 2 3 4
1 1 1 1

]



5
3
2
1


 =

[
21
11

]
=⇒ x∗ =

1
20

[
4 −10
−10 30

] [
21
11

]
=

1
10

[ −13
60

]
,

the required least squares estimates are a∗ = −1.3 and b∗ = 6.5

4. The quantities x and y are known to be related by a rule of the form

y =
m

x
+ c,

for some constants m and c. We are given some data, and as we need to fit this data to a curve
containing a 1/x term, it is convenient to supplement the table of data with an extra row, i.e.

x 1/5 1/4 1/3 1/2 1
1/x 5 4 3 2 1
y 4 3 2 2 1

Now, to find the least squares estimate of m and c in the rule above, we note that ideally6 these
parameters would satisfy the system of equations

5m + c = 4
4m + c = 3
3m + c = 2
2m + c = 2
m + c = 1

4As noted above, I say ideally as these equations are inconsistent. (Again, this is why we are looking for a least
squares solution!) We can see that they are inconsistent as subtracting the first two equations gives a = −2, and
hence b = 7. But this solution satisfies neither the third equation (as −6 + 7 = 1 6= 2), nor the fourth equation (as
−8 + 7 = −1 6= 1).

5Thus, putting these values into the rule, we see that

y = −1.3x + 6,

is the curve which minimises the least square error between the rule and the data. Notice that this line has a negative
gradient as one might expect from the data (i.e. as x increases, y decreases!).

6As noted above, I say ideally as these equations are inconsistent. We can see that this is the case because the third
and fourth equations imply that m = 0, and hence c = 2, but this ‘solution’ fails to satisfy any of the three remaining
equations.
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So, writing them in matrix form, i.e. setting

A =




5 1
4 1
3 1
2 1
1 1




, x =
[

m
c

]
and b =




4
3
2
2
1




,

and letting Ax = b, we can use the fact that x∗ = (AtA)−1Atb gives a least squares solution to this
system. Then, as

AtA =
[

5 4 3 2 1
1 1 1 1 1

]



5 1
4 1
3 1
2 1
1 1




=
[

55 15
15 5

]
=⇒ (AtA)−1 =

1
50

[
5 −15
−15 55

]
,

and

Atb =
[

5 4 3 2 1
1 1 1 1 1

]



4
3
2
2
1




=
[

43
12

]
=⇒ x∗ =

1
50

[
5 −15
−15 55

] [
43
12

]
=

1
50

[
35
15

]
,

the required least squares estimates are m∗ = 0.7 and c∗ = 0.3.7

We are also asked why it would be wrong to suppose that this was equivalent to the problem of
fitting a curve of the form

z = xy = cx + m,

through the data points (xy, x). The reason why this supposition would be wrong is that in the
problem which we solved, we effectively introduced an error term r which made the matrix equation
Ax = b consistent. That is, the system of equations represented by the matrix equation

Ax = b− r,

would have solutions that corresponded to the values of the parameters for the data in question.
However, as we are ignorant of the values which the components of r take, we have to content
ourselves with finding the values of the parameters which minimise the least squares error given by
‖r‖. Due to the way that this is set up, each component of the vector r is the ‘vertical distance’
between a data point and a curve given by the rule. Thus, when we find the curve that minimises
the least squares error, we are therefore just minimising the sum of the squares of these ‘vertical
distances.’ Now, when we adopt the rule

z = xy = cx + m,

through the data points (xy, x), although this is algebraically the same, the errors that we introduce
will not be the vertical distances between the data points and the curve y = m

x +c, but those between
the data points (z, x) and the curve z = cx + m. So, as this transformation of the data points alters
the ‘distances’ that we are trying to minimise, it will alter the least squares fit that we find.

7Thus, putting these values into the rule, we see that

y =
7

10

1

x
+

3

10
,

is the curve which minimises the least square error between the rule and the data.
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5. We are asked to find the least squares fit of the form y = m∗x + c∗ through the data points
(x1, y1), (x2, y2), . . . , (xn, yn). To do this, we use the matrix approach developed in the lectures to
show that the parameters m∗ and c∗ are given by

m∗ =
n

∑
xiyi − (

∑
xi)(

∑
yi)

n
∑

x2
i − (

∑
xi)2

and c∗ =
(
∑

yi)(
∑

x2
i )− (

∑
xi)(

∑
xiyi)

n
∑

x2
i − (

∑
xi)2

,

where all summations in these formulae run from i = 1 to n. In this general case, the parameters
would ideally8 satisfy the system of equations

c + x1m = y1

c + x2m = y2
...

c + xnm = yn

and writing them in matrix form, i.e. setting

A =




1 x1

1 x2
...

...
1 xn


 , x =

[
c
m

]
and b =




y1

y2
...

yn


 ,

and letting Ax = b, we can use the fact that x∗ = (AtA)−1Atb gives a least squares solution to this
system. So, noting that all of the summations below will run from i = 1 to n, we get

AtA =
[

1 1 · · · 1
x1 x2 · · · xn

]



1 x1

1 x2
...

...
1 xn


 =

[
n

∑
xi∑

xi
∑

x2
i

]

=⇒ (AtA)−1 =
1

n
∑

x2
i − (

∑
xi)2

[ ∑
x2

i −∑
xi

−∑
xi n

]
,

and

Atb =
[

1 1 · · · 1
x1 x2 · · · xn

]



y1

y2
...

yn


 =

[ ∑
yi∑

xiyi

]

=⇒ x∗ =
1

n
∑

x2
i − (

∑
xi)2

[ ∑
x2

i −∑
xi

−∑
xi n

] [ ∑
yi∑

xiyi

]

∴ x∗ =
[

c∗

m∗

]
=

1
n

∑
x2

i − (
∑

xi)2

[ (∑
x2

i

)
(
∑

yi)− (
∑

xi) (
∑

xiyi)
− (

∑
xi) (

∑
yi) + n

∑
xiyi

]
,

which gives the desired result.

Remark: As we have mentioned above, if the data was free from error, and as such, the data
points were all on the curve in question, then the above system of equations would be consistent.
Consequently, it would be easy to solve them for the parameters m and c. But, just for the sake of
completeness, we will now show that the above result will also give this answer. To do this, let us

8As this is a least squares fit question we assume that the data points are such that these equations are inconsistent.
(But, also see the remark below.)
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assume that we have solved the [now] consistent set of equations and found the parameters to be m
and c. This means that each data point (xi, yi) would satisfy the equation yi = mxi + c, and as such,
our result becomes

x∗ =
1

n
∑

x2
i − (

∑
xi)2

[ (∑
x2

i

)
(
∑{mxi + c})− (

∑
xi) (

∑
xi{mxi + c})

− (
∑

xi) (
∑{mxi + c}) + n

∑
xi{mxi + c}

]

=
1

n
∑

x2
i − (

∑
xi)2

[
m

(∑
x2

i

)
(
∑

xi) + c
(∑

x2
i

)
(
∑

1)−m (
∑

xi)
(∑

x2
i

)− c (
∑

xi)
2

−m (
∑

xi)
2 − c (

∑
xi) (

∑
1) + nm

(∑
x2

i

)
+ nc

∑
xi

]

=
1

n
∑

x2
i − (

∑
xi)2

[
cn

∑
x2

i − c(
∑

xi)2

−m(
∑

xi)2 + nm
∑

x2
i

]
:Using the fact that

∑
1 = n

=⇒ x∗ =
[

c
m

]
,

as expected.

Other Problems.

Here are the solutions to the other questions on the analysis of data sets using least squares fits that
you might have tried.

6. An input variable θ and a response variable y are related by a law of the form

y = a + b cos2 θ,

where a and b are constants. The observation of y is subject to error, and we are asked to use the
following data to estimate a and b using the method of least squares. As we need to fit this data to
a curve containing a cos2 θ term, it is convenient to supplement the table of data with a couple of
rows, i.e.

θ 0 π/6 π/4 π/3 π/2
cos θ 1

√
3/2 1/

√
2 1/2 0

cos2 θ 1.00 0.75 0.50 0.25 0.00
y 4.1 3.4 2.7 2.1 1.6

We now note that ideally,9 the parameters a and b would satisfy the system of equations

a + 1.00b = 4.1
a + 0.75b = 3.4
a + 0.50b = 2.7
a + 0.25b = 2.1
a + 0.00b = 1.6

and writing them in matrix form, i.e. setting

A =




1 1.00
1 0.75
1 0.50
1 0.25
1 0.00




, x =
[

a
b

]
and b =




4.1
3.4
2.7
2.1
1.6




,

9As noted above, I say ideally as these equations are inconsistent. We can see that this is the case because the last
equation implies that a = 1.6, and so the first equation gives b = 2.5, but this ‘solution’ fails to satisfy any of the three
remaining equations.
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and letting Ax = b, we can use the fact that x∗ = (AtA)−1Atb gives a least squares solution to this
system. So, as

AtA =
[

1 1 1 1 1
1.00 0.75 0.50 0.25 0.00

]



1 1.00
1 0.75
1 0.50
1 0.25
1 0.00




=
[

5 2.50
2.50 1.875

]

=⇒ (AtA)−1 =
1

3.125

[
1.875 −2.50
−2.50 5

]
=

[
0.6 −0.8
−0.8 1.6

]
,

and

Atb =
[

1 1 1 1 1
1.00 0.75 0.50 0.25 0.00

]



4.1
3.4
2.7
2.1
1.6




=
[

13.9
8.525

]

=⇒ x∗ =
[

0.6 −0.8
−0.8 1.6

] [
13.9
8.525

]
=

[
1.52
2.52

]
,

the required least squares estimates are a∗ = 1.52 and b∗ = 2.52.10

7. We are asked to find the least squares solution to the system given by x1 = a1, a2, . . . , an. The
notation in this question is a bit misleading (and often leads to confusion), but essentially all we
have is a single variable x1 which is found to be equal to n constants a1, a2, . . . , an. So, ideally,11 we
would be able to find a value of x1 such that

x1 = a1

x1 = a2
...

x1 = an

and writing these in matrix form, i.e. setting

A =




1
1
...
1


 , x = [x1] and b =




a1

a2
...

an


 ,

and letting Ax = b, we can use the fact that x∗ = (AtA)−1Atb gives a least squares solution to this
system. So, as

AtA =
[

1 1 · · · 1
]



1
1
...
1


 = [n] =⇒ (AtA)−1 =

[
1
n

]
,

10Thus, putting these values into the rule, we see that

y = 1.52 + 2.52 cos2 θ,

is the curve which minimises the least square error between the rule and the data.
11As this is a least squares fit question we assume that the data points are such that these equations are inconsistent,

i.e. at least two of the ai are distinct. (But, also see the remark below.)
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and

Atb =
[

1 1 · · · 1
]



a1

a2
...

an


 =

[
n∑

i=1

ai

]
=⇒ x∗ =

[
1
n

n∑

i=1

ai

]
,

the least squares solution is

x∗1 =
1
n

n∑

i=1

ai,

and this is just the average of the ai for 1 ≤ i ≤ n.12

Remark: If the ai were all equal, say a1 = a2 = · · · = an = a, then this system of equations would
be consistent, and the solution would be [unsurprisingly] x1 = a. As before, our least squares result
can also be used to get this answer, because in this case

x∗1 =
1
n

n∑

i=1

a =
1
n

na = a,

as expected.

8. We are asked to show that

If Ax = b is consistent, then every solution of AtAx = Atb also solves the original matrix
equation.

So, we are given that the matrix equation Ax = b is consistent, i.e. there are vectors x which satisfy
it. Let us take y to be such a vector, i.e. Ay = b. To show that this result is true, we have to show
that if the vector x is a solution of the matrix equation

AtAx = Atb,

then x is a solution of the original matrix equation, i.e. Ax = b too. This can be done by noting
that we can write

AtAx = Atb as At(Ax− b) = 0,

and as we have Ay = b for some vector y (since this matrix equation is assumed to be consistent)
we have

AtA(x− y) = 0,

i.e. the vector x− y ∈ N(AtA). However, we can see that N(AtA) = N(A) since13

• For any u ∈ N(AtA), we have AtAu = 0 which means that

utAtAu = 0 =⇒ (Au)tAu = 0 =⇒ 〈Au,Au〉 = 0,

using our convention. Thus, ‖Au‖2 = 0 and so we have Au = 0, i.e. u ∈ N(A). Consequently,
N(AtA) ⊆ N(A).

• For any u ∈ N(A), we have Au = 0 and so, AtAu = 0 too. Consequently, N(A) ⊆ N(AtA).

12Incidentally, if we are trying to fit a constant function to the data, this is the one which will minimise the least
square error. (Notice that the right-hand-side of this expression is a constant for any given set of data!)

13Compare this with the proof that N(At) = N(AAt) given in the lectures. (This is in the proof of ρ(A) = ρ(AtA) =
ρ(AAt) for any real matrix A.) Notice that substituting At for A in this result would also have given the result needed
for this question!
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and so we have x − y ∈ N(A). Thus, for some vector z ∈ N(A) we have x − y = z, and so our
solution to the matrix equation

AtAx = Atb,

is x = y + z for some y and z such that Ay = b and Az = 0 respectively. Consequently, we now
note that this vector x is also a solution to the original matrix equation since

Ax = A(y + z) = Ay + Az = b + 0 = b,

as required.14

This result is important in the context of the least squares analyses considered in this problem sheet
since it guarantees that: If the matrix equation Ax = b is consistent (i.e. there are no errors in the
data), then any solution to the matrix equation

AtAx = Atb,

will have to be the unique solution given by

x = (AtA)−1Atb,

(as the matrix AtA is assumed to be invertible in such least squares analyses), and the result that
we have just proved guarantees that this will also be a solution of Ax = b. That is, if there are no
errors, then such a least squares analysis will still give the right solution as suggested in Footnote 3.

Note: Once we have established that x − y ∈ N(A) in the proof of this result, the following steps
should be obvious since we know that the solution set of the matrix equation Ax = b is just the
affine set given by

{x |Ax = b} = {y + z |Ay = b and z ∈ N(A)},
i.e. the solution set is just the translate of N(A) by the vector y. (See Figure 2.)

Solution set of Ax=b

N( A)

0

z

y

y+z

Figure 2: Any vector that differs from a solution to the matrix equation Ax = b, say y, by a vector
z ∈ N(A), is also a solution to this matrix equation. (Notice that the solution set of the matrix
equation Ax = b is just the affine set given by the translate of N(A) by y.)

14Notice that arguing that

AtAx = Atb =⇒ Ax = b,

is not sufficient to establish this result since it assumes that the matrix At is invertible and this may not be the case.
Indeed, the matrix At may not even be square!
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Remark: A simpler proof of the result in this question can be obtained by noting that since

At(Ax− b) = 0,

the vector given by Ax− b is in the null space of At. However, we know that:

• N(At) = R(A)⊥ and so, we have Ax− b ∈ R(A)⊥.

• The matrix equation Ax = b is assumed to be consistent and so b ∈ R(A). But, the vector
given by Ax is in the range of A as well. So, as R(A) is closed under vector addition (since it
is a subspace), we have Ax− b ∈ R(A) too.

So, as the vector Ax−b is in both R(A) and R(A)⊥, we have Ax−b ∈ R(A)∩R(A)⊥. Consequently,
as we know that a subspace and its orthogonal complement can be used to form a direct sum, we
have

R(A)⊕R(A)⊥ and hence, R(A) ∩R(A)⊥ = {0},
i.e. it must be the case that Ax− b = 0. Hence, any vector x satisfying the matrix equation

At(Ax− b) = 0,

will also satisfy the matrix equation Ax = b (as required).

Harder problems

Here are the solutions for the Harder Problems. As these were not covered in class the solutions will
be a bit more detailed.

9. Let X be a subspace of the vector space V and let P denote the orthogonal projection onto X.
We are asked to show that:

If Q = I− P, then for any subspace Y of V ,

Lin(X ∪ Y ) = Lin(X ∪Q(Y )),

where Q(Y ) is given by
Q(Y ) = {Qy |y ∈ Y },

(i.e. it is the set of vectors which is found by multiplying each of the vectors in Y by
Q.)15

So, to establish this result, we need to use the information given above to show that

Lin(X ∪ Y ) = Lin(X ∪Q(Y )),

and we can do this by noting that:

• Taking any vector z ∈ Lin(X ∪Y ), we can write z = x+y where x ∈ X and y ∈ Y . But, since
Q = I− P we can write

Qy = (I− P)y = y − Py =⇒ y = Qy + Py,

where Py ∈ X as P the [orthogonal] projection onto X and Qy ∈ Q(Y ). Thus, we have

z = x + Py︸ ︷︷ ︸
in X

+Qy,

and so z ∈ Lin(X ∪Q(Y )). Consequently, Lin(X ∪ Y ) ⊆ Lin(X ∪Q(Y )).
15This notation was also used in Question 10 on Problem Sheet 7. (Note that in the solution to this problem, we

also established that sets like Q(Y ) were subspaces of V .)
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• Taking any vector z ∈ Lin(X ∪ Q(Y )), we can write z = x + v where x ∈ X and v ∈ Q(Y ).
But, v ∈ Q(Y ) means that there exists a y ∈ Y such that Qy = v, that is,

v = Qy = (I− P)y = y − Py.

But, Py ∈ X as P is the [orthogonal] projection of all vectors in V onto X. Thus, we have

z = x− Py︸ ︷︷ ︸
in X

+y,

and so z ∈ Lin(X ∪ Y ) as y ∈ Y . Consequently, Lin(X ∪Q(Y )) ⊆ Lin(X ∪ Y ).

Hence, we can see that Lin(X ∪Q(Y )) = Lin(X ∪ Y ) as required.16

To interpret this result geometrically in the case where X and Y are one-dimensional subspaces of
R3 look at Figure 2. Clearly, the beauty of this result is that it allows us to construct a subspace

Z

Qy
y

Py
0X

Y

Q(Y)

Figure 3: This figure illustrates the result of Question 9 in R3. Here X and Y are one-dimensional
subspaces of R3 and Z = Lin(X ∪ Y ) is the plane through the origin containing X and Y . So, by
the result above, Z = Lin(X ∪ Q(Y )) too where Q(Y ) is a subspace containing vectors that are
orthogonal to all of the vectors in X. (That is, Q(Y ) ⊆ X⊥.)

Q(Y ) ⊆ Lin(X ∪ Y ) which only contains vectors that are orthogonal to every vector in X (i.e.
Q(Y ) ⊆ X⊥) whilst allowing us to keep the same linear span.17

10. Let L and M be subspaces of the vector space V . We are asked to show that:

V = L⊕M iff L ∩M = {0} and Lin(L ∪M) = V.

(Recall that, by Theorem 2.4, if S is a set of vectors, then Lin(S) is the smallest subspace that
contains all of the vectors in S.) To do this, we use the result proved in the lectures, namely that:

V = L⊕M iff L ∩M = {0} and V = L + M,

i.e. we only need to show that Lin(L ∪ M) = L + M .18 But, this is fairly obvious since if
{x1,x2, . . . ,xk} and {y1,y2, . . . ,yl} are bases for the subspaces L and M respectively, then

Lin(L ∪M) = Lin{z | z ∈ L or z ∈ M}

=

{
k∑

i=1

αixi +
l∑

i=1

βiyi |αi and βi are scalars

}

= {x + y |x ∈ L and y ∈ M}
∴ Lin(L ∪M) = L + M

as required.

So, assuming that L and M are such that L⊕M = V , we are now asked to prove that
16Notice that this result actually holds for any projection and not just orthogonal ones. However, the nice geometric

interpretation of the result that follows does rely on P being an orthogonal projection.
17That is, the space spanned by X ∪Q(Y ) is the same as the space spanned by X ∪ Y .
18Which is, incidentally, a result that we have taken to be intuitively obvious everywhere else!!
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• L⊥ ∩M⊥ = {0}.

• [Lin(L⊥ ∪M⊥)]⊥ = {0}.

We shall do each of these in turn:

Firstly, to prove that
L⊥ ∩M⊥ = {0},

we consider any vector z ∈ L⊥ ∩M⊥, i.e.

z ∈ L⊥ and z ∈ M⊥.

Thus, by the definition of orthogonal complement, z must be such that

∀x ∈ L, 〈z,x〉 = 0 and ∀y ∈ M, 〈z,y〉 = 0,

and so, we can see that
〈z,x + y〉 = 〈z,x〉+ 〈z,y〉 = 0 + 0 = 0,

i.e. since V = L⊕M , z is orthogonal to every vector x + y ∈ L + M = V . But, this can only be the
case if z = 0 and so,

L⊥ ∩M⊥ = {0},
as required.

Secondly, to prove that
[Lin(L⊥ ∪M⊥)]⊥ = {0},

we start by considering any vector z ∈ Lin(L⊥ ∪M⊥), i.e. for any vectors u and v in L⊥ and M⊥

respectively, we can write
z = αu + βv,

where α and β are any scalars. So, by the definition of orthogonal complement, it must be the case
that

〈w, z〉 = 0,

for any vector w ∈ [Lin(L⊥ ∪M⊥)]⊥. However,

〈w, z〉 = 0 =⇒ 〈w, αu + βv〉 = 0 =⇒ α〈w,u〉+ β〈w,v〉 = 0,

and so, as this must hold for any scalars α and β, this implies that

〈w,u〉 = 〈w,v〉 = 0.

Thus, by the definition of orthogonal complement, it must be the case that w ∈ L and w ∈ M , i.e.
w ∈ L ∩M . But, since V = L ⊕M , we know that L ∩M = {0}, and so it must be the case that
w = 0. Consequently,

[Lin(L⊥ ∪M⊥)]⊥ = {0},
as required.

Hence, we are asked to deduce that L⊥ ⊕M⊥ = V , and to do this we use the result proved at the
beginning of the question. So, from the lectures, we note that the orthogonal complement of any
subset (and hence any subspace) of V is a subspace of V , and so we can see that

V = L⊥ ⊕M⊥ iff L⊥ ∩M⊥ = {0} and Lin(L⊥ ∪M⊥) = V.

But, as we have already established that

L⊥ ∩M⊥ = {0},
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to deduce the result we only need to establish that

Lin(L⊥ ∪M⊥) = V.

However, we know that
[Lin(L⊥ ∪M⊥)]⊥ = {0},

and so as S⊥⊥ = S (if S is a subspace of V ), we have

Lin(L⊥ ∪M⊥) = [Lin(L⊥ ∪M⊥)]⊥⊥ = {0}⊥,

which means that

Lin(L⊥ ∪M⊥) =
{
x

∣∣∣ 〈x,y〉 = 0 ∀y ∈ {0}
}

= {x | 〈x,0〉 = 0}.

Thus, if we now note that

• Trivially, {x | 〈x,0〉 = 0} ⊆ V . (As we are working in this vector space.)

• For any v ∈ V , we have 〈v,0〉 = 0 and so v ∈ {x | 〈x,0〉 = 0}. That is, V ⊆ {x | 〈x,0〉 = 0}.
it should be clear that

Lin(L⊥ ∪M⊥) = V,

as required.
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