Further Mathematical Methods (Linear Algebra)

Solutions For The 2001 Examination

Question 1

(a) For a non-empty subset W of V to be a subspace of V we require that, for all vectors $\mathbf{x}, \mathbf{y} \in W$ and all scalars $\alpha \in \mathbb{R}$:

- i. Closure under vector addition: $\mathbf{x} + \mathbf{y} \in W$.
- ii. Closure under scalar multiplication: $\alpha \mathbf{x} \in W$.

To be an inner product on V, a function $\langle \mathbf{x}, \mathbf{y} \rangle$ which maps vectors $\mathbf{x}, \mathbf{y} \in V$ to \mathbb{R} must be such that:

- i. **Positivity:** $\langle \mathbf{x}, \mathbf{x} \rangle \ge 0$ and, $\langle \mathbf{x}, \mathbf{x} \rangle = 0$ if and only if $\mathbf{x} = \mathbf{0}$.
- ii. Symmetry: $\langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle$.
- iii. Linearity: $\langle \alpha \mathbf{x} + \beta \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle$.

for all vectors $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and all scalars $\alpha, \beta \in \mathbb{R}$.

(b) Clearly, for any vector $\mathbf{u} \in \mathbb{P}_2^{[0,1]}$, we have

$$\mathbf{f} = \sum_{i=0}^{2} a_i \mathbf{x}^i = \sum_{i=0}^{n} a_i \mathbf{x}^i,$$

where, for $3 \leq i \leq n$, we have $a_i = 0$. Thus, $\mathbf{u} \in \mathbb{P}_n^{[0,1]}$ too and so $\mathbb{P}_2^{[0,1]}$ is a subset of $\mathbb{P}_2^{[0,1]}$. To show that it is a subspace, we take any two vectors in $\mathbb{P}_2^{[0,1]}$, say

$$\mathbf{f} = \sum_{i=0}^{2} a_i \mathbf{x}^i$$
 and $\mathbf{g} = \sum_{i=0}^{2} b_i \mathbf{x}^i$,

and any scalar $\alpha \in \mathbb{R}$ and note that $\mathbb{P}_2^{[0,1]}$ is closed under:

• vector addition since

$$\mathbf{f} + \mathbf{g} = \sum_{i=0}^{2} a_i \mathbf{x}^i + \sum_{i=0}^{2} b_i \mathbf{x}^i = \sum_{i=0}^{2} (a_i + b_i) \mathbf{x}^i,$$

and so $\mathbf{f} + \mathbf{g} \in \mathbb{P}_2^{[0,1]}$ too since $a_i + b_i \in \mathbb{R}$ for $0 \le i \le 2$.

• scalar multiplication since

$$\alpha \mathbf{f} = \sum_{i=0}^{2} \alpha a_i \mathbf{x}^i$$

and so $\alpha \mathbf{g} \in \mathbb{P}_2^{[0,1]}$ too since $\alpha a_i \in \mathbb{R}$ for $0 \leq i \leq 2$.

as required.

(c) We need to show that the function defined by

$$\langle \mathbf{f}, \mathbf{g} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2,$$

defines an inner product on $\mathbb{P}_2^{[0,1]}$. To do this, we show that this formula satisfies all of the conditions given in part (a). Thus, taking any three vectors **f**, **g** and **h** in $\mathbb{P}_2^{[0,1]}$ and any two scalars α and β in \mathbb{R} we have:

- i. $\langle \mathbf{f}, \mathbf{f} \rangle = a_0^2 + a_1^2 + a_2^2$ which is the sum of the squares of three real numbers and as such it is real and non-negative. Further, to show that $\langle \mathbf{f}, \mathbf{f} \rangle = 0$ if and only if $\mathbf{f} = \mathbf{0}$ (where here, $\mathbf{0}$ is the zero polynomial), we note that:
 - LTR: If $\langle \mathbf{f}, \mathbf{f} \rangle = 0$, then $a_0^2 + a_1^2 + a_2^2 = 0$. But, this is the sum of the squares of three real numbers and so it must be the case that $a_0 = a_1 = a_2 = 0$. Thus, $\mathbf{f} = \mathbf{0}$.
 - **RTL:** If $\mathbf{f} = \mathbf{0}$, then $a_0 = a_1 = a_2 = 0$. Thus, $\langle \mathbf{f}, \mathbf{f} \rangle = 0$.

(as required).

ii. Obviously, $\langle \mathbf{f}, \mathbf{g} \rangle = a_0 b_0 + a_1 b_1 + a_2 b_2 = b_0 a_0 + b_1 a_1 + b_2 a_2 = \langle \mathbf{f}, \mathbf{g} \rangle$.

iii. We note that the vector $\alpha \mathbf{f} + \beta \mathbf{g}$ is just another quadratic and so:

$$\langle \alpha \mathbf{f} + \beta \mathbf{g}, \mathbf{h} \rangle = (\alpha a_0 + \beta b_0)c_0 + (\alpha a_1 + \beta b_1)c_1 + (\alpha a_2 + \beta b_2)c_2 = \alpha(a_0c_0 + a_1c_1 + a_2c_2) + \beta(b_0c_0 + b_1c_1 + b_2c_2) \therefore \langle \alpha \mathbf{f} + \beta \mathbf{g}, \mathbf{h} \rangle = \alpha \langle \mathbf{f}, \mathbf{h} \rangle + \beta \langle \mathbf{g}, \mathbf{h} \rangle$$

where $\mathbf{h}: x \to c_0 + c_1 x + c_2 x^2$ for all $x \in \mathbb{R}$.

Consequently, the formula given above does define an inner product on $\mathbb{P}_2^{[0,1]}$ (as required).

(d) To show that a set of vectors is a basis for $\mathbb{P}_2^{[0,1]}$ we have to show that it spans this space and that it is linearly independent. Thus,

• For $S = \{1, \mathbf{x}, \mathbf{x}^2\}$: Firstly, these vectors span the space as,

$$\operatorname{Lin}(S) = \{a_0 \mathbf{1} + a_1 \mathbf{x} + a_2 \mathbf{x}^2 \mid \text{ for all } a_0, a_1, a_2 \in \mathbb{R}\} = \mathbb{P}_2^{[0,1]},$$

They are also linearly independent since calculating the Wronskian for these vectors we have,

$$W(x) = \begin{vmatrix} 1 & x & x^2 \\ 0 & 1 & 2x \\ 0 & 0 & 2 \end{vmatrix} = 2,$$

and this is non-zero for all $x \in [0, 1]$.

• For $S' = \{1 + x, 1 - x, x + x^2\}$: Firstly, these vectors span the space as,

$$\operatorname{Lin}(S') = \{a_0(\mathbf{1} + \mathbf{x}) + a_1(\mathbf{1} - \mathbf{x}) + a_2(\mathbf{x} + \mathbf{x}^2) \mid \text{ for all } a_0, a_1, a_2 \in \mathbb{R} \}$$

= $\{(a_0 + a_1)\mathbf{1} + (a_0 - a_1 + a_2)\mathbf{x} + a_2\mathbf{x}^2 \mid \text{ for all } a_0, a_1, a_2 \in \mathbb{R} \}$
= $\{b_0\mathbf{1} + b_1\mathbf{x} + b_2\mathbf{x}^2 \mid \text{ for all } b_0, b_1, b_2 \in \mathbb{R} \}$
= $\mathbb{P}_2^{[0,1]}$,

They are also linearly independent since calculating the Wronskian for these vectors we have, [expanding along the bottom row]

$$W(x) = \begin{vmatrix} 1+x & 1-x & x+x^2 \\ 1 & -1 & 1+2x \\ 0 & 0 & 2 \end{vmatrix} = 2[-(1+x)-(1-x)] = -4,$$

and this is non-zero for all $x \in [0, 1]$.

Consequently, the sets S and S' are both bases of $\mathbb{P}_2^{[0,1]}$.

(e) To find a matrix A such that

$$[\mathbf{f}]_S = \mathsf{A}[\mathbf{f}]_{S'},$$

where $[\mathbf{f}]_S$ and $[\mathbf{f}]_{S'}$ are the coordinate vectors of $\mathbf{f} \in \mathbb{P}_2^{[0,1]}$ relative to the bases S and S' respectively we use the definition of coordinate vector. That is, we use the fact that the equality

$$a\mathbf{1} + b\mathbf{x} + c\mathbf{x}^2 = a'(\mathbf{1} + \mathbf{x}) + b'(\mathbf{1} - \mathbf{x}) + c'(\mathbf{x} + \mathbf{x}^2),$$

holds if and only if

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}_{S} = A \begin{bmatrix} a' \\ b' \\ c' \end{bmatrix}_{S'},$$
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix},$$

where

Question 2.

(a) The Leslie matrix for the unicorn population is given by:

$$\mathsf{L} = \begin{bmatrix} 0 & 1 & 2 \\ 1/18 & 0 & 0 \\ 0 & 1/6 & 0 \end{bmatrix},$$

and to verify that its unique real positive eigenvalue is 1/3, we use the result given in the lectures to find an eigenvector corresponding to this *purported* eigenvalue, i.e.

$$\mathbf{v}_1 = \begin{bmatrix} 1\\b_1/\lambda_1\\b_1b_2/\lambda_1^2 \end{bmatrix} = \begin{bmatrix} 1\\1/6\\1/12 \end{bmatrix} \text{ and so we take } \mathbf{v}_1 = \begin{bmatrix} 12\\2\\1 \end{bmatrix}.$$

Then, as

$$\mathbf{L}\mathbf{v}_{1} = \begin{bmatrix} 0 & 1 & 2\\ 1/18 & 0 & 0\\ 0 & 1/6 & 0 \end{bmatrix} \begin{bmatrix} 12\\ 2\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} 4\\ 2/3\\ 1/3 \end{bmatrix} = \frac{1}{3}\mathbf{v}_{1},$$

1/3 is indeed an eigenvalue of L. Thus, noting that:

i. the population distribution vector $\mathbf{x}^{(k)}$ behaves as

$$\mathbf{x}^{(k)} \simeq c \lambda_1^k \mathbf{v}_1 = rac{c}{3^k} \begin{bmatrix} 12\\2\\1 \end{bmatrix},$$

(for some constant c) in the long-term.

- ii. the proportion of the population in each of the three age classes becomes constant in the ratio 12:2:1 in the long-term.
- iii. the growth rate of the population in each age class is 1/3, i.e. the population in each age class decreases by $66\frac{2}{3}\%$ every time period (i.e. every ten years), in the long-term.
- (b) The steady states of the coupled non-linear differential equations

$$\dot{y}_1 = 3y_1 - y_1^2 - 6y_1y_2$$
$$\dot{y}_2 = 3y_2 - y_2^2 - 2y_1y_2$$

are given by the solutions of the simultaneous equations

$$y_1(3 - y_1 - 6y_2) = 0$$

$$y_2(3 - y_2 - 2y_1) = 0$$

i.e. by $(y_1, y_2) = (0, 0), (0, 3), (3, 0)$ and $(\frac{15}{11}, \frac{3}{11})$.

To assess the stability of the steady state given by $(y_1, y_2) = (0, 3)$, we evaluate the Jacobian for this system at (0, 3), i.e.

$$\mathsf{DF}[(y_1, y_2)] = \begin{bmatrix} 3 - 2y_1 - 6y_2 & -6y_1 \\ -2y_2 & 3 - 2y_2 - 2y_1 \end{bmatrix} \implies \mathsf{DF}[(0, 3)] = \begin{bmatrix} -15 & 0 \\ -6 & -3 \end{bmatrix},$$

and find the eigenvalues of this matrix. So, solving

$$\begin{vmatrix} -15 - \lambda & 0 \\ -6 & -3 - \lambda \end{vmatrix} = 0 \implies (15 + \lambda)(3 + \lambda) = 0,$$

we find that the eigenvalues are $\lambda = -15$ and $\lambda = -3$. According to a result given in the lectures, since these are both real and negative, the steady state $(y_1, y_2) = (0, 3)$ is asymptotically stable.

(c) We are asked to find the general solution of the coupled linear differential equations given by

$$\begin{bmatrix} \dot{h}_1 \\ \dot{h}_2 \end{bmatrix} = \mathsf{DF}[(0,3)] \begin{bmatrix} h_1 \\ h_2 \end{bmatrix},$$

where $\mathsf{DF}[(0,3)]$ is the Jacobian of the system in (b) evaluated at the steady state $(y_1, y_2) = (0,3)$. That is, we just have to solve the coupled linear differential equations given by

$$\begin{bmatrix} \dot{h}_1 \\ \dot{h}_2 \end{bmatrix} = \begin{bmatrix} -15 & 0 \\ -6 & -3 \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix}.$$

To do this, we know that the eigenvalues of the matrix are -15 and -3, and we can easily see that the corresponding eigenvectors are $[2, 1]^t$ and $[0, 1]^t$. Thus, setting

$$\mathsf{P} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \text{ and } \mathsf{D} = \begin{bmatrix} -15 & 0 \\ 0 & -3 \end{bmatrix},$$

we set $\mathbf{z} = \mathsf{P}^{-1}\mathbf{h}$ so that

$$\dot{\mathbf{h}} = \mathsf{DF}[(0,3)]\mathbf{h} = \mathsf{PDP}^{-1}\mathbf{h} \implies \dot{\mathbf{z}} = \mathsf{Dz},$$

since $\mathsf{DF}[(0,3)] = \mathsf{PDP}^{-1}$. So, we now have to solve the uncoupled linear differential equation given by

$$\dot{z}_1 = -15z_1 \implies \int \frac{dz_1}{z_1} = -15\int dt \implies \ln z_1 = -15t + c \implies z_1 = Ae^{-15t}$$

for some constants c and A such that $A = e^c$, and similarly,

$$\dot{z}_2 = -3z_2$$
 gives $z_2 = Be^{-3t}$.

for some constant B. Thus, the required general solution is

$$\mathbf{h}(t) = \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} Ae^{-15t} \\ Be^{-3t} \end{bmatrix} = \begin{bmatrix} 2Ae^{-15t} \\ Ae^{-15t} + Be^{-3t} \end{bmatrix},$$

since $\mathbf{h} = \mathsf{P}\mathbf{z}$.

So, given that $\mathbf{h}(t)$ is related to $\mathbf{y}(t)$ in (b) by

$$\mathbf{h}(t) = \mathbf{y}(t) - \begin{bmatrix} 0\\3 \end{bmatrix} \text{ we have } \begin{bmatrix} y_1\\y_2 \end{bmatrix} = \begin{bmatrix} 0\\3 \end{bmatrix} + \begin{bmatrix} 2Ae^{-15t}\\Ae^{-15t} + Be^{-3t} \end{bmatrix},$$

and so a particular solution to this system of coupled linear differential equations using the initial conditions given for $\mathbf{y}(t)$, i.e. $y_1(0) = 1$ and $y_2(0) = 4$, can be found by noting that at t = 0,

$$\begin{bmatrix} 1\\4 \end{bmatrix} = \begin{bmatrix} 0\\3 \end{bmatrix} + \begin{bmatrix} 2A\\A+B \end{bmatrix} \implies \begin{bmatrix} 2A\\A+B \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix} \implies \begin{bmatrix} A\\B \end{bmatrix} = \begin{bmatrix} 1/2\\1/2 \end{bmatrix},$$

That is, the sought after particular solution is

$$\mathbf{h}(t) = \begin{bmatrix} h_1(t) \\ h_2(t) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 2e^{-15t} \\ e^{-15t} + e^{-3t} \end{bmatrix}.$$

Clearly, in the long term, this means that $\mathbf{h}(t) \to \mathbf{0}$ and so we find that $\mathbf{y}(t) \to [0,3]^t$, i.e. the unicorn population dies out and the amount of virus in a cubic millimetre of blood approaches 3 according to this model.

Question 3.

(a) For two subspaces Y and Z of \mathbb{R}^n , we know that

i. \mathbb{R}^n is the *direct sum* of Y and Z, denoted by $\mathbb{R}^n = Y \oplus Z$, if every vector $\mathbf{v} \in \mathbb{R}^n$ can be written *uniquely* in terms of vectors in Y and vectors in Z, i.e. we can write

$$\mathbf{v} = \mathbf{y} + \mathbf{z},$$

for vectors $\mathbf{y} \in Y$ and $\mathbf{z} \in Z$ in exactly one way.

ii. the matrix P is a *projection* of \mathbb{R}^n onto Y parallel to Z, if $\mathbb{R}^n = Y \oplus Z$ and for every $\mathbf{v} \in \mathbb{R}^n$ we have $\mathsf{P}\mathbf{v} = \mathbf{y} \in Y$.

Further, if the matrix P is a projection of \mathbb{R}^n onto Y parallel to Z, we know that for any $\mathbf{v} \in \mathbb{R}^n$, we can write $\mathbf{v} = \mathbf{y} + \mathbf{z}$ uniquely in terms of vectors $\mathbf{y} \in Y$ and $\mathbf{z} \in Z$ as $\mathbb{R}^n = Y \oplus Z$. So, by definition, for any $\mathbf{v} \in \mathbb{R}^n$, we have $\mathsf{P}\mathbf{v} = \mathbf{y}$ and so

$$\mathsf{P}\mathbf{v} = \mathbf{v} - \mathbf{z} \implies (\mathsf{I} - \mathsf{P})\mathbf{v} = \mathbf{z} \in Z,$$

Thus, I - P is a matrix which represents a projection of \mathbb{R}^n onto Z parallel to Y.

(b) Given that Y and Z are subspaces such that $\mathbb{R}^n = Y \oplus Z$, we are asked to prove the following:

i. If P is a projection of \mathbb{R}^n onto Y parallel to Z, then $Y = R(\mathsf{P})$ and $Z = N(\mathsf{P})$.

Proof: We are given that P is a projection of \mathbb{R}^n onto Y parallel to Z and so $\mathbb{R}^n = Y \oplus Z$. To prove that $Y = R(\mathsf{P})$ we note that:

- For any $\mathbf{y} \in Y$ we have $\mathbf{y} = \mathbf{y} + \mathbf{0}$ and so, by the definition of P , $\mathsf{P}\mathbf{y} = \mathbf{y}$. Thus, $\mathbf{y} \in R(\mathsf{P})$ and so $Y \subseteq R(\mathsf{P})$.
- For any $\mathbf{y} \in R(\mathsf{P})$, there exists an $\mathbf{x} \in \mathbb{R}^n$ such that $\mathsf{P}\mathbf{x} = \mathbf{y}$ and so, by the definition of $\mathsf{P}, \mathbf{y} \in Y$. Thus, $R(\mathsf{P}) \subseteq Y$.

and for $Z = N(\mathsf{P})$ we note that:

- For any $\mathbf{z} \in Z$ we have $\mathbf{z} = \mathbf{0} + \mathbf{z}$ and so, by the definition of P , $\mathsf{P}\mathbf{z} = \mathbf{0}$. Thus, $\mathbf{z} \in N(\mathsf{P})$ and so $Z \subseteq N(\mathsf{P})$.
- For any $\mathbf{z} \in N(\mathsf{P})$, we have $\mathsf{P}\mathbf{z} = \mathbf{0}$ and so,

$$\mathsf{P}\mathbf{z} = \mathbf{z} - \mathbf{z} \implies \mathbf{z} = (\mathsf{I} - \mathsf{P})\mathbf{z}$$

But, as we saw in (a), $(I - P)x \in Z$ for every $x \in \mathbb{R}^n$. Thus, $z \in Z$, and so $N(P) \subseteq Z$.

Consequently, $Y = R(\mathsf{P})$ and $Z = N(\mathsf{P})$, as required.

ii. P is a projection if and only if P is idempotent.

Proof: This is an 'if and only if' statement and so it has to be proved 'both ways':

LTR: Suppose that P is a projection of X onto Y and so, by (i), $Y = R(\mathsf{P})$. So, for any $\mathbf{y} \in Y$, we have:

$$\mathbf{y} = \mathbf{y} + \mathbf{0} \implies \mathsf{P}\mathbf{y} = \mathbf{y}.$$

Now, for any $\mathbf{x} \in X$, $\mathsf{P}\mathbf{x} \in Y$ and so,

$$\mathsf{P}(\mathsf{P}\mathbf{x}) = \mathsf{P}\mathbf{x} \implies \mathsf{P}^2\mathbf{x} = \mathsf{P}\mathbf{x}.$$

Thus, as this must hold for all $\mathbf{x} \in X$, we have $\mathsf{P}^2 = \mathsf{P}$, i.e. P is idempotent (as required).

RTL: Suppose that P is idempotent, i.e. $P^2 = P$. We need to prove that P is a projection, that is, we need to establish that, for some subspaces Y and Z of X such that $X = Y \oplus Z$, P

will map any vector $\mathbf{x} \in X$ to a vector in Y. So, noting the result in (i), we show that $R(\mathsf{P})$ and $N(\mathsf{P})$ are subspaces of X such that $X = R(\mathsf{P}) \oplus N(\mathsf{P})$ and that P will map every vector $\mathbf{x} \in X$ to a vector in $R(\mathsf{P})$.

We know that if $R(\mathsf{P})$ and $N(\mathsf{P})$ are subsets of a vector space X, then they are subspaces of X. Thus, to establish that $X = R(\mathsf{P}) \oplus N(\mathsf{P})$, we use the fact that

$$X = R(\mathsf{P}) \oplus N(\mathsf{P})$$
 if and only if $X = R(\mathsf{P}) + N(\mathsf{P})$ and $R(\mathsf{P}) \cap N(\mathsf{P}) = \{\mathbf{0}\},\$

So, noting that:

• For any vector $\mathbf{x} \in X$, we can write

$$\mathbf{x} = \mathsf{P}\mathbf{x} + (\mathbf{x} - \mathsf{P}\mathbf{x}).$$

Clearly, the vector $\mathbf{Px} \in R(\mathbf{P})$ and the vector $\mathbf{x} - \mathbf{Px} \in N(\mathbf{P})$ since

$$\mathsf{P}(\mathbf{x} - \mathsf{P}\mathbf{x}) = \mathsf{P}\mathbf{x} - \mathsf{P}^2\mathbf{x} = \mathsf{P}\mathbf{x} - \mathsf{P}\mathbf{x} = \mathbf{0},$$

using the fact that P is idempotent. Thus, $X \subseteq R(\mathsf{P}) + N(\mathsf{P})$. Consequently, as $R(\mathsf{P}) + N(\mathsf{P}) \subseteq X$ too (by the definition of 'sum'), we have $X = R(\mathsf{P}) + N(\mathsf{P})$.

• Let **u** be any vector in $R(\mathsf{P}) \cap N(\mathsf{P})$, i.e. $\mathbf{u} \in R(\mathsf{P})$ and $\mathbf{u} \in N(\mathsf{P})$. Now, this means that there is a vector $\mathbf{v} \in X$ such that $\mathsf{P}\mathbf{v} = \mathbf{u}$ and that $\mathsf{P}\mathbf{u} = \mathbf{0}$, so

$$\mathsf{P}\mathbf{u} = \mathbf{0} \implies \mathsf{P}(\mathsf{P}\mathbf{v}) = \mathbf{0} \implies \mathsf{P}^2\mathbf{v} = \mathbf{0} \implies \mathsf{P}\mathbf{v} = \mathbf{0},$$

since P is idempotent. Thus, $\mathbf{u} = \mathsf{P}\mathbf{v} = \mathbf{0}$ and so, $R(\mathsf{P}) \cap N(\mathsf{P}) = \{\mathbf{0}\}$.

we can see that $X = R(\mathsf{P}) \oplus N(\mathsf{P})$.

Further, every vector $\mathbf{x} \in X$ is mapped to a vector in $R(\mathsf{P})$ by P since $\mathsf{P}\mathbf{x} \in R(\mathsf{P})$. Consequently, we can see that the idempotent matrix P is a projection (as required).

(c) The matrix P represents a projection of \mathbb{R}^3 onto Y parallel to Z where dim(Y) = 2 and dim(Z) = 1. By considering the matrix equation

$$(\mathsf{P} - \lambda \mathsf{I})\mathbf{x} = \mathbf{0},$$

we are asked to find the eigenvalues of the matrix P and the subspaces of \mathbb{R}^3 spanned by the eigenvectors corresponding to each of these eigenvalues. To do this, we note that:

• For any $\mathbf{y} \in Y$, we have

$$\mathsf{P}\mathbf{y} = \mathbf{y} \implies (\mathsf{P} - \mathsf{I})\mathbf{y} = \mathbf{0} \implies (\mathsf{P} - 1\mathsf{I})\mathbf{y} = \mathbf{0},$$

i.e. if $\mathbf{y} \neq \mathbf{0}$, \mathbf{y} is an eigenvector of P corresponding to the eigenvalue 1. Clearly, the subspace Y is spanned by these eigenvectors and as dim(Y) = 2, this eigenvalue will be of multiplicity 2.

• For any $\mathbf{z} \in Z$, we have

$$Pz = 0 \implies Pz - 0z = 0 \implies (P - 0I)z = 0$$

i.e. if $\mathbf{z} \neq \mathbf{0}$, then \mathbf{z} is an eigenvector of P corresponding to the eigenvalue 0. Clearly, the subspace Z is spanned by these eigenvectors and as dim(Z) = 1, this eigenvalue will be of multiplicity 1.

Further, since $\mathbb{R}^3 = Y \oplus Z$, we have $3 = \dim(Y) + \dim(Z) = 1 + 2$ and so these are the only eigenvalues that we are going to find.

Question 4.

(a) A complex matrix A is:

- i. *unitary* iff $AA^{\dagger} = I$.
- ii. *normal* iff $AA^{\dagger} = A^{\dagger}A$.

iii. *unitarily diagonalisable* iff there exists a unitary matrix P such that the matrix $P^{\dagger}AP$ is diagonal.

Also, a condition which will guarantee that a square matrix A has an inverse is $det(A) \neq 0$.

(b) Let A be a square complex matrix. We are asked to prove that:

i. A is invertible if and only if the eigenvalues of A are all non-zero.

Proof: Clearly, since λ is an eigenvalue of the matrix A if and only if det(A – λ I) = 0, we have

A is invertible iff $det(A) \neq 0$ iff $det(A - 0I) \neq 0$ iff $\lambda = 0$ is not an eigenvalue of A,

as required.

ii. The eigenvalues of a unitary matrix A all have a modulus of one.

Proof: Let λ be any eigenvalue of A, and let **x** be an eigenvector of A corresponding to λ , i.e. $A\mathbf{x} = \lambda \mathbf{x}$. As A is unitary, $A^{\dagger}A = I$, and so

$$\mathbf{x}^{\dagger} \mathsf{A}^{\dagger} \mathsf{A} \mathbf{x} = \mathbf{x}^{\dagger} \mathsf{I} \mathbf{x} = \mathbf{x}^{\dagger} \mathbf{x}.$$

But, using the $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ rule, we can also see that

$$\mathbf{x}^{\dagger} \mathsf{A}^{\dagger} \mathsf{A} \mathbf{x} = (\mathsf{A} \mathbf{x})^{\dagger} (\mathsf{A} \mathbf{x}) = (\lambda \mathbf{x})^{\dagger} (\lambda \mathbf{x}) = \lambda^* \lambda \mathbf{x}^{\dagger} \mathbf{x} = |\lambda|^2 \mathbf{x}^{\dagger} \mathbf{x}.$$

Equating these two expressions we find

$$|\lambda|^2 \mathbf{x}^{\dagger} \mathbf{x} = \mathbf{x}^{\dagger} \mathbf{x} \implies (|\lambda|^2 - 1) \mathbf{x}^{\dagger} \mathbf{x} = 0.$$

But, as **x** is an eigenvector, $\mathbf{x}^{\dagger}\mathbf{x} = \|\mathbf{x}\|^2 \neq 0$, and so this gives $|\lambda|^2 = 1$. Thus, $|\lambda| = 1$ (as required).

(c) Let A be a square invertible matrix with eigenvalue λ and \mathbf{x} as a corresponding eigenvector, i.e. $A\mathbf{x} = \lambda \mathbf{x}$. We are asked to show that the matrix A^{-1} has λ^{-1} as an eigenvalue with \mathbf{x} as a corresponding eigenvector. To do this, we note that as the matrix A is invertible, we know that the matrix A^{-1} exists and that $\lambda \neq 0$ by (bi). Thus, since

$$A\mathbf{x} = \lambda \mathbf{x} \implies A^{-1}A\mathbf{x} = \lambda A^{-1}\mathbf{x} \implies \lambda^{-1}\mathbf{x} = A^{-1}\mathbf{x},$$

the matrix A^{-1} has λ^{-1} as an eigenvalue with x as a corresponding eigenvector (as required).

We are given that the $n \times n$ invertible matrix A has a spectral decomposition given by

$$\mathsf{A} = \sum_{i=1}^{n} \lambda_i \mathbf{x}_i \mathbf{x}_i^{\dagger},$$

where, for $1 \le i \le n$, the \mathbf{x}_i are an orthonormal set of eigenvectors corresponding to the eigenvalues λ_i of A. So, clearly, the spectral decomposition of the matrix A^{-1} is

$$\mathsf{A}^{-1} = \sum_{i=1}^{n} \frac{1}{\lambda_i} \mathbf{x}_i \mathbf{x}_i^{\dagger},$$

using the result that we have just proved.

(d) We are given that the complex matrix

$$\mathsf{A} = \begin{bmatrix} -i & -i & 0\\ i & -i & 0\\ 0 & 0 & 1 \end{bmatrix},$$

and since

• $[1, i, 0]^t$ is an eigenvector of A, we have

$$\begin{bmatrix} -i & -i & 0\\ i & -i & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\ i\\ 0 \end{bmatrix} = \begin{bmatrix} -i+1\\ i(1-i)\\ 0 \end{bmatrix} = (1-i) \begin{bmatrix} 1\\ i\\ 0 \end{bmatrix},$$

i.e. this corresponds to an eigenvalue of 1 - i.

• $[0, 0, 1]^t$ is an eigenvector of A, we have

$$\begin{bmatrix} -i & -i & 0\\ i & -i & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix} = 1 \begin{bmatrix} 0\\ 0\\ 1 \end{bmatrix},$$

i.e. this corresponds to an eigenvalue of 1.

• -1-i is an eigenvalue of A and so a corresponding eigenvector $[x, y, z]^t$ is given by

$$\begin{bmatrix} 1 & -i & 0 \\ i & 1 & 0 \\ 0 & 0 & 2+i \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \mathbf{0} \implies \begin{array}{c} x - iy = 0 \\ ix + y = 0 \\ (2+i)z = 0 \end{array} \implies \begin{array}{c} ix + y = 0 \\ ix + y = 0 \\ z = 0 \end{array},$$

i.e. y = -ix for $x \in \mathbb{R}$ and z = 0. Thus, a corresponding eigenvector is $[1, -i, 0]^t$.

So, to find the spectral decomposition of A, we need to find an orthonormal set of eigenvectors, i.e.

$$\left\{ \begin{bmatrix} 1\\i\\0 \end{bmatrix}, \begin{bmatrix} 1\\-i\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ becomes } \left\{ \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\i\\0 \end{bmatrix}, \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-i\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\},$$

(since the eigenvectors are already mutually orthogonal) and substitute all of this into the expression in (c). Thus,

$$A = \frac{1-i}{2} \begin{bmatrix} 1\\i\\0 \end{bmatrix} \begin{bmatrix} 1 & -i & 0 \end{bmatrix} - \frac{1+i}{2} \begin{bmatrix} 1\\-i\\0 \end{bmatrix} \begin{bmatrix} 1 & i & 0 \end{bmatrix} + 1 \begin{bmatrix} 0\\0\\1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$$
$$= \frac{1-i}{2} \begin{bmatrix} 1 & -i & 0\\i&1&0\\0&0&0 \end{bmatrix} - \frac{1+i}{2} \begin{bmatrix} 1 & i & 0\\-i&1&0\\0&0&0 \end{bmatrix} + 1 \begin{bmatrix} 0 & 0 & 0\\0&0&0\\0&0&1 \end{bmatrix}.$$

is the spectral decomposition of A.

Consequently, since the eigenvalues of A are all non-zero, by (bi), this matrix is invertible and so by (c), the spectral decomposition of its inverse is

$$\mathsf{A}^{-1} = \frac{1}{2(1-i)} \begin{bmatrix} 1 & -i & 0\\ i & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{2(1+i)} \begin{bmatrix} 1 & i & 0\\ -i & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} + 1 \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}.$$

And, since the eigenvalues of A are not all of modulus one (note that $|1 + i| = |-1 - i| = \sqrt{2}$), by (bii), A is not unitary and so $A^{-1} \neq A^{\dagger}$. But clearly, taking the complex conjugate transpose of the spectral decomposition of A, we can see that

$$\mathsf{A}^{\dagger} = \frac{1+i}{2} \begin{bmatrix} 1 & -i & 0\\ i & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} - \frac{1-i}{2} \begin{bmatrix} 1 & i & 0\\ -i & 1 & 0\\ 0 & 0 & 0 \end{bmatrix} + 1 \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix},$$

is the spectral decomposition of A^{\dagger} .

Question 5.

(a) A weak generalised inverse of an $m \times n$ matrix A is any $n \times m$ matrix A^g which is such that $AA^gA = A$.

(b) We are asked to prove that:

The system of linear equations $A\mathbf{x} = \mathbf{b}$ is consistent if and only if $\mathbf{b} = AA^g \mathbf{b}$.

Proof: This is an 'if and only if' statement and so we have to prove it 'both ways':

LTR: If $A\mathbf{x} = \mathbf{b}$ is consistent, then it must be the case that $\mathbf{b} \in R(A)$, i.e. there is an $\mathbf{x} \in \mathbb{R}^n$ such that $A\mathbf{x} = \mathbf{b}$. Thus, as $AA^gA = A$, this means that $AA^gA\mathbf{x} = AA^g\mathbf{b}$ is the same as $A\mathbf{x} = AA^g\mathbf{b}$. Consequently, $\mathbf{b} = AA^g\mathbf{b}$ (as required).

RTL: If $AA^g \mathbf{b} = \mathbf{b}$, then $\mathbf{x} = A^g \mathbf{b}$ is clearly a solution of the matrix equation $A\mathbf{x} = \mathbf{b}$. That is, this matrix equation has a solution and so it is consistent (as required).

Further, to show that:

For any vector \mathbf{w} , the vector $\mathbf{x} = A^g \mathbf{b} + (A^g A - I) \mathbf{w}$ is a solution of the consistent system of linear equations $A\mathbf{x} = \mathbf{b}$.

we note that,

$$A\mathbf{x} = A [A^g \mathbf{b} + (A^g A - I)\mathbf{w}] = AA^g \mathbf{b} + (AA^g A - AI)\mathbf{w} = \mathbf{b} + (A - A)\mathbf{w} = \mathbf{b}$$

where we have used the fact that $AA^{g}b = b$ since the equations are assumed to be consistent.

(c) A *right inverse*, R, of a matrix A is any matrix R which is such that AR = I. We are then asked to show that:

i. Right inverses are weak generalised inverses:

This is the case since

$$ARA = (AR)A = IA = A.$$

where we have used the fact that AR = I.

ii. If A is an $m \times n$ matrix of rank m, then the matrix $A^t(AA^t)^{-1}$ is a right inverse of A.

This is the case since if A is an $m \times n$ matrix of rank m, then AA^t is an $m \times m$ matrix where $\rho(AA^t) = \rho(A) = m$, i.e. the matrix AA^t is invertible and so the matrix $A^t(AA^t)^{-1}$ exists. Further, it is a right inverse since

$$\mathsf{A}[\mathsf{A}^t(\mathsf{A}\mathsf{A}^t)^{-1}] = (\mathsf{A}\mathsf{A}^t)(\mathsf{A}\mathsf{A}^t)^{-1} = \mathsf{I},$$

as desired.

(d) To find a weak generalised inverse of the matrix

$$\mathsf{A} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$$

we note that this is a 2×3 matrix of rank 2 and so, by (c), the matrix $A^t(AA^t)^{-1}$ is a weak generalised inverse of A. Thus, we have

$$\mathsf{A}\mathsf{A}^{t} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 2 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix} \implies (\mathsf{A}\mathsf{A}^{t})^{-1} = \frac{1}{14} \begin{bmatrix} 6 & -2 \\ -2 & 3 \end{bmatrix},$$

and so,

$$\mathsf{A}^{g} = \frac{1}{14} \begin{bmatrix} -1 & 1\\ 1 & 2\\ 1 & 1 \end{bmatrix} \begin{bmatrix} 6 & -2\\ -2 & 3 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} -8 & 5\\ 2 & 4\\ 4 & 1 \end{bmatrix},$$

is the required weak generalised inverse. So, to find all possible solutions to the system of linear equations given by

$$-x + y + z = -1$$
$$x + 2y + z = 1$$

we note that these equations can be written in the form $A\mathbf{x} = \mathbf{b}$ with

$$\mathsf{A} = \begin{bmatrix} -1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}, \quad \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{and} \quad \mathbf{b} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}.$$

Thus, as

$$\mathsf{A}^{g}\mathsf{A} = \frac{1}{14} \begin{bmatrix} -8 & 5\\ 2 & 4\\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 & 1\\ 1 & 2 & 1 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 13 & 2 & -3\\ 2 & 10 & 6\\ -3 & 6 & 5 \end{bmatrix},$$

we have

$$\mathsf{A}^{g}\mathsf{A} - \mathsf{I} = \frac{1}{14} \left\{ \begin{bmatrix} 13 & 2 & -3\\ 2 & 10 & 6\\ -3 & 6 & 5 \end{bmatrix} - \begin{bmatrix} 14 & 0 & 0\\ 0 & 14 & 0\\ 0 & 0 & 14 \end{bmatrix} \right\} = \frac{1}{14} \begin{bmatrix} -1 & 2 & -3\\ 2 & -4 & 6\\ -3 & 6 & -9 \end{bmatrix},$$

and

$$\mathsf{A}^{g}\mathbf{b} = \frac{1}{14} \begin{bmatrix} -8 & 5\\ 2 & 4\\ 4 & 1 \end{bmatrix} \begin{bmatrix} -1\\ 1 \end{bmatrix} = \frac{1}{14} \begin{bmatrix} 13\\ 2\\ -3 \end{bmatrix}.$$

So, the solutions of this system of linear equations are given by

$$\mathbf{x} = \frac{1}{14} \left\{ \begin{bmatrix} 13\\2\\-3 \end{bmatrix} + \begin{bmatrix} -1 & 2 & -3\\2 & -4 & 6\\-3 & 6 & -9 \end{bmatrix} \mathbf{w} \right\},\,$$

for any $\mathbf{w} \in \mathbb{R}^3$.

We know from (b) that the $(A^{g}A - IM)\mathbf{w}$ part of our solutions will yield a vector in N(A) and so the solutions set is the translate of N(A) by $\frac{1}{14}[13, 2, -3]^{t}$. Further, by the rank-nullity theorem, we have $\eta(A) = 3 - \rho(A) = 3 - 2 = 1$ and so N(A) will be a line through the origin. Indeed, the vector equation of the line representing the solution set is

$$\mathbf{x} = \frac{1}{14} \begin{bmatrix} 13\\2\\-3 \end{bmatrix} + \lambda \begin{bmatrix} -1\\2\\-3 \end{bmatrix},$$

where $\lambda \in \mathbb{R}$.

Question 6

(a) We are given an orthonormal set of vectors $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ which span a vector space V. Clearly, for some k < n, an expression for Pv , the orthogonal projection of a vector $\mathbf{v} \notin \mathrm{Lin}(S)$ onto $\mathrm{Lin}\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k\}$ is

$$\mathsf{P}\mathbf{v} = \sum_{i=1}^k \langle \mathbf{v}, \mathbf{e}_i \rangle \mathbf{e}_i.$$

So, clearly, as any vector $\mathbf{v} \in V$ can be written as

$$\mathbf{v} = \sum_{i=1}^{n} \langle \mathbf{v}, \mathbf{e}_i \rangle \mathbf{e}_i,$$

we have

$$(\mathsf{I} - \mathsf{P})\mathbf{v} = \mathbf{v} - \mathsf{P}\mathbf{v} = \sum_{i=k+1}^{n} \langle \mathbf{v}, \mathbf{e}_i \rangle \mathbf{e}_i,$$

and so since the basis is orthonormal, we have

$$\langle \mathsf{P}\mathbf{v}, (\mathsf{I}-\mathsf{P})\mathbf{v} \rangle = 0.$$

So, noting that the mean square error associated with the vectors \mathbf{v} and $\mathsf{P}\mathbf{v}$ is given by

$$\|\mathbf{v} - \mathsf{P}\mathbf{v}\|^2 = \langle \mathbf{v} - \mathsf{P}\mathbf{v}, \mathbf{v} - \mathsf{P}\mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{v} - \mathsf{P}\mathbf{v} \rangle - \langle \mathsf{P}\mathbf{v}, \mathbf{v} - \mathsf{P}\mathbf{v} \rangle,$$

and since $\langle \mathsf{P}\mathbf{v}, \mathbf{v} - \mathsf{P}\mathbf{v} \rangle = 0$, we have

$$\|\mathbf{v} - \mathsf{P}\mathbf{v}\|^2 = \langle \mathbf{v}, \mathbf{v} - \mathsf{P}\mathbf{v} \rangle.$$

So, using our expression for $\mathsf{P}\mathbf{v}$ we get

$$egin{aligned} \|\mathbf{v}-\mathsf{P}\mathbf{v}\|^2 &= \left\langle \mathbf{v},\mathbf{v}-\sum_{i=1}^k \langle \mathbf{v},\mathbf{e}_i
angle \mathbf{e}_i
ight
angle \ &= \langle \mathbf{v},\mathbf{v}
angle - \sum_{i=1}^k \langle \mathbf{v},\mathbf{e}_i
angle \langle \mathbf{v},\mathbf{e}_i
angle \ &= \|\mathbf{v}\|^2 - \sum_{i=1}^k \langle \mathbf{v},\mathbf{e}_i
angle^2, \end{aligned}$$

as required.

(b) We are given the vector space which is the linear span of the functions e^x , 1 and e^{-x} of x defined over the interval $0 \le x \le 1$. So, with respect to the inner product given by

$$\langle \alpha e^x + \beta e^{-x} + \gamma, \alpha' e^x + \beta' e^{-x} + \gamma' \rangle = \alpha \alpha' + \beta \beta' + \gamma \gamma',$$

we can find the orthogonal projection of the unit function onto the subspace spanned by the functions e^x and e^{-x} . To do this, we note that since

$$\langle e^x, e^{-x} \rangle = (1)(0) + (0)(1) = 0,$$

the functions e^x and e^{-x} are orthogonal and as

$$\langle e^x, e^x \rangle = (1)(1) = 1$$
 and $\langle e^{-x}, e^{-x} \rangle = (1)(1) = 1$,

they are unit too. Thus, the set $\{e^x, e^{-x}\}$ is already orthonormal. Thus, the required orthogonal projection is

$$\mathsf{P}1 = \langle 1, e^x \rangle e^x + \langle 1, e^{-x} \rangle e^{-x} = [(0)(1) + (1)(0)]e^x + [(0)(1) + (1)(0)]e^{-x} = 0.$$

As such, the mean square error associated with this orthogonal projection is given by

$$\|\mathsf{P}1 - 1\|^2 = \|1\|^2 = \langle 1, 1 \rangle = (1)(1) = 1.$$

(c) We are asked to show that

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|,$$

for all vectors \mathbf{x} and \mathbf{y} in a real inner product space. (Notice that this is just the Triangle Inequality.) To do this we note that:

$$\begin{aligned} \|\mathbf{x} + \mathbf{y}\|^2 &= \langle \mathbf{x} + \mathbf{y}, \mathbf{x} + \mathbf{y} \rangle \\ &= \langle \mathbf{x}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{y}, \mathbf{y} \rangle \\ \implies \|\mathbf{x} + \mathbf{y}\|^2 &= \|\mathbf{x}\|^2 + 2\langle \mathbf{x}, \mathbf{y} \rangle + \|\mathbf{y}\|^2, \end{aligned}$$

where we have used the symmetry property of real inner products. However, the Cauchy-Schwartz inequality tells us that ||| = ||| = |||| = ||||

$$|\langle \mathbf{x}, \mathbf{y} \rangle| \le \|\mathbf{x}\| \|\mathbf{y}\|,$$

and so

$$\|\mathbf{x} + \mathbf{y}\|^2 \le \|\mathbf{x}\|^2 + 2\|\mathbf{x}\|\|\mathbf{y}\| + \|\mathbf{y}\|^2.$$

But, factorising the right-hand-side then gives,

$$\|\mathbf{x} + \mathbf{y}\|^2 \le (\|\mathbf{x}\| + \|\mathbf{y}\|)^2,$$

and hence, since norms are non-negative, we have

$$\|\mathbf{x} + \mathbf{y}\| \le \|\mathbf{x}\| + \|\mathbf{y}\|,$$

(as required)

(d) Considering the vector space $\mathbb{E}^{[0,t]}$ given by the linear span of the functions e^x and e^{-x} of x defined over the interval $0 \le x \le t$ for some t > 0 and using the inner product

$$\langle f(x), g(x) \rangle = \int_0^t f(x)g(x) \, dx,$$

defined on this vector space, we have

$$\begin{aligned} \|e^x + e^{-x}\|^2 &= \int_0^t (e^x + e^{-x})^2 \, dx = \int_0^t (e^{2x} + 2 + e^{-2x}) \, dx \\ &= \left[\frac{e^{2x}}{2} + 2x - \frac{e^{-2x}}{2}\right]_0^t \\ &= \left[\frac{e^{2t}}{2} + 2t - \frac{e^{-2t}}{2}\right] - \left[\frac{1}{2} + 0 - \frac{1}{2}\right] \\ &= \sinh(2t) + 2t, \end{aligned}$$

and,

$$||e^{x}||^{2} = \int_{0}^{t} e^{2x} dx = \left[\frac{e^{2x}}{2}\right]_{0}^{t} = \frac{e^{2t}}{2} - \frac{1}{2},$$

and,

$$||e^{-x}||^2 = \int_0^t e^{-2x} dx = \left[-\frac{e^{-2x}}{2}\right]_0^t = -\frac{e^{-2t}}{2} + \frac{1}{2}.$$

So, using the result in (c), we have

$$\sqrt{\sinh(2t) + 2t} \le \sqrt{\frac{e^{2t}}{2} - \frac{1}{2}} + \sqrt{\frac{1}{2} - \frac{e^{-2t}}{2}},$$

as required.