
Further Mathematical Methods (Linear Algebra) 2002

Solutions For Problem Sheet 9

In this problem sheet, we derived a new result about orthogonal projections and used them to find
least squares approximations to some simple functions. We also looked at Fourier series in theory
and in practice.

1. We are given a vector x ∈ Rn and told that S is the subspace of Rn spanned by x, i.e. S = Lin{x}.1
Now, we know that the matrix, P representing the orthogonal projection of Rn onto the range of A is
given by P = A(AtA)−1At. So, if we let S be the range of A, i.e. A is the matrix with x as its [only]
column vector, we can see that

P = x(xtx)−1xt = x(‖x‖2)−1xt =
xxt

‖x‖2
,

as required.2

2. (a) We are asked to find an orthonormal basis for P[−π,π]
3 , i.e. the vector space spanned by the

vectors {1,x,x2,x3}, using the inner product

〈f ,g〉 =
∫ π

−π
f(x)g(x) dx,

where f : x → f(x), g : x → g(x) for all x ∈ [−π, π]. Clearly, the set {1,x,x2,x3} is a basis for
P[−π,π]

3 , and so we can construct an orthonormal basis for this space by using the Gram-Schmidt
procedure, i.e.

• Taking v1 = 1, we get

‖v1‖2 = 〈v1,v1〉 =
∫ π

−π
1 dx = [x]π−π = 2π,

and so we set e1 = 1/
√

2π.

• Taking v2 = x, we construct the vector u2 where

u2 = v2 − 〈v2, e1〉e1 = x,

since

〈v2, e1〉 =
〈x,1〉√

2π
=

1√
2π

∫ π

−π
x dx =

1√
2π

[
x2

2

]π

−π

= 0.

Then, we need to normalise this vector, i.e. as

‖u2‖2 = 〈u2,u2〉 =
∫ π

−π
x2 dx =

[
x3

3

]π

−π

=
2π3

3
,

we set e2 =
√

3
2π3 x.

1Note that if x is a unit vector, this derivation could replace part of our analysis of the n×n matrices Ei considered
in Question 2 of Problem Sheet 8.

2Bearing in mind Footnote 1 in the Solutions for Problem Sheet 6, you may balk at this solution. However, our
convention holds good here. To see this, we can re-run the argument above without assuming that xtx is a scalar, but
treating it as a 1× 1 matrix. Consider,

P = x(xtx)−1xt = x
�‖x‖2�−1

xt.

But, the inverse of a 1×1 matrix [a] is just [a]−1 = [a−1] as [a][a]−1 = [a][a−1] = [aa−1] = [1], the 1×1 identity matrix.
Thus,

P = x
�‖x‖−2�xt.

However, the quantity
�‖x‖−2

�
xt is equivalent to having the n×1 vector xt with each element multiplied by the scalar

‖x‖−2. Consequently, taking out this common factor we get
�‖x‖−2

�
xt = ‖x‖−2xt and hence the desired result.
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• Taking v3 = x2, we construct the vector u3 where

u3 = v3 − 〈v3, e1〉e1 − 〈v3, e2〉e2 = x2 − π2

3
1,

since

〈v3, e1〉 =
〈x2,1〉√

2π
=

1√
2π

∫ π

−π
x2 dx =

1√
2π

[
x3

3

]π

−π

=
1√
2π

2π3

3
,

and,

〈v3, e2〉 =

√
3

2π3
〈x2,x〉 =

√
3

2π3

∫ π

−π
x3 dx =

√
3

2π3

[
x4

4

]π

−π

= 0.

Then, we need to normalise this vector, i.e. as

‖u3‖2 = 〈u3,u3〉 =
∫ π

−π

(
x2 − π2

3

)2

dx =
∫ π

−π

(
x4 − 2π2

3
x2 +

π4

9

)
dx

=
[
x5

5
− 2π2

9
x3 +

π4

9
x

]π

−π

=
8π5

45
,

we set e3 =
√

5
8π5 (3x2 − π21).

• Taking v4 = x3, we construct the vector u4 where

u4 = v4 − 〈v4, e1〉e1 − 〈v4, e2〉e2 − 〈v4, e3〉e3 = x3 − 3π2

5
x,

since

〈v4, e1〉 =
〈x3,1〉√

2π
=

1√
2π

∫ π

−π
x3 dx =

1√
2π

[
x4

4

]π

−π

= 0,

and,

〈v4, e2〉 =

√
3

2π3
〈x3,x〉 =

√
3

2π3

∫ π

−π
x4 dx =

√
3

2π3

[
x5

5

]π

−π

=

√
3

2π3

2π5

5
,

whilst,

〈v4, e3〉 =

√
5

8π5
〈x3,x2〉 =

√
5

8π5

∫ π

−π
x5 dx =

√
5

8π5

[
x6

6

]π

−π

= 0.

Then, we need to normalise this vector, i.e. as

‖u4‖2 = 〈u4,u4〉 =
∫ π

−π

(
x3 − 3π2

5
x

)2

dx =
∫ π

−π

(
x6 − 6π2

5
x4 +

9π4

25
x2

)
dx

=
[
x7

7
− 6π2

25
x5 +

3π4

25
x3

]π

−π

=
8π7

175
,

we set e3 =
√

7
8π7 (5x3 − 3π2x).

Consequently, the set of vectors,
{

1√
2π

1,

√
3

2π3
x,

√
5

8π5
(3x2 − π21),

√
7

8π7
(5x3 − 3π2x)

}
,

is an orthonormal basis for P[−π,π]
3 .

Hence, to find a least squares approximation to sinx in P[−π,π]
3 we just have to evaluate the orthogonal

projection of the vector sinx onto P[−π,π]
3 , i.e.

〈sinx, e1〉 e1 + 〈sinx, e2〉 e2 + 〈sinx, e3〉 e3 + 〈sinx, e4〉 e4,
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where sinx : x → sinx. To do this, it is convenient to note that using parts twice we have:

In =
∫ π

−π
xn sinx dx = [−xn cosx]π−π +

∫ π

−π
nxn−1 cosx dx

= [1− (−1)n]πn + n

{[
xn−1 sinx

]π

−π
−

∫ π

−π
(n− 1)xn−2 sinx dx

}

∴ In = [1− (−1)n]πn − n(n− 1)In−2,

for n ≥ 2, whilst

• If n = 0, we have

I0 =
∫ π

−π
sinx dx,

i.e. I0 = 0.

• If n = 1, we have

I1 =
∫ π

−π
x sinx dx = [−x cosx]π−π +

∫ π

−π
cosx dx = 2π + 0,

i.e. I1 = 2π.

So, we can see that the ‘reduction formula’ that we have just derived gives us:

• I2 = [1− (−1)2]π2 − 2× 1× I0 = 0, and

• I3 = [1− (−1)3]π3 − 3× 2× I1 = 2π3 − 12π

Thus, we can see that looking at each of the terms that we have to evaluate we get:

• 〈sinx, e1〉 =
√

1
2π I0 = 0 and so, 〈sinx, e1〉 e1 = 0.

• 〈sinx, e2〉 =
√

3
2π3 I1 =

√
3

2π3 2π and so, 〈sinx, e2〉 e2 = 3
2π3 2πx = 3

π2 x

• 〈sinx, e3〉 =
√

5
8π5 (3I2 − π2I0) = 0 and so, 〈sinx, e3〉 e3 = 0.

• 〈sinx, e4〉 =
√

7
8π7 (5I3 − 3π2I1) =

√
7

8π7 (10π3 − 60π − 6π3) =
√

7
8π7 (4π2 − 60) and so,

〈sinx, e4〉 e4 = 7
2π6 (π2 − 15)(5x3 − 3π2x).

and so our desired approximation to sinx is

3
π2

x +
7

2π6
(π2 − 15)(5x3 − 3π2x),

which on simplifying yields

5
2π6

[
(63− 3π2)π2x + (7π2 − 105)x3

]
.

So, to calculate the mean square error associated with this approximation, we use the result from
the lectures, i.e.

MSE = ‖f‖2 −
4∑

i=1

〈f , ei〉2,

which as

‖f‖2 = 〈f , f〉 =
∫ π

−π
sin2 x dx =

1
2

∫ π

−π
[1− cos(2x)] dx =

1
2
2π + 0 = π,
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gives us

MSE = π −
[
0 +

3
2π3

4π2 + 0 +
7

8π7
(4π3 − 60π)2

]
= π − 20

π
+

420
π3

− 3150
π5

.

Evaluating this expression then tells us that the mean square error for this approximation is 0.0276
to four decimal places.

(b) We are told that the first two [non-zero] terms in the Taylor series for sinx are given by

x− x3

3!
,

for all x ∈ [−π, π] and we are asked to find the mean square error between sinx and this approxima-
tion. This is fairly straightforward as most of the integrals that have to be evaluated have already
been calculated in (a). So, using the definition of the mean square error,3 it should be clear that:

MSE =
∫ π

−π
[f(x)− g(x)]2 dx =

∫ π

−π

[
sinx− x +

x3

6

]2

dx

=
∫ π

−π

[
sin2 x + x2 +

x6

36
− 2x sinx +

x3

3
sinx− x4

3

]
dx

= π +
2π3

3
+

π7

126
− 4π +

2π3 − 12π

3
− 2π5

15

∴ MSE =
π7

126
− 2π5

15
+

4π3

3
− 7π.

Evaluating this expression then tells us that the mean square error for this approximation is 2.5185
to four decimal places.

So, which of these cubics, i.e. the one calculated in (a) or the Taylor series, provides the best
approximation to sinx? Well, by looking at the mean square errors it should be clear that the least
squares approximation calculated in (a) gives a better approximation to sinx than the Taylor series.
Indeed, the mean square error for the Taylor series is roughly 100 times bigger than the mean square
error for the result calculated in part (a). To put this all into perspective, these results are illustrated
in Figure 1.

3. We are asked to find least squares approximations to two functions over the interval [0, 1] using
the inner product

〈f ,g〉 =
∫ 1

0
f(x)g(x) dx,

where f : x → f(x) and g : x → g(x) for all x ∈ [0, 1]. We shall do each of these in turn:

Firstly, we are asked to find a least squares approximation to x by a function of the form a + b ex.
That is, we need to find the orthogonal projection of the vector x onto the subspace spanned by the
vectors 1 and ex where ex : x → ex. So, we note that the set of vectors {1, ex} is linearly independent
since, for any x ∈ [0, 1], the Wronskian for these functions is given by:

W (x) =
∣∣∣∣
1 ex

0 ex

∣∣∣∣ = ex 6= 0,

i.e. this set of vectors gives us a basis for the subspace that we are going to orthogonally project
onto. However, to do the orthogonal projection, we need an orthonormal basis for this subspace and
to get this, we use the Gram-Schmidt procedure:

3Notice that we can not use the nice mean square error formula which we used in (a) here. This is because this
Taylor series is not written in terms of an orthonormal basis.
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Figure 1: This figure illustrates the function sinx (i.e. ‘- - -’), the first two [non-zero] terms in the
Taylor series for sinx (i.e. ‘- - -’) and the least squares approximation for sinx calculated in part (a)
(i.e. ‘——’). Notice that the Taylor series gives a very good approximation to sinx for |x| . 1, but
then starts to deviate rapidly from this function (we should expect this since we know that the Taylor
series for sinx is a good approximation for ‘small’ x). However, the least squares approximation for
sinx calculated in part (a) gives a good approximation for all values of x in the interval [−π, π].

• Taking v1 = 1, we get

‖v1‖2 = 〈v1,v1〉 =
∫ 1

0
1 dx = [x]10 = 1,

and so we set e1 = 1.

• Taking v2 = ex, we construct the vector u2 where

u2 = v2 − 〈v2, e1〉e1 = ex − (e− 1)1,

since

〈v2, e1〉 = 〈ex,1〉 =
∫ 1

0
ex dx = [ex]10 = e− 1.

Then, we need to normalise this vector, i.e. as

‖u2‖2 = 〈u2,u2〉 =
∫ 1

0
[ex − (e− 1)]2 dx =

∫ 1

0

[
e2x − 2(e− 1)ex + (e− 1)2

]
dx

=
[
e2x

2
− 2(e− 1)ex + (e− 1)2x

]1

0

=
[
e2

2
− 2(e− 1)e + (e− 1)2

]
−

[
1
2
− 2(e− 1)

]

i.e. ‖u2‖2 =
1
2
(3− e)(e− 1),

which is a positive quantity since 1 < e < 3, we set e2 =
√

2
α [ex − (e − 1)1] where α =

(3− e)(e− 1).
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Consequently, the set of vectors,
{

1,
√

2
ex − (e− 1)1√
(3− e)(e− 1)

}
,

is an orthonormal basis for the subspace spanned by the vectors {1, ex}.
Hence, to find a least squares approximation to x in this subspace we just have to evaluate

〈x, e1〉e1 + 〈x, e2〉e2,

where x : x → x. To do this, we note that

• 〈x,1〉 =
∫ 1
0 x dx =

[
x2

2

]1

0
= 1

2 and so, 〈x, e1〉 = 1
2 .

• 〈x, ex〉 =
∫ 1
0 xex dx = [xex]10 −

∫ 1
0 ex dx = e− (e− 1) = 1 and so,

〈x, e2〉 =
√

2
α [〈x, ex〉 − (e− 1)〈x,1〉] =

√
2
α

[
3−e
2

]

and so our desired approximation to x is

1
2

1 +
ex − (e− 1)1

e− 1
,

which on simplifying yields,

−1
2

1 +
ex

e− 1
.

So, using the form given in the question, the least squares approximation to x over the interval [0, 1]
has a = −1/2 and b = 1/(e− 1).

Secondly, we are asked to find a least squares approximation to ex by a function of the form a + bx.
That is, we need to find the orthogonal projection of the vector ex onto the subspace spanned by the
vectors 1 and x. However, the set of vectors {1,x} is actually a basis for the vector space P[0,1]

1 and
we know from Question 6 of Problem Sheet 3 that an orthonormal basis for this vector space is

{
1,
√

3(2x− 1)
}

.

Hence, to find the required least squares approximation to ex we just have to evaluate

〈ex, e1〉e1 + 〈ex, e2〉e2,

where e1 = 1 and e2 =
√

3(2x− 1). To do this, we note that

• 〈ex,1〉 =
∫ 1
0 ex dx = [ex]10 = e− 1 and so, 〈ex, e1〉 = e− 1.

• 〈ex,x〉 =
∫ 1
0 xex dx = 1 (from above) and so, 〈ex, e2〉 =

√
3(2〈ex,x〉 − 〈ex,1〉) =

√
3(3− e).

and so our desired approximation to ex is

(e− 1)1 + 3(3− e)(2x− 1),

which on simplifying yields,
2(2e− 5)1 + 6(3− e)x.

So, using the form given in the question, the least squares approximation to ex over the interval [0, 1]
has a = 2(2e− 5) and b = 6(3− e).

4. We are asked to find a vector q ∈ PR2 such that

p(1) = 〈p,q〉,
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for every vector p : x → p(x) in PR2 where the inner product defined on this vector space is given by

〈p,q〉 =
1∑

i=−1

p(i)q(i).

(Notice that this is an instantiation of the inner product given in Question 4 of Problem Sheet 3
where in this case, −1, 0, 1 are the three ‘fixed and distinct real numbers’ required to define it.)
So, we need to find a quadratic q(x) [say ax2 + bx + c] such that its inner product with any other
quadratic p(x) [say αx2 + βx + γ], gives p(1) [which in this case is α + β + γ]. So, taking p and q
as suggested we have

〈p,q〉 =
1∑

i=−1

p(i)q(i) = (a− b + c)(α− β + γ)︸ ︷︷ ︸
i=−1

+(0 + 0 + c)(0 + 0 + γ)︸ ︷︷ ︸
i=0

+(a + b + c)(α + β + γ)︸ ︷︷ ︸
i=1

and this must equal p(1), i.e. α + β + γ. So, to find q we equate the coefficients of the terms in α, β
and γ to get

(a− b + c) + 0 + (a + b + c) = 1 2a+2c = 1
−(a− b + c) + 0 + (a + b + c) = 1 =⇒ 2b = 1

(a− b + c) + c + (a + b + c) = 1 2a+3c = 1

which on solving gives us a = b = 1/2 and c = 0. Thus, the required quadratic q is given by

q(x) =
x2 + x

2
.

It may surprise you that there is only one quadratic that does this job, or indeed that there is one
at all. But, there is actually some theory that guarantees its existence and uniqueness (although, we
do not cover it in this course).

Notice that we can check that this answer is correct since, for any quadratic p(x) = ax2 + bx + c, it
gives

〈p,q〉 = (a− b + c)(1
2 − 1

2)︸ ︷︷ ︸
i=−1

+(0 + 0 + c)(0 + 0)︸ ︷︷ ︸
i=0

+ (a + b + c)(1
2 + 1

2)︸ ︷︷ ︸
i=1

= a + b + c = p(1),

as desired.

The rest of the questions on this problem sheet are intended to develop your intuitions as to what a
Fourier series is in terms of orthogonal projections onto subspaces. To do this, we start by considering
an example where the function we are dealing with lies in Lin(Gn) for some n.4 Indeed, Question 9
gives us a possible application of this kind of situation.

5. We are asked to consider the function cos(3x) defined over the interval [−π, π]. To find the Fourier
series of orders 2, 3 and 4 that represent this function we evaluate integrals of the form

ak =
1
π

∫ π

−π
cos(3x) cos(kx)dx =

1
2π

∫ π

−π
{cos(3 + k)x + cos(3− k)x} dx,

where if k = 3, we have

a3 =
1
2π

∫ π

−π
{cos(6x) + 1} dx = 0 +

2π

2π
= 1,

and if k 6= 3, we get ak = 0. Also, as cos(3x) is an even function, the bk coefficients will be zero too.
Thus, we find that the required Fourier series are:

4For simplicity, we shall deal with a cases where the required n is small!
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Order Fourier series MSE
2 0 π

3 cos(3x) 0
4 cos(3x) 0

where the mean square error for the second order Fourier series is given by
∫ π

−π
cos2(3x)dx =

1
2

∫ π

−π
[cos(6x) + 1] dx =

2π

2
= π,

and the third and fourth order Fourier series have a mean square error of zero. Which tells us
[unsurprisingly, perhaps] that the Fourier series for cos(3x) is cos(3x) and that cos(3x) is in Lin(G3)
and Lin(G4), but not in Lin(G2) (as one would expect from the mean square errors).

Other Problems.

Here we derived the formulae for calculating Fourier series. We then saw how to apply these formulae
by finding the Fourier series of some simple functions.

Warning: The remaining solutions will make prodigious use of the following facts about sines and
cosines:

• If r ∈ N, then sin(rπ) = 0 and cos(rπ) = (−1)r.

• The sine function is odd, i.e. sin(−x) = − sin(x), whereas the cosine function is even, i.e.
cos(−x) = cos(x).

• The integral of an odd function over the interval [−π, π] is zero.

• The following trigonometric identities:

sin θ + sin φ = 2 sin
(

θ + φ

2

)
cos

(
θ − φ

2

)
,

sin θ − sinφ = 2 cos
(

θ + φ

2

)
sin

(
θ − φ

2

)
,

cos θ + cosφ = 2 cos
(

θ + φ

2

)
cos

(
θ − φ

2

)
,

− cos θ + cosφ = 2 sin
(

θ + φ

2

)
sin

(
θ − φ

2

)
,

from which, among other things, the ‘double angle’ formulae follow.

You should bear them in mind when looking at many of the integrals that are evaluated below!

6. We are asked to consider the subset of F[−π,π] given by Gn = {g0,g1, . . . ,gn,gn+1, . . . ,g2n} where

g0(x) =
1√
2π

,

and
g1(x) =

1√
π

cos(x), g2(x) =
1√
π

cos(2x), . . . , gn(x) =
1√
π

cos(nx),

whereas, (for convenience we relabel these)

h1(x) = gn+1(x) =
1√
π

sin(x), h2(x) = gn+2(x) =
1√
π

sin(2x), . . . , hn(x) = g2n(x) =
1√
π

sin(nx).

To show that Gn is an orthonormal set when using the inner product

〈f ,g〉 =
∫ π

−π
f(x)g(x)dx,
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we have to establish that they satisfy the orthonormality condition, i.e.

〈gi,gj〉 =





1 if i = j

0 if i 6= j

Firstly, we can see that the vector g0 satisfies this condition, as

〈g0,g0〉 =
1
2π

∫ π

−π
dx = 1,

and so it is unit; whilst for 1 ≤ k ≤ n, we have

〈g0,gk〉 =
1√
2π

∫ π

−π
cos(kx)dx =

1√
2π

[
sin(kx)

k

]π

−π

= 0,

and

〈g0,hk〉 =
1√
2π

∫ π

−π
sin(kx)dx =

1√
2π

[
−cos(kx)

k

]π

−π

= 0,

and so the vector g0 is orthogonal to the other vectors in Gn. Secondly, note that for 1 ≤ k, l ≤ n,

〈gk,gl〉 =
1
π

∫ π

−π
cos(lx) cos(kx)dx =

1
2π

∫ π

−π
{cos(k + l)x + cos(k − l)x} dx,

and so if k 6= l, then

〈gk,gl〉 =
1
2π

[
sin(k + l)x

k + l
+

sin(k − l)x
k − l

]π

−π

= 0,

whereas if k = l, we have

〈gk,gk〉 =
1
2π

∫ π

−π
{cos(2kx) + 1} dx =

1
2π

[
sin(2kx)

2k
+ x

]π

−π

= 1.

Thus, we can see that, for 1 ≤ k ≤ n, the vectors gk are unit and mutually orthogonal. Thirdly,
using a similar calculation, we note that for n ≤ k, l ≤ n,

〈hk,hl〉 =
1
π

∫ π

−π
sin(kx) sin(lx)dx = − 1

2π

∫ π

−π
{cos(k + l)x− cos(k − l)x} dx,

and so if k 6= l, then

〈hk,hl〉 = − 1
2π

[
sin(k + l)x

k + l
− sin(k − l)x

k − l

]π

−π

= 0,

whereas if k = l, we have

〈hk,hk〉 = − 1
2π

∫ π

−π
{cos(2kx)− 1} dx = − 1

2π

[
sin(2kx)

2k
− x

]π

−π

= 1.

Thus, we can see that, for 1 ≤ k ≤ n, the vectors hk are unit and orthogonal. Lastly, taking
1 ≤ k, l ≤ n, we can see that

〈gk,hl〉 =
1
π

∫ π

−π
cos(kx) sin(lx)dx =

1
2π

∫ π

−π
{sin(k + l)x− sin(k − l)x} dx,

and so if k 6= l, then

〈gk,hl〉 =
1
2π

[
−cos(k + l)x

k + l
+

cos(k − l)x
k − l

]π

−π

= 0,
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whereas if k = l, we have

〈gk,hk〉 =
1
2π

∫ π

−π
sin(2kx)dx =

[
−cos(2kx)

2k

]π

−π

= 0.

Thus, for 1 ≤ k, l ≤ n, the vectors gk and hl are mutually orthogonal. Consequently, we have shown
that the vectors in Gn are orthonormal, as required.

Further, we are asked to show that any trigonometric polynomial of order n or less can be
represented by a vector in Lin(Gn). This is clearly the case as a trigonometric polynomial of degree
n or less is of the form

c0 + c1 cos(x) + · · ·+ cn cos(nx) + d1 sin(x) + · · ·+ dn sin(nx),

and this can therefore be represented by the vector
√

2πc0g0 +
√

πc1g1 + · · ·+√
πcngn +

√
πd1h1 + · · ·+√

πdnhn,

which is in Lin(Gn), as required.

Note: In this question, we have established some orthogonality relations which may be useful later.
For convenience, we list them here for easy reference:

1
π

∫ π

−π
cos(kx) cos(lx)dx =

{
1 if k = l
0 if k 6= l

1
π

∫ π

−π
sin(kx) sin(lx)dx =

{
1 if k = l
0 if k 6= l

1
π

∫ π

−π
cos(kx) sin(lx)dx = 0,

where k and l are positive integers. Further, just in case you haven’t twigged, we note that
∫ π

−π
sin(kx)dx = 0 and

∫ π

−π
cos(kx)dx = 0,

when, again, k is a positive integer.

7. Let us suppose that the vector f ∈ F[−π,π] represents a function that is not in Lin(Gn), using the
result from the lectures we can see that the orthogonal projection of f onto Lin(Gn) is just5

Pf =
2n∑

k=0

〈f ,gk〉gk.

As this series represents the orthogonal projection, we know (from the lectures) that it will minimise
the quantity given by ‖f − g‖ where g ∈ Lin(Gn). That is, it minimises the quantity

‖f − g‖2 = 〈f − g, f − g〉 =
∫ π

−π
[f(x)− g(x)]2 dx,

where f : x → f(x) and g : x → g(x).
Further, we must show that this series can be written as

a0

2
+

n∑

k=1

{ak cos(kx) + bk sin(kx)} ,

5Clearly, as Gn ⊆ F[−π,π] and we are considering the subspace given by Lin(Gn). (This is a subspace by Theorem
2.4.)
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where the coefficients are given by

ak =
1
π

∫ π

−π
f(x) cos(kx) dx and bk =

1
π

∫ π

−π
f(x) sin(kx) dx.

To do this, we note that

Pf(x) =
2n∑

k=0

〈f ,gk〉gk = 〈f ,g0〉g0 +
n∑

k=1

〈f ,gk〉gk +
2n∑

k=n+1

〈f ,gk〉gk,

and rewriting this in terms of functions we get6

Pf =
{

1√
2π

∫ π

−π
f(u)du

}
1√
2π

+
n∑

k=1

{
1√
π

∫ π

−π
f(u) cos(ku)du

}
1√
π

cos(kx)

+
n∑

k=1

{
1√
π

∫ π

−π
f(u) sin(ku)du

}
1√
π

sin(kx),

which gives the required result when we replace the integrals with the appropriate coefficients.7

Indeed, as noted in the question, this is the Fourier series of order n representing f(x).
As it turns out, this series can sometimes be simplified due to the fact that the integral of an odd

function over the range [−π, π] is zero.8 So, if f(x) is an odd (even) function, then as the product of
an odd (even) function and an even (odd) function is an odd function, we can see that the ak (bk)
coefficients will be zero. Thus, a useful result is that the Fourier series of order n will be

n∑

k=1

bk sin(kx) if f(x) is odd, and

a0

2
+

n∑

k=1

ak cos(kx) if f(x) is even.

8. Following on from Question 5, when we are asked to find the Fourier series of order n representing
the function sin(3x) over the interval [−π, π], it should be obvious (i.e. there should be no need to
integrate!) that it is just sin(3x) if n ≥ 3 and zero if 0 ≤ n ≤ 2. The corresponding mean square
errors are zero if n ≥ 3 and

∫ π

−π
sin2(3x)dx =

1
2

∫ π

−π
[1− cos(6x)]dx =

2π

2
= π,

if 0 ≤ n ≤ 2. But, if you are not convinced, we can verify this result by calculating the coefficients.
In this case, because sin(3x) is an odd function the ak are zero and so we just have to evaluate (for
k > 0) an integral of the form

bk =
1
π

∫ π

−π
sin(3x) sin(kx)dx = − 1

2π

∫ π

−π
{cos(3 + k)x + cos(3− k)x} dx,

where if k = 3, we have

b3 =
1
2π

∫ π

−π
{cos(6x) + 1} dx = 0 +

2π

2π
= 1,

and if k 6= 3, we get ak = 0, as before.
6When writing the integrals that correspond to the inner products, we use the dummy variable ‘u’ to replace the

variable ‘x’ to avoid confusion.
7Notice that the coefficient a0 is a special case of the coefficient ak (as if we set k = 0 in the formula for ak,

cos(kx) = 1). This little simplification is the reason for the ‘extra’ factor of a half in the first term of this series.
8Again, recall that an odd function is such that f(−x) = −f(x) and an even function is such that f(−x) = f(x).
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Note: In case you hadn’t guessed, this all works because the vectors being used are linearly inde-
pendent9 and so the series that we find is unique. Thus, whether we calculate a Fourier series by
calculating the coefficients, or by some other method (say, using trigonometric identities), we will
always get the same result! To illustrate this, let us consider a bonus question!

Question: Find the Fourier series for cos3 x and sin3 x by evaluating the coefficients. Further, amaze
your friends by doing this in four lines using complex numbers!

Answer: As cos3 x is an even function, the bk coefficients are zero and so we only need to find the
ak, i.e.

ak =
1
π

∫ π

−π
cos3 x cos(kx)dx =

1
π

∫ π

−π
cos2 x cosx cos(kx)dx

=
1
4π

∫ π

−π
{cos(2x) + 1} {cos(k + 1)x + cos(k − 1)x} dx

=
1
4π

∫ π

−π
{cos(2x) cos(k + 1)x + cos(2x) cos(k − 1)x + cos(k + 1)x + cos(k − 1)x} dx

=
1
4π

∫ π

−π

{
1
2

[cos(k + 3)x + cos(1− k)x] +
1
2

[cos(k + 1)x + cos(3− k)x]

+ cos(k + 1)x + cos(k − 1)x
}

dx

∴ ak =
1
8π

∫ π

−π
{cos(k + 3)x + cos(k − 3)x + 3 cos(k + 1)x + 3 cos(k − 1)x} dx.

Thus, for k = 1 and k = 3 we get a1 = 3/4 and a3 = 1/4 respectively, whereas for other non-negative
values of k we get ak = 0. Consequently, the Fourier series for cos3 x is

1
4
[3 cos x + cos(3x)].

Similarly, for sin3 x, an odd function, the ak coefficients are zero and so we only need to find the bk,
i.e.

bk =
1
π

∫ π

−π
sin3 x cos(kx)dx =

1
π

∫ π

−π
sin2 x sinx sin(kx)dx

= − 1
4π

∫ π

−π
{1− cos(2x)} {cos(k + 1)x− cos(k − 1)x} dx

= − 1
4π

∫ π

−π
{cos(k + 1)x− cos(k − 1)x− cos(2x) cos(k + 1)x + cos(2x) cos(k − 1)x} dx

= − 1
4π

∫ π

−π

{
cos(k + 1)x− cos(k − 1)x− 1

2
[cos(k + 3)x + cos(1− k)x]

+
1
2

[cos(k + 1)x + cos(3− k)x]
}

dx

∴ bk =
1
8π

∫ π

−π
{cos(k + 3)x− cos(k − 3)x− 3 cos(k + 1)x + 3 cos(k − 1)x} dx.

Thus, for k = 1 and k = 3 we get b1 = 3/4 and b3 = −1/4 respectively, whereas for other positive
values of k we get bk = 0. Consequently, the Fourier series for sin3 x is

1
4
[3 sin x− sin(3x)].

These results should look familiar as they are just the ‘triple angle’ identities for sines and cosines.

An alternative way to derive them would be to use complex numbers, and it is convenient for us to
pause for a moment to note some useful results:

9Recall that in Question 5 of Problem Sheet 3, we established that orthogonal vectors are linearly independent.
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We can write complex numbers in their exponential form, i.e.

e±iθ = cos θ ± i sin θ,

which allows us to write

cos θ =
eiθ + e−iθ

2
and sin θ =

eiθ − e−iθ

2i
.

This form is particularly useful when used in conjunction with De Moivre’s theorem,
which tells us that

(eiθ)n = (cos θ ± i sin θ)n = cos(nθ)± i sin(nθ).

In what follows we use these ideas together with a rather nice substitution, namely

z = eiθ.

(Notice that this implies that 1/z = z−1 = e−iθ.)

So, to proceed we consider the following identity10

(
z ± 1

z

)3

= z3 ± 3z2 1
z

+ 3z
1
z2
± 1

z3
= z3 ± 1

z3
± 3

(
z ± 1

z

)
.

Now, if we let z = eix, and take the ‘+’ we get

23 cos3 x = 2 cos 3x + 3(2 cosx) =⇒ 4 cos3 x = cos 3x + 3 cosx,

whereas, taking the ‘−’ we find

(2i)3 sin3 x = 2i sin 3x− 3(2i sinx) =⇒ −4 sin3 x = sin 3x− 3 sin x,

which are the desired results.

9. We are asked to show that

1
2

+ cos(x) + cos(2x) + · · ·+ cos(nx) =
sin(n + 1

2)x
2 sin 1

2x
,

without integrating to find the coefficients and assuming that x 6= 2rπ where r ∈ Z. To do this we
consider the series

Sn = 1 + eix + e2ix + · · ·+ einx,

which is a geometric progression, and so summing this we get

Sn =
1− ei(n+1)x

1− eix
,

provided that x 6= 2rπ (as if this were the case, eix = 1). Multiplying the top and bottom of this
expression by e−

1
2
ix gives

Sn =
e−

1
2
ix − ei(n+ 1

2
)x

e−
1
2
ix − e

1
2
ix

=
[cos(1

2x)− i sin(1
2x)]− [cos(n + 1

2)x + i sin(n + 1
2)x]

−2i sin(1
2x)

Sn =
i[cos(1

2x)− cos(n + 1
2)x] + [sin(1

2x) + sin(n + 1
2)x]

2 sin(1
2x)

,

10To get this, use the Binomial Theorem (remember?) as I have, or just expand out the brackets. Either way this
should be obvious!
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and taking the real part of this expression yields

1 + cos(x) + cos(2x) + · · ·+ cos(nx) =
1
2

+
sin(n + 1

2)x
2 sin(1

2x)
,

which gives the desired result. If the condition that x 6= 2rπ with r ∈ N is violated, then the
left-hand-side of this expression becomes

1
2

+ 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

=
1
2

+ n.

But, the right-hand-side is indeterminate and so we need to evaluate

lim
x→2rπ

sin(n + 1
2)x

2 sin(1
2x)

= lim
x→2rπ

(n + 1
2) cos(n + 1

2)x
cos(1

2x)
:Using l’Hôpital’s rule.

=
(n + 1

2) cos(2n + 1)rπ
cos(rπ)

=
(n + 1

2)(−1)(2n+1)r

(−1)r

∴ lim
x→2rπ

sin(n + 1
2)x

2 sin(1
2x)

= n +
1
2
.

Thus, the result still holds if x = 2rπ with r ∈ N.

10. We are asked to find the Fourier series of order n of three functions which are defined in the
interval [−π, π]. Further, we must calculate the mean square error in each case.

The first function to consider is f(x) = π−x. To find the required Fourier series, we have to calculate
the coefficients by evaluating integrals of the form

ak =
1
π

∫ π

−π
(π − x) cos(kx)dx,

(see Question 7) and so for k = 0, we have

a0 =
1
π

∫ π

−π
(π − x)dx =

1
π

[
πx− x2

2

]π

−π

= 2π,

whereas, for k 6= 0, we have

ak =
1
π

{[
(π − x)

sin(kx)
k

]π

−π

+
∫ π

−π

sin(kx)
k

dx

}
= 0.

Also, for k 6= 0, we have to evaluate integrals of the form

bk =
1
π

∫ π

−π
(π − x) sin(kx)dx

=
1
π

{[
(π − x)

− cos(kx)
k

]π

−π

−
∫ π

−π

cos(kx)
k

dx

}

=
1
π

[
0− 2π

− cos(−kπ)
k

]
− 0

∴ bk = 2
(−1)k

k
,

(again, see Question 7). Thus, the Fourier series of order n representing the function π − x is

π + 2
n∑

k=1

(−1)k

k
sin(kx).
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Using this, the mean square error between a function, f(x) and the corresponding Fourier series of
order n, g(x) is given by

MSE =
∫ π

−π
[f(x)− g(x)]2 dx,

and so in this case we have

MSE =
∫ π

−π

[
x + 2

n∑

k=1

(−1)k

k
sin(kx)

]2

dx.

This looks a bit tricky, but squaring the bracket you should be able to convince yourself that this
gives

MSE =
∫ π

−π

[
x2 + 4x

n∑

k=1

(−1)k

k
sin(kx) + 4

n∑

k=1

n∑

l=1
(l 6=k)

(−1)k+l

kl
sin(kx) sin(lx)

+ 4
n∑

k=1

(−1)2k

k2
sin2(kx)

]
dx.

But, noting that
∫ π

−π
x sin(kx)dx =

[
x
− cos(kx)

k

]π

−π

+
∫ π

−π

cos(kx)
k

dx = −2π
(−1)k

k
,

as well as our earlier results, we can see that this is just

MSE =
2
3
π3 − 8π

n∑

k=1

(−1)2k

k2
+ 0 + 4π

n∑

k=1

(−1)2k

k2
=

2
3
π3 − 4π

n∑

k=1

1
k2

.

This Fourier series is illustrated in Figure 2.
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Figure 2: The function π − x and its Fourier series of order 5, 10 and 15 respectively. (Notice that
the Fourier series of order n for π − x behaves unusually as x → ±π. There is a reason for this, but
we will not discuss it in this course.)

The second function to consider is f(x) = x2. To find the required Fourier series, we have to calculate
the coefficients by evaluating integrals of the form

ak =
1
π

∫ π

−π
x2 cos(kx)dx,

(see Question 7) and so for k = 0, we have

a0 =
1
π

∫ π

−π
x2dx =

1
π

[
x3

3

]π

−π

=
2
3
π2,
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whereas, for k 6= 0, we have

ak =
1
π

{[
x2 sin(kx)

k

]π

−π

− 2
∫ π

−π
x

sin(kx)
k

dx

}

= 0− 2
πk

{∫ π

−π
x sin(kx)dx

}

= − 2
πk

{[
x
− cos(kx)

k

]π

−π

+
∫ π

−π

cos(kx)
k

dx

}

= − 2
πk

[
−2π

(−1)k

k

]
+ 0

∴ ak = 4
(−1)k

k2
.

Also, as f(x) = x2 is an even function, we know (from the last part of Question 7) that the bk (for
1 ≤ k ≤ n) will be zero. Thus, the Fourier series of order n representing the function x2 is

π2

3
+ 4

n∑

k=1

(−1)k

k2
cos(kx).

Using this, the mean square error between a function, f(x) and the corresponding Fourier series of
order n, g(x) is given by

MSE =
∫ π

−π
[f(x)− g(x)]2 dx,

and so in this case we have

MSE =
∫ π

−π

[
x2 − π2

3
− 4

n∑

k=1

(−1)k

k2
cos(kx)

]2

dx.

This [again,] looks a bit tricky, but squaring the bracket you should be able to convince yourself that
this gives

MSE =
∫ π

−π

[(
x2 − π2

3

)2

− 8
(

x2 − π2

3

) n∑

k=1

(−1)k

k2
cos(kx)

+ 16
n∑

k=1

n∑

l=1
(l 6=k)

(−1)k+l

k2l2
cos(kx) cos(lx) + 16

n∑

k=1

(−1)2k

k4
cos2(kx)

]
dx.

But, noting that
∫ π

−π

(
x2 − π2

3

)2

dx =
∫ π

−π

(
x4 − 2

π2

3
x2 +

π4

9

)
dx =

[
x5

5
− 2

π2

3
x3

3
+

π4

9
x

]π

−π

=
2
5
π5 − 4

π2

3
π3

3
+ 2

π4

9
π =

8
45

π5,

and
∫ π

−π

(
x2 − π2

3

)
cos(kx)dx =

[(
x2 − π2

3

)
sin(kx)

k

]π

−π

− 2
∫ π

−π
x

sin(kx)
k

dx

= 0− 2
k

{[
x
− cos(kx)

k

]π

−π

+
∫ π

−π

cos(kx)
k

dx

}

=
2
k
2π

(−1)k

k
+ 0

∴
∫ π

−π

(
x2 − π2

3

)
cos(kx)dx = 4π

(−1)k

k2
,
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as well as our earlier results, we can see that this is just

MSE =
8
45

π5 − 32π
n∑

k=1

(−1)2k

k4
+ 0 + 16π

n∑

k=1

(−1)2k

k4
=

8
45

π5 − 16π
n∑

k=1

1
k4

.

This Fourier series is illustrated in Figure 3.
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Figure 3: The function x2 and its Fourier series of order 1, 2 and 3 respectively.

The third function to consider is f(x) = |x|. To find the required Fourier series, we have to calculate
the coefficients by evaluating integrals of the form

ak =
1
π

∫ π

−π
|x| cos(kx)dx,

(see Question 7) and so for k = 0, we have

a0 =
1
π

∫ π

−π
|x|dx =

1
π

{∫ 0

−π
(−x)dx +

∫ π

0
xdx

}
=

1
π

{[
−x2

2

]0

−π

+
[
x2

2

]π

0

}
= π,

whereas, for k 6= 0, we have

ak =
1
π

{∫ 0

−π
(−x) cos(kx)dx +

∫ π

0
x cos(kx)dx

}

=
1
π

{[
−x

sin(kx)
k

]0

−π

+
∫ 0

−π

sin(kx)
k

dx +
[
x

sin(kx)
k

]π

0

−
∫ π

0

sin(kx)
k

dx

}

=
1
π

{
0 +

∫ 0

−π

sin(kx)
k

dx + 0−
∫ π

0

sin(kx)
k

dx

}

=
1
π

{[− cos(kx)
k2

]0

−π

−
[− cos(kx)

k2

]π

0

}

=
1

πk2

{[
−1 + (−1)k

]
−

[
−(−1)k + 1

]}

∴ ak =
2
π

(−1)k − 1
k2

.

Also, as f(x) = |x| is an even function, we know (from the last part of Question 7) that the bk (for
1 ≤ k ≤ n) will be zero. Thus, the Fourier series of order n representing the function |x| is

π

2
+

2
π

n∑

k=1

(−1)k − 1
k2

cos(kx).

Using this, the mean square error between a function, f(x) and the corresponding Fourier series of
order n, g(x) is given by

MSE =
∫ π

−π
[f(x)− g(x)]2 dx,
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and so in this case we have

MSE =
∫ π

−π

[
|x| − π

2
− 2

π

n∑

k=1

(−1)k − 1
k2

cos(kx)

]2

dx.

This [again,] looks a bit tricky, but squaring the bracket you should be able to convince yourself that
this gives

MSE =
∫ π

−π

[(
|x| − π

2

)2
− 4

π

(
|x| − π

2

) n∑

k=1

(−1)k − 1
k2

cos(kx)

+
4
π2

n∑

k=1

n∑

l=1
(l 6=k)

(−1)k − 1
k2

(−1)l − 1
l2

cos(kx) cos(lx) +
4
π2

n∑

k=1

[(−1)k − 1]2

k4
cos2(kx)

]
dx.

But, noting that
∫ π

−π

(
|x| − π

2

)2
dx =

∫ π

−π

(
|x|2 − 2

π

2
|x|+ π2

4

)
dx =

∫ π

−π

(
x2 +

π2

4

)
− π

∫ 0

−π
(−x)dx− π

∫ π

0
xdx

=
[
x3

3
+

π2

4
x

]π

−π

+ π

[
x2

2

]0

−π

− π

[
x2

2

]π

0

= 2
[
π3

3
+

π3

4

]
− π3

2
− π3

2
=

π3

6
,

and
∫ π

−π

(
|x| − π

2

)
cos(kx)dx =

∫ 0

−π

(
−x− π

2

)
cos(kx)dx +

∫ π

0

(
x− π

2

)
cos(kx)dx

=−
[(

x +
π

2

) sin(kx)
k

]0

−π

+
∫ 0

−π

sin(kx)
k

dx

+
[(

x− π

2

) sin(kx)
k

]π

0

−
∫ π

0

sin(kx)
k

dx

= 0 +
[− cos(kx)

k2

]0

−π

+ 0−
[− cos(kx)

k2

]π

0

∴
∫ π

−π

(
|x| − π

2

)
cos(kx)dx =

2
k2

[
(−1)k − 1

]
,

as well as our earlier results, we can see that this is just

MSE =
π3

6
− 8

π

n∑

k=1

[(−1)k − 1]2

k4
+ 0 +

4
π

n∑

k=1

[(−1)k − 1]2

k4
=

π3

6
− 4

π

n∑

k=1

[(−1)k − 1]2

k4
.

This Fourier series is illustrated in Figure 4.
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Figure 4: The function |x| and its Fourier series of order 1, 2 and 3 respectively. (Notice that the
Fourier series of orders 1 and 2 are the same here as the second order term is zero!)
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Note: You may wonder why we have bothered to calculate the mean square error in this question
(as it is not normally calculated, or even introduced, in methods courses). We take this opportunity
to note the following facts:

∞∑

k=1

1
k2

=
π2

6
,

∞∑

k=1

1
k4

=
π4

90
,

∞∑

k=1

[(−1)k − 1]2

k4
=

π4

24
.

Thus, if we let n →∞ in the above results, the mean square errors will tend to zero. This indicates
that if we take the Fourier series of these functions (i.e. their representation in terms of a trigonometric
polynomial of ‘infinite’ degree), we will have an ‘exact’ expression for them in terms of sines and
cosines. Indeed, this seems to imply that these functions are in the subspace of F[−π,π] spanned by
the vectors in G∞. This idea is explored further (in a more transparent context) in Questions 5 and
8. Howvever, you may care to take a look at the illustrations of these Fourier series that are given
in Figures 2, 3 and 4. (Notice how the Fourier series gives a better approximation to the function
in question as we increase the number of terms!) Also observe how the mean square error is much
easier to find if we use the result derived in the lectures (as we did in Question 2) instead of just
evaluating the appropriate norm (as we did in Questions 5, 8 and 10)!

Remark: There is, of course, much more to Fourier series than we have covered here. Once again,
you should note that the Fourier series of a function is the series that we get as n (the ‘order’ in our
exposition) tends to infinity.
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