Further Mathematical Methods (Linear Algebra)

Solutions For The 2001 Examination

Question 1

(a) For a non-empty subset W of V' to be a subspace of V' we require that, for all vectors x,y € W
and all scalars o € R:

i. Closure under vector addition: x+y € W.
ii. Closure under scalar multiplication: ax € W.
To be an inner product on V, a function (x,y) which maps vectors x,y € V to R must be such that:
i. Positivity: (x,x) > 0 and, (x,x) = 0 if and only if x = 0.
ii. Symmetry: (x,y) = (y,x).
iii. Linearity: (ax + fy,z) = a(x,z) + B(y, z).

for all vectors x,y,z € V and all scalars o, 5 € R.

]

, we have

2 n

i i

f= E a;x' = E a;xX’,
i=0 i=0

(b) Clearly, for any vector u € IP’[QO’l

[0,1]

where, for 3 < i < n, we have a; = 0. Thus, u € IP)L?’” too and so P, is a subset of ]P[20’1]

. To show

that it is a subspace, we take any two vectors in IP)[QO’”, say

2

2
f = Zaixi and g= Z bix',
1=0

=0

and any scalar o € R and note that IP)[QO’” is closed under:

e vector addition since

2

2 2
f+g= Z ax' + Z bix' = Z(ai +by)x,
=0 =0

i=0
andsof+g € IF’[QO’” too since a; +b; € R for 0 <7 < 2.

e scalar multiplication since
2
of = E aa; X',
i=0

and so ag € ]P’[Zo’l] too since aa; € R for 0 < ¢ < 2.

as required.

(c) We need to show that the function defined by

(f,g) = apbo + a1b1 + agbs,

defines an inner product on IP’[QO’”. To do this, we show that this formula satisfies all of the conditions

given in part (a). Thus, taking any three vectors f, g and h in IP’[QO’I] and any two scalars « and (3 in

R we have:



i. (f,f) = a3 + a} + a3 which is the sum of the squares of three real numbers and as such it is
real and non-negative. Further, to show that (f,f) = 0 if and only if f = 0 (where here, 0 is
the zero polynomial), we note that:

e LTR: If (f,f) = 0, then a + a? + a3 = 0. But, this is the sum of the squares of three real
numbers and so it must be the case that ag = a1 = ag = 0. Thus, f = 0.

e RTL: If f =0, then ap = a; = ag = 0. Thus, (f,f) =0.
(as required).
ii. Obviously, (f,g) = agbo + a1b1 + asbs = boag + bray + beas = (f, g).
iii. We note that the vector af + Gg is just another quadratic and so:

(af + Bg, h) = (aag + Bbo)co + (a1 + Bbr)er + (aaz + Bba)cs
= afapco + arcr + azez) + B(boco + bier + baca)
(af + Bg,h) = a(f, h) + 3(g, h)
where h : x — ¢g + 1z + coz? for all z € R.
Consequently, the formula given above does define an inner product on IP’[20’1] (as required).

(d) To show that a set of vectors is a basis for IP’[QO’I] we have to show that it spans this space and

that it is linearly independent. Thus,
e For S = {1,x,x2}: Firstly, these vectors span the space as,
Lin(S) = {aol + a1x + axx?| for all ag, ar,as € R} = IP’EO’I],

They are also linearly independent since calculating the Wronskian for these vectors we have,

2

1 =z =z
W(zx)=10 1 2z|=2,
0 0 2

and this is non-zero for all z € [0, 1].

e For 8" = {1 +x,1—x,x+x2}: Firstly, these vectors span the space as,

Lin(S") = {ao(1 + x) + a1(1 — x) + as(x + x?)| for all ag, a1, as € R}
= {(ao + a1)1 + (CLO — a1 + ag)x + a2X2 ‘ for all ag, a1, as € R}
= {bol +bix + b2X2 | for all by, by, be € R}
0,1
=pY

They are also linearly independent since calculating the Wronskian for these vectors we have,
[expanding along the bottom row]

142 1—2 z+2a2
W(x)=| 1 -1 142z =2-1+2)—(1—2)]=—4,
0 0 2

and this is non-zero for all x € [0, 1].

Consequently, the sets S and S’ are both bases of IP’[QO’”.

(e) To find a matrix A such that



where [f]g and [f]g/ are the coordinate vectors of f € ]P>[20’1]
we use the definition of coordinate vector. That is, we use the fact that the equality

al+bx+cex? =ad' (1 +x)+ V(1 —x)+(x+x?),

holds if and only if

a a
bl =AYV ,
c|g d =
where
1 1 0
A= |1 -1 1],
0 0 1

is the required matrix.

relative to the bases S and S’ respectively



Question 2.

(a) The Leslie matrix for the unicorn population is given by:

0o 1 2
L=|1/18 0 o0},
0 1/6 0

and to verify that its unique real positive eigenvalue is 1/3, we use the result given in the lectures to
find an eigenvector corresponding to this purported eigenvalue, i.e.

1 1 12
vi=| by/M\ | =|1/6| andso we take vi = | 2
bibe /N2 1/12 1
Then, as
0 1 2| |12 4 1
Lvi=|1/18 0 0 2 =12/3| = gvl,
0 1/6 o] |1 1/3

1/3 is indeed an eigenvalue of L. Thus, noting that:

i. the population distribution vector x*) behaves as

. 12
x(F) ~ Ay = 3k ? ,

(for some constant ¢) in the long-term.

ii. the proportion of the population in each of the three age classes becomes constant in the ratio
12:2:1 in the long-term.

iii. the growth rate of the population in each age class is 1/3, i.e. the population in each age class
decreases by 66%% every time period (i.e. every ten years), in the long-term.

(b) The steady states of the coupled non-linear differential equations
91 =3y1 — yi — 6y1ye
Jo = 3y2 — ¥ — 2142
are given by the solutions of the simultaneous equations
y1(3 —y1 —6y2) =0
Y23 —y2 —2y1) =0

i.e. by (y1,y2) = (0,0),(0,3),(3,0) and (72, ).
To assess the stability of the steady state given by (y1,y2) = (0, 3), we evaluate the Jacobian for this
system at (0, 3), i.e.

_ |3 —2y1 — 6y —6y1 _[-15 0
DF[(y1,2)] = [ o, 3 ooy = DF[(0,3)] = 6 _3|
and find the eigenvalues of this matrix. So, solving
—15 - A 0
‘ 6 _3_/\‘—0 = (I5+XN)B+A) =0,
we find that the eigenvalues are A = —15 and A = —3. According to a result given in the lectures,

since these are both real and negative, the steady state (y1,y2) = (0,3) is asymptotically stable.
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(c) We are asked to find the general solution of the coupled linear differential equations given by

m ~or(0.3] 2]

where DF[(0, 3)] is the Jacobian of the system in (b) evaluated at the steady state (y1,y2) = (0, 3).
That is, we just have to solve the coupled linear differential equations given by

Ml [-15 0] [m

he| | =6 —=3]| |ha]’
To do this, we know that the eigenvalues of the matrix are —15 and —3, and we can easily see that
the corresponding eigenvectors are [2,1]* and [0, 1]*. Thus, setting

2 0 -15 0
P_[l J and D—[O _3],

we set z = P~'h so that
h = DF[(0,3)Jh =PDP'h = 2z =Dz,
since DF[(0, 3)] = PDP~!. So, we now have to solve the uncoupled linear differential equation given

by
d
21 =152 — /Z1 = 15/dt — Ilnz;=—-16t+¢c = 2z = Ae_15t,
Z1
for some constants ¢ and A such that A = e, and similarly,
o _ o _ —3t
2o = —3z9 gives z9 = Be™ 7",

for some constant B. Thus, the required general solution is
h(t) = hi(t)]  [2 0] [Ae 1Y 2Ae 15t
T lhe(t)| |1 1| | Be 3| T |Ae Pt 4 Be T3t
since h = Pz.
So, given that h(t) is related to y(¢) in (b) by

0 0 2Ae 15!
h(t) = y(t) — |:3:| we have |:z;:| = |:3:| + |:A€15t + Begt:| 3

and so a particular solution to this system of coupled linear differential equations using the initial
conditions given for y(t), i.e. y1(0) = 1 and y2(0) = 4, can be found by noting that at ¢t = 0,

b e P B e R e P R L

That is, the sought after particular solution is

(Mm@ 1 2e7
h(t) = [hg(t)] =5 |15t 4 o3t
Clearly, in the long term, this means that h(¢) — 0 and so we find that y(t) — [0, 3], i.e. the unicorn

population dies out and the amount of virus in a cubic millimetre of blood approaches 3 according
to this model.



Question 3.

(a) For two subspaces Y and Z of R", we know that

i. R™ is the direct sum of Y and Z, denoted by R" =Y @ Z, if every vector v € R” can be written
uniquely in terms of vectors in Y and vectors in Z, i.e. we can write

vV=Y+z,
for vectors y € Y and z € Z in exactly one way.

ii. the matrix P is a projection of R™ onto Y parallel to Z, if R® =Y & Z and for every v € R"
we have Pv =y €Y.

Further, if the matrix P is a projection of R™ onto Y parallel to Z, we know that for any v € R™, we
can write v =y + z uniquely in terms of vectorsy € Y and z € Z as R" =Y & Z. So, by definition,
for any v € R", we have Pv =y and so

Pv=v—-z = (I-P)v=zecZ
Thus, | — P is a matrix which represents a projection of R"™ onto Z parallel to Y.
(b) Given that Y and Z are subspaces such that R" =Y @& Z, we are asked to prove the following:

i. If P is a projection of R™ onto Y parallel to Z, then Y = R(P) and Z = N(P).

Proof: We are given that P is a projection of R onto Y parallel to Z and so R" =Y & Z. To
prove that Y = R(P) we note that:

e For any y € Y we have y =y + 0 and so, by the definition of P, Py = y. Thus, y € R(P)
and so Y C R(P).

e For any y € R(P), there exists an x € R"™ such that Px = y and so, by the definition of
P,y €Y. Thus, R(P) C Y.

and for Z = N(P) we note that:

e For any z € Z we have z = 0 + z and so, by the definition of P, Pz = 0. Thus, z € N(P)
and so Z C N(P).

e For any z € N(P), we have Pz = 0 and so,
Pz=z—-2z — z=(1-P)z
But, as we saw in (a), (I — P)x € Z for every x € R". Thus, z € Z, and so N(P) C Z.
Consequently, Y = R(P) and Z = N(P), as required.
ii. P is a projection if and only if P is idempotent.

Proof: This is an ‘if and only if’ statement and so it has to be proved ‘both ways’:

LTR: Suppose that P is a projection of X onto Y and so, by (i), Y = R(P). So, for anyy € Y,
we have:
y=y+0 = Py=y.

Now, for any x € X, Px € Y and so,
P(Px) = Px = P?x=Px.
Thus, as this must hold for all x € X, we have P? = P, i.e. P is idempotent (as required).

RTL: Suppose that P is idempotent, i.e. P? = P. We need to prove that P is a projection,
that is, we need to establish that, for some subspaces Y and Z of X such that X =Y & Z, P
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will map any vector x € X to a vector in Y. So, noting the result in (i), we show that R(P)
and N (P) are subspaces of X such that X = R(P) @ N(P) and that P will map every vector
x € X to a vector in R(P).

We know that if R(P) and N(P) are subsets of a vector space X, then they are subspaces of
X. Thus, to establish that X = R(P) @ N(P), we use the fact that

X = R(P)@® N(P) if and only if X = R(P)+ N(P) and R(P)N N(P) = {0},
So, noting that:
e For any vector x € X, we can write
x = Px + (x — Px).
Clearly, the vector Px € R(P) and the vector x — Px € N(P) since
P(x — Px) = Px — P’x = Px — Px =0,

using the fact that P is idempotent. Thus, X C R(P) + N(P). Consequently, as R(P) +
N(P) C X too (by the definition of ‘sum’), we have X = R(P) + N(P).

e Let u be any vector in R(P) N N(P), i.e. u € R(P) and u € N(P). Now, this means that
there is a vector v € X such that Pv = u and that Pu = 0, so

Pu=0 — P(Pv)=0 — P’v=0 — Pv=0,
since P is idempotent. Thus, u = Pv = 0 and so, R(P) N N(P) = {0}.

we can see that X = R(P) & N(P).

Further, every vector x € X is mapped to a vector in R(P) by P since Px € R(P). Consequently,
we can see that the idempotent matrix P is a projection (as required).

(c) The matrix P represents a projection of R onto Y parallel to Z where dim(Y") = 2 and dim(Z) =
1. By considering the matrix equation

(P — A)x =0,

we are asked to find the eigenvalues of the matrix P and the subspaces of R? spanned by the eigen-
vectors corresponding to each of these eigenvalues. To do this, we note that:

e For any y € Y, we have
Py=y = (P-lly=0 = (P-1)y =0,

i.e. if y # 0, y is an eigenvector of P corresponding to the eigenvalue 1. Clearly, the subspace
Y is spanned by these eigenvectors and as dim(Y) = 2, this eigenvalue will be of multiplicity 2.

e For any z € Z, we have
Pz=0 = Pz—-0z=0 = (P-0l)z=0,

i.e. if z # 0, then z is an eigenvector of P corresponding to the eigenvalue 0. Clearly, the
subspace Z is spanned by these eigenvectors and as dim(Z) = 1, this eigenvalue will be of
multiplicity 1.

Further, since R? = Y @& Z, we have 3 = dim(Y)+dim(Z) = 1+2 and so these are the only eigenvalues
that we are going to find.



Question 4.
(a) A complex matrix A is:
i. unitary iff AAT = 1.
ii. normal iff AAT = ATA.
iii. wnitarily diagonalisable iff there exists a unitary matrix P such that the matrix PTAP is diagonal.
Also, a condition which will guarantee that a square matrix A has an inverse is det(A) # 0.
(b) Let A be a square complex matrix. We are asked to prove that:

i. A is invertible if and only if the eigenvalues of A are all non-zero.

Proof: Clearly, since X is an eigenvalue of the matrix A if and only if det(A — Al) = 0, we have
A is invertible iff det(A) # 0 iff det(A —0l) # 0 iff A = 0 is not an eigenvalue of A,
as required.

ii. The eigenvalues of a unitary matrix A all have a modulus of one.

Proof: Let A be any eigenvalue of A, and let x be an eigenvector of A corresponding to A, i.e.
Ax = Ax. As A is unitary, ATA =1, and so

xTATAx = xTIx = x'x.
But, using the (AB)" = BTAT rule, we can also see that
xTATAx = (Ax)T(Ax) = (Ax)T(Ax) = M AxTx = |A*xTx.
Equating these two expressions we find
IN?xTx =xTx = (]A\?-1)x'x=0.
But, as x is an eigenvector, x'x = ||x||? # 0, and so this gives |\[> = 1. Thus, [A\| = 1 (as

required).

(c) Let A be a square invertible matrix with eigenvalue A and x as a corresponding eigenvector,
ie. Ax = Ax. We are asked to show that the matrix A~! has A~! as an eigenvalue with x as a
corresponding eigenvector. To do this, we note that as the matrix A is invertible, we know that the
matrix A~ exists and that A # 0 by (bi). Thus, since

Ax =Xx = A 'Ax=)M"1x = M lx=A"lx,
the matrix A~! has A~! as an eigenvalue with x as a corresponding eigenvector (as required).

We are given that the n x n invertible matrix A has a spectral decomposition given by

n
A= Z )\Z‘XZ'XI,
i=1

where, for 1 <14 < n, the x; are an orthonormal set of eigenvectors corresponding to the eigenvalues
\i of A. So, clearly, the spectral decomposition of the matrix A=! is

"1
ATl = Z yXiXI,
i=1 "
using the result that we have just proved.

(d) We are given that the complex matrix

—1 —1 0
A=1|1 —i 0],
0 0 1

and since



e [1,7,0]" is an eigenvector of A, we have

— —1 0] (1 —1+1 1
i —i 0| |il=[i1=0)|=00—=2) ||,
0 1| (0 0

i.e. this corresponds to an eigenvalue of 1 — 1.

e [0,0,1]! is an eigenvector of A, we have

—i —i 0] [0 0 0
i —i 0] |ol=|ol=1]o0],
0o o0 1|1 1 1

i.e. this corresponds to an eigenvalue of 1.

e —1 — i is an eigenvalue of A and so a corresponding eigenvector [z, ¥, 2]* is given by

1 =2 0 T z—1wy =0 ix+y =0

11 0 y|l =0 = w+y =0 — dwrx+y =0,

0 0 2+1if |z (24+1i)z =0 z =0
i.e. y = —ix for z € R and z = 0. Thus, a corresponding eigenvector is [1, —i, 0]’

So, to find the spectral decomposition of A, we need to find an orthonormal set of eigenvectors, i.e.

171 117 Jo 1 17 To
. . 0 b 1 ) 1 ) 0
i, =1, ecomes { — [i|,— |—1], ,
ol o] |1 V209l V20| |1

(since the eigenvectors are already mutually orthogonal) and substitute all of this into the expression
in (c). Thus,

1 1
1 1
A=l =i o] -1 i o) +1]o|[o 0 1]
2 2
0 0
1 =i 0 . 0 00
1 1
:2Z¢10—;”—z ol +1]0 0 0
0 0 0 0 00 00 1]

is the spectral decomposition of A.

Consequently, since the eigenvalues of A are all non-zero, by (bi), this matrix is invertible and so by
(c), the spectral decomposition of its inverse is

1 1 =2 0 1 1 72 0 0 00
Al=—— i 1 ————|—=i 1 0/ +1(0 0 O
20=9 10 o0 of 20*+D |0 0 0 00 1
And, since the eigenvalues of A are not all of modulus one (note that |1 +i| = | — 1 —i| = /2), by

(bii), A is not unitary and so A™! # AT, But clearly, taking the complex conjugate transpose of the

spectral decomposition of A, we can see that

! 1—i
2

14

Af
2

o O O

1 0
1 0f —
0 0 O

is the spectral decomposition of Af.



Question 5.

(a) A weak generalised inverse of an m X n matrix A is any n x m matrix AY which is such that
AAIA = A.

(b) We are asked to prove that:

The system of linear equations Ax = b is consistent if and only if b = AA%Db.

Proof: This is an ‘if and only if’ statement and so we have to prove it ‘both ways’:

LTR: If Ax = b is consistent, then it must be the case that b € R(A), i.e. there is an
x € R™ such that Ax = b. Thus, as AAYA = A, this means that AAAx = AA9D is the
same as Ax = AA9b. Consequently, b = AA9Db (as required).

RTL: If AA%b = b, then x = A%D is clearly a solution of the matrix equation Ax = b.
That is, this matrix equation has a solution and so it is consistent (as required).

Further, to show that:

For any vector w, the vector x = A%b + (A9A — I)w is a solution of the consistent system
of linear equations Ax = b.

we note that,
Ax = A[A%b + (AIA — I)w| = AA9Db + (AAA - Al)w =b+ (A— A)w = b,
where we have used the fact that AAYb = b since the equations are assumed to be consistent.

(c) A right inverse, R, of a matrix A is any matrix R which is such that AR = 1. We are then asked
to show that:

i. Right inverses are weak generalised inverses:

This is the case since
ARA = (AR)A =1A = A.

where we have used the fact that AR = I.
ii. If A is an m x n matrix of rank m, then the matrix A*(AA?)~! is a right inverse of A.

This is the case since if A is an m x n matrix of rank m, then AA! is an m x m matrix where
p(AAY) = p(A) = m, i.e. the matrix AA! is invertible and so the matrix Af(AA?)~1 exists.
Further, it is a right inverse since

A[AL(AAH T = (AAY)(AAD) 7L =1,
as desired.

(d) To find a weak generalised inverse of the matrix
-1 1 1
A= [ 12 1} ’

we note that this is a 2 x 3 matrix of rank 2 and so, by (c), the matrix AY(AA?)~! is a weak generalised
inverse of A. Thus, we have

-1 1
-1 11 32 176 -2
t_ _ tn—1 _
AA_[I 2 1] L2 _{2 6] (AR) _14[2 3]’
1 1
and so,
-1 1 -8 5
S R I B R
11 4 1



is the required weak generalised inverse. So, to find all possible solutions to the system of linear
equations given by

—r+y+z=-1
r+2y+z=1

we note that these equations can be written in the form Ax = b with

T
A:[_l 1 1}, x= |y| and b:[_l}.

1 21 1
z
Thus, as
-8 5 13 2 -3
— 1
AA=— |2 4 [11 ; H—M 2 10 6|,
4 1 -3 6 5
we have
1 13 2 -3 14 0 O 1 -1 2 -3
Ag/-\—lzﬁ 2 10 6| -0 14 O :ﬂ 2 -4 6|,
-3 6 5 0O 0 14 -3 6 -9
and
-8 5 13
Agb:i 2 4 [_11}:114 2
4 1 -3

So, the solutions of this system of linear equations are given by

1 13 -1 2 =3
X:ﬁ 21 +12 -4 6 |w,,
-3 -3 6 -9

for any w € R3.

We know from (b) that the (AYA — IM)w part of our solutions will yield a vector in N(A) and so
the solutions set is the translate of N(A) by £4[13,2, —3]". Further, by the rank-nullity theorem, we
have n(A) =3 — p(A) =3 -2 =1 and so N(A) will be a line through the origin. Indeed, the vector
equation of the line representing the solution set is

where \ € R.
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Question 6

(a) We are given an orthonormal set of vectors {e1, es, ..., e,} which span a vector space V. Clearly,
for some k < n, an expression for Pv, the orthogonal projection of a vector v ¢ Lin(S) onto

Lin{e;,es,..., e} is
k

Pv = Z(V, ei)ei.

i=1
So, clearly, as any vector v € V can be written as

n

v = Z(v, e;)e;,

i=1

we have
n

(I-P)v=v—-Pv= Z (v,e)e;,

1=k+1

and so since the basis is orthonormal, we have
(Pv,(I1—=P)v) =0.
So, noting that the mean square error associated with the vectors v and Pv is given by
[|[v — PVH2 =(v—Pv,v—Pv)=(v,v—Pv) — (Pv,v — Pv),
and since (Pv,v — Pv) = 0, we have
|v — Pv|]? = (v,v — Pv).

So, using our expression for Pv we get

k
v —Pv|? = <v,v - Z(v,ei)ei>

i=1
k
= <V7 V> - Z<V7 ei><vv ei>
;—1
= ||V||2 - Z(Vaei>27
1=1

as required.

(b) We are given the vector space which is the linear span of the functions e”, 1 and e™* of = defined
over the interval 0 < x < 1. So, with respect to the inner product given by

<066x+,867x _’_,y,a/e:p_'_lg/efx_i_,}/I) :aa/‘i‘ﬁﬁ/‘i"}”}/,

we can find the orthogonal projection of the unit function onto the subspace spanned by the functions
e” and e~ *. To do this, we note that since

the functions e® and e™% are orthogonal and as
e,y = (1)(1) =1 and (e%,e™) = (1)(1) = 1,

they are unit too. Thus, the set {e”, e~ "} is already orthonormal. Thus, the required orthogonal
projection is

P1=(1,e")e” + (1,e7)e™ = [(0)(1) + (1)(0)]e” + [(0)(1) + (1)(0)]e™* = 0.
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As such, the mean square error associated with this orthogonal projection is given by

IPL— 1) = [[1]> = (1,1) = (1)(1) = 1.

(c) We are asked to show that
%+l < Il + [yl

for all vectors x and y in a real inner product space. (Notice that this is just the Triangle Inequality.)
To do this we note that:
Ix +y|* = (x+y,x+y)
= (xx) + X y)+{y,x) +(y,y)
= x+yl*=Ix|* +2(x,y) + Iy

where we have used the symmetry property of real inner products. However, the Cauchy-Schwartz
inequality tells us that

|66y < Iyl

and so
%+ yII” < [IxI1” + 2/xlllyll + [ly[]*.

But, factorising the right-hand-side then gives,
I + 11 < (Ix + lly )%,
and hence, since norms are non-negative, we have
=+l < =]l + ¥l

(as required)

T

(d) Considering the vector space El%! given by the linear span of the functions e® and e* of z

defined over the interval 0 < z <t for some ¢ > 0 and using the inner product

(f(2),g(x)) = /0 f(@)g(x) d,

defined on this vector space, we have

¢ t
le” + e || = / (e® +e ") dx = / (e*® +2+e %) dx
0 0

_6212 672175
= 2+a:— > |,

621& 6—2t 1 1
=t — | = |2+0—=
T oy

= sinh(2t) + 2t,

t 2z 71 2t
e e 1
et = [ e an= 5] =5 -5
0 2 0 2 2

t —2x —2t
—x|2 —2x € € 1
lle™®| /Oe r [ 5 ]O 5 +3

So, using the result in (c), we have

o2t 1 \/ 1 e—2t
JEnh(2) r ot <4/ Sy
sinh(2t) +2t <[ =5+ 5~ 5

and,

and,

as required.
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