
Further Mathematical Methods (Linear Algebra)

Solutions For The 2002 Examination

Question 1

(a) To be an inner product on the real vector space V , a function 〈x,y〉 which maps vectors x,y ∈ V
to R must be such that:

i. Positivity: 〈x,x〉 ≥ 0 and, 〈x,x〉 = 0 if and only if x = 0.

ii. Symmetry: 〈x,y〉 = 〈y,x〉.
iii. Linearity: 〈αx + βy, z〉 = α〈x, z〉+ β〈y, z〉.

for all vectors x,y, z ∈ V and all scalars α, β ∈ R.

(b) We need to show that the function defined by

〈x,y〉 = xtAtAy,

where A is an invertible 3× 3 matrix and x,y are any vectors in R3 is an inner product on R3.1 To
do this, we show that this formula satisfies all of the conditions given in part (a). Thus, taking any
three vectors x, y and z in R3 and any two scalars α and β in R we have:

i. 〈x,x〉 = xtAtAx = (Ax)t(Ax), and since Ax is itself a vector in R3, say [a1, a2, a3]t with
a1, a2, a3 ∈ R, we have

〈x,x〉 =
[
a1 a2 a3

]



a1

a2

a3


 = a2

1 + a2
2 + a2

3,

which is the sum of the squares of three real numbers and as such it is real and non-negative.
Further, to show that 〈x,x〉 = 0 if and only if x = 0, we note that:

• LTR: If 〈x,x〉 = 0, then a2
1 + a2

2 + a2
3 = 0. But, this is the sum of the squares of three

real numbers and so it must be the case that a1 = a2 = a3 = 0. Thus, Ax = 0, and since
A is invertible, this gives us x = 0 as the only solution.

• RTL: If x = 0, then A0 = 0 and so clearly, 〈0,0〉 = 0t0 = 0.

(as required).

ii. As 〈x,y〉 = xtAtAy is a real number it is unaffected by transposition and so we have:

〈x,y〉 = 〈x,y〉t = (xtAtAy)t = ytAtAx = 〈y,x〉,

iii. Taking the vector αx + βy ∈ R we have:

〈αx + βy, z〉 = (αx + βy)tAtAz = (αxt + βyt)AtAz = αxtAtAz + βytAtAz = α〈x, z〉+ β〈y, z〉.

Consequently, the formula given above does define an inner product on R3 (as required).

(c) We are given that A is the matrix

A =




1 1 0
0 1 1
1 0 1


 .

1Of course, strictly speaking, the quantity given by xtAtAy is a 1 × 1 matrix. However, it is obvious that here we
can treat it as a real number by stipulating that its single entry is the required real number.
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So, taking an arbitrary vector x = [x1, x2, x3]t ∈ R3, we can see that,

Ax =




1 1 0
0 1 1
1 0 1







x1

x2

x3


 =




x1 + x2

x2 + x3

x1 + x3


 ,

and so using the inner product defined in (b), its norm will be given by

‖x‖2 = 〈x,x〉 = (Ax)t(Ax) = (x1 + x2)2 + (x2 + x3)2 + (x1 + x3)2.

Thus, a condition that must be satisfied by the components of this vector if it is to have unit norm
using the given inner product is,

(x1 + x2)2 + (x2 + x3)2 + (x1 + x3)2 = 1.

Hence, to find a symmetric matrix B which expresses this condition in the form xtBx = 1, we expand
this out to get:

2x2
1 + 2x2

2 + 2x2
3 + 2x1x2 + 2x2x3 + 2x1x3 = 1,

which can be written in matrix form as

xtBx =
[
x1 x2 x3

]



2 1 1
1 2 1
1 1 2







x1

x2

x3


 = 1,

where the required symmetric matrix is

B =




2 1 1
1 2 1
1 1 2


 .

Otherwise: B = AtA.

(d) Since we are given the eigenvectors we can calculate the eigenvalues, using Bx = λx, as follows:

• For [0, 1,−1]t, we have 


2 1 1
1 2 1
1 1 2







0
1
−1


 =




0
1
−1


 ,

and so 1 is the eigenvalue corresponding to this eigenvector.

• For [2,−1,−1]t, we have 


2 1 1
1 2 1
1 1 2







2
−1
−1


 =




2
−1
−1


 ,

and so 1 is the eigenvalue corresponding to this eigenvector.

• For [1, 1, 1]t, we have 


2 1 1
1 2 1
1 1 2







1
1
1


 =




4
4
4


 = 4




1
1
1


 ,

and so 4 is the eigenvalue corresponding to this eigenvector.

So, for an orthogonal matrix P, we need an orthonormal set of eigenvectors. But, the eigenvectors
are already mutually orthogonal, and so we only need to normalise them. Doing this, we find that:

P =
1√
6




0 2
√

2√
3 −1

√
2

−√3 −1
√

2


 ,
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and the corresponding diagonal matrix D is

D =




1 0 0
0 1 0
0 0 4


 ,

where PtBP = D.

(e) To find a basis S of R3 such that the coordinate vector of x with respect to this basis, i.e. [x]S
is such that

[x]tSCtC[x]S = 1,

and the associated diagonal matrix C we note that, since PtBP = D we have B = PDPt and so

xtBx = 1 =⇒ xtPDPtx = 1 =⇒ (Ptx)tD(Ptx) = 1.

Now, x can be written as

x = y1v1 + y2v2 + y3v3 = P




y1

y2

y3




S

= P[x]S ,

where the vectors in the set S = {v1,v2,v3} are the column vectors of the matrix P. As such, since
P is orthogonal, we have

Ptx = [x]S ,

i.e. Ptx is the coordinate vector of x with respect to the basis given by the column vectors of P.
That is, if we let S be the basis of R3 given by the set of vectors

S =





1√
2




0
1
−1


 ,

1√
6




2
−1
−1


 ,

1√
3




1
1
1






 ,

we have
[x]tSD[x]S = 1.

Now, D is the diagonal matrix above, and so if we choose the diagonal matrix C to be

C =




1 0 0
0 1 0
0 0 2


 ,

then we have
[x]tSCtC[x]S = 1,

as required.
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Question 2.

(a) The Leslie matrix for such a population involving three age classes (i.e. C1, C2, C3) is:

L =




a1 a2 a3

b1 0 0
0 b2 0


 ,

Here the demographic parameters a1, a2, a3, b1 and b2 have the following meanings:

• for i = 1, 2, 3, ai will be the average number of daughters born to a female in the ith age class.

• for i = 1, 2, bi will be the fraction of females in age class Ci expected to survive for the next
twenty years and hence enter age class Ci+1.

It should be clear that since the number of females entering into the next age class is determined by
the relevant bi, in successive time periods, we have

• x
(k)
2 = b1x

(k−1)
1 gives the number of females surviving long enough to go from C1 to C2, and as

such the remaining (1− b1)x
(k−1)
1 females in C1 die.

• x
(k)
3 = b2x

(k−1)
2 gives the number of females surviving long enough to go from C2 to C3, and as

such the remaining (1− b2)x
(k−1)
2 females in C2 die.

whereas the x
(k−1)
3 females in C3 all die by the end of the (k−1)th time period. As such, the number

of different DNA samples that will be available for cloning at the end of the the (k−1)th time period
will be

(1− b1)x
(k−1)
1 + (1− b2)x

(k−1)
2 + x

(k−1)
3 .

Thus, since the ‘re-birth’ afforded by cloning creates new members of the first age class together with
those created by natural means, we have

x
(k)
1 = a1x

(k−1)
1 + a2x

(k−1)
2 + a3x

(k−1)
3︸ ︷︷ ︸

by ‘birth’

+(1− b1)x
(k−1)
1 + (1− b2)x

(k−1)
2 + x

(k−1)
3︸ ︷︷ ︸

by ‘cloning’

= (1 + a1 − b1)x
(k−1)
1 + (1 + a2 − b2)x

(k−1)
2 + (1 + a3)x

(k−1)
3

females in C1 by the end of the kth time period. Consequently, the Leslie matrix L, i.e. the matrix
such that x(k) = Lx(k−1), is given by

L =




1 + a1 − b1 1 + a2 − b2 1 + a3

b1 0 0
0 b2 0


 .

as required.
The Leslie matrix for the population in question is

L =




0 0 3/2
1 0 0
0 1 0


 ,

we can see that

L2 =




0 0 3/2
1 0 0
0 1 0







0 0 3/2
1 0 0
0 1 0


 =




0 3/2 0
0 0 3/2
1 0 0


 ,

and,

L3 =




0 0 3/2
1 0 0
0 1 0







0 3/2 0
0 0 3/2
1 0 0


 =




3/2 0 0
0 3/2 0
0 0 3/2


 =

3
2




1 0 0
0 1 0
0 0 1


 .
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As such, we can see that after j sixty year periods (i.e. where k = 3j) the population distribution
vector will be given by

x(3j) =
(

3
2

)j

x(0).

as such we can see that:

• Every sixty years the proportion of the population in each age class is the same as it was at
the beginning.

• Every sixty years the number of females in each age class changes by a factor of 3/2 (i.e.
increases by 50%).

as such we can see that overall the population of females is increasing in a cyclic manner with a
period of sixty years.

(b) The steady states of the coupled non-linear differential equations

ẏ1 = y1 − 2y2
1 − 3y1y2

ẏ2 = 4y2 − 2y2
2 − y1y2

are given by the solutions of the simultaneous equations

y1 − 2y2
1 − 3y1y2 = 0

4y2 − 2y2
2 − y1y2 = 0

i.e. by (y1, y2) = (0, 0), (0, 2), (1/2, 0) and (−10, 7), where the latter steady state is found by solving
the linear simultaneous equations

1− 2y1 − 3y2 = 0
4− 2y2 − y1 = 0

for y1 and y2.
The steady state whose asymptotic stability we have to establish is clearly (0, 2). In order to establish
it, we work find the Jacobian matrix for this system of differential equations, i.e.

DF[y] =
[
1− 4y1 − 3y2 −3y1

−y2 4− 4y2 − y1

]
,

and evaluating this at the relevant steady state gives

DF[(0, 2)] =
[−5 0
−2 −4

]
.

The eigenvalues of this matrix are −4 and −5 and, since these are both real and negative, this steady
state is asymptotically stable.
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Question 3.

(a) For a non-empty subset W of V to be a subspace of V we require that, for all vectors x,y ∈ W
and all scalars α ∈ R:

i. Closure under vector addition: x + y ∈ W .

ii. Closure under scalar multiplication: αx ∈ W .

(b) The sum of two subspaces Y and Z of a vector space V , denoted by Y + Z, is defined to be the
set

Y + Z = {y + z|y ∈ Y and z ∈ Z}.
To show that Y + Z is a subspace of V , we note that:

• As Y and Z are both subspaces of V , the additive identity of V (say, the vector 0) is in both
Y and Z. As such the vector 0 + 0 = 0 ∈ Y + Z and so this set is non-empty.

As such, referring to part (a), we consider two general vectors in Y + Z, say

x1 = y1 + z1 where y1 ∈ Y and z1 ∈ Z,

x2 = y2 + z2 where y1 ∈ Y and z2 ∈ Z,

and any scalar α ∈ R, to see that:

• Y + Z is closed under vector addition since:

x1 + x2 = (y1 + z1) + (y2 + z2) = (y1 + y2) + (z1 + z2),

which is a vector in Y + Z since y1 + y2 ∈ Y and z1 + z2 ∈ Z (as Y and Z are closed under
vector addition).

• Y + Z is closed under scalar multiplication since:

αx1 = α(y1 + z1) = αy1 + αz1,

which is a vector in Y + Z since αy1 ∈ Y and αz1 ∈ Z (as Y and Z are closed under scalar
multiplication).

Consequently, as Y + Z is non-empty and closed under vector addition and scalar multiplication it
is a subspace of V (as required).

(c) For a real vector space V , we say that V is the direct sum of two of its subspaces (say, Y and
Z), denoted by V = Y ⊕ Z, if V = Y + Z and every vector v ∈ V can be written uniquely in terms
of vectors in Y and vectors in Z, i.e. we can write

v = y + z,

for vectors y ∈ Y and z ∈ Z in exactly one way.
To prove that

The sum of Y and Z is direct iff Y ∩ Z = {0}.
we note that:

• LTR: We are given that the sum of Y and Z is direct. Now, it is clear that

– We can write 0 ∈ Y + Z as 0 = 0 + 0 since Y + Z, Y and Z are all subspaces.

– Given any vector u ∈ Y ∩Z, we have u ∈ Y , u ∈ Z and −u ∈ Z (as Z is a subspace). As
such, we can write 0 ∈ Y + Z as 0 = u + (−u).

6



But, as Y +Z is direct, by uniqueness, we can write 0 ∈ Y +Z in only one way using vectors Y
and vectors in Z, i.e. we must have u = 0. Consequently, we have Y ∩ Z = {0} (as required).

• RTL: We are given Y ∩ Z = {0} and we note that any vector u ∈ Y + Z can be written as
u = y + z in terms of a vector y ∈ Y and a vector z ∈ Z. In order to establish that this sum
is direct, we have to show that this representation of x is unique.

To do this, suppose that there are two ways of writing such a vector in terms of a vector in Y
and a vector in Z, i.e.

x = y + z = y′ + z′ for y,y′ ∈ Y and z, z′ ∈ Z,

as such, we have
y − y′︸ ︷︷ ︸
∈Y

= z′ − z︸ ︷︷ ︸
∈Z

,

that is, using the assumption above we have

y − y′ = z′ − z ∈ Y ∩ Z = {0},
Consequently, we can see that y − y′ = z′ − z = 0, i.e. y = y′ and z = z′, and as such the
representation is unique (as required).

(d) We are given that Y and Z are subspaces of the vector space V with bases given by {y1, . . . ,yr}
and {z1, . . . , zs} respectively. So, in order to prove that

V = Y ⊕ Z iff {y1, . . . ,yr, z1, . . . , zs} is a basis of V .

we have to prove it both ways, i.e.

• LTR: Given that V = Y ⊕Z, we know that every vector in V can be written uniquely in terms
of a vector in Y and a vector in Z. But, every vector in Y can be written uniquely as a linear
combination of the vectors in {y1, . . . ,yr} (as it is a basis of Y ) and every vector in Z can be
written uniquely as a linear combination of the vectors in {z1, . . . , zs} (as it is a basis of Z).
Thus, every vector in V can be written uniquely as a linear combination of vectors in the set
{y1, . . . ,yr, z1, . . . , zs}, i.e. this set is a basis of V (as required).

• RTL: Given that {y1, . . . ,yr, z1, . . . , zs} is a basis of V we need to establish that V = Y ⊕ Z,
and to do this, we start by noting that

V = Lin{y1, . . . ,yr, z1, . . . , zs}
= {α1y1 + · · ·+ αryr + β1z1 + · · ·+ βszs|α1, . . . , αr, β1, . . . , βs ∈ R}
= {y + z|y ∈ Y and z ∈ Z}

∴ V = Y + Z

As such, we only need to establish that the sum is direct and there are two ways of doing this:

– Method 1: (Short) Using part (c) we show that every vector in V can be written uniquely
in terms of vectors in Y and vectors in Z.

Clearly, as {y1, . . . ,yr, z1, . . . , zs} is a basis of V , every vector in V can be written uniquely
as a linear combination of these vectors. As such, every vector in V can be written uniquely
as the sum of a vector in Y (a unique linear combination of the vectors in {y1, . . . ,yr}, a
basis of Y ) and a vector in Z (a unique linear combination of the vectors in {z1, . . . , zs},
a basis of Z), as required.

– Method 2: (Longer) Using part (c) we show that Y ∩ Z = {0}.
Take any vector u ∈ Y ∩ Z, i.e. u ∈ Y and u ∈ Z, and so we can write this vector as

u =
r∑

i=1

αiyi and u =
s∑

i=1

βizi.
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But, since these two linear combinations of vectors represent the same vector, we can
equate them. So doing this and rearranging, we get

α1y1 + · · ·+ αryr − β1z1 − · · · − βszs = 0.

But, since this vector equation involves the vectors which form a basis of V , these vectors
are linearly independent and, as such, the only solution to this vector equation is the
trivial solution, i.e. α1 = · · · = αr = β1 = · · · = βs = 0. Consequently, the vector u
considered above must be 0, and so Y ∩ Z = {0} (as required).

Hence, we are asked to establish that if V = Y ⊕ Z, then dim(V ) = dim(Y ) + dim(Z). But, this is
obvious since using the bases given above we have:

dim(V ) = r + s = dim(Y ) + dim(Z),

as required.
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Question 4.

(a) Let A be a real square matrix where x is an eigenvector of A with a corresponding eigenvalue of
λ, i.e. Ax = λx. We are asked to prove that:

i. x is an eigenvector of the identity matrix I with a corresponding eigenvalue of one.

Proof: Clearly, as x is an eigenvector, x 6= 0, and so we have Ix = x = 1 · x. Thus, x is an
eigenvector of the identity matrix I with a corresponding eigenvalue of one, as required.

ii. x is an eigenvector of A + I with a corresponding eigenvalue of λ + 1.

Proof: Clearly, using the information about A and I given above, we have

(A + I)x = Ax + Ix = λx + 1x = (λ + 1)x.

Thus, x is an eigenvector of A + I with a corresponding eigenvalue of λ + 1, as required.

iii. x is an eigenvector of A2 with a corresponding eigenvalue of λ2.

Proof: Clearly, using the information about A given above, we have

A2x = A(λx) = λ(Ax) = λ(λx) = λ2x.

Thus, x is an eigenvector of A2 with a corresponding eigenvalue of λ2, as required.

As such, if the matrix A has eigenvalues λ and corresponding eigenvectors x, for k ∈ N, it should be
clear that the matrix Ak has eigenvalues λk and corresponding eigenvectors x.

(b) We are given that the n× n invertible matrix A has a spectral decomposition given by

A =
n∑

i=1

λixix
†
i ,

where, for 1 ≤ i ≤ n, the xi are an orthonormal set of eigenvectors corresponding to the eigenvalues
λi of A. So, using 1(iii), it should be clear that

A2 =
n∑

i=1

λ2
i xix

†
i ,

and, for k ∈ N, we can see that

Ak =
n∑

i=1

λk
i xix

†
i ,

(c) We are given that the eigenvalues of the matrix A are all real and such that −1 < λi ≤ 1 for
1 ≤ i ≤ n. As such, we can re-write the definition of the natural logarithm of the matrix I + A as
follows:

ln(I + A) =
∞∑

k=1

(−1)k+1

k
Ak

=
∞∑

k=1

(−1)k+1

k

[
n∑

i=1

λk
i xix

†
i

]

=
n∑

i=1

[ ∞∑

k=1

(−1)k+1

k
λk

i

]
xix

†
i

∴ ln(I + A) =
n∑

i=1

ln(1 + λi)xix
†
i ,
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where we have used the Taylor series for ln(1 + x) to establish that, for 1 ≤ i ≤ n,
∞∑

k=1

(−1)k+1

k
λk

i = ln(1 + λi),

since it was stipulated that the eigenvalues are real and such that −1 < λi ≤ 1.

(d) We are given the matrix

A =
1
4



−1 0 −1
0 4 0
−1 0 −1


 ,

and to find its spectral decomposition, we need to find an orthonormal set of eigenvectors and the
corresponding eigenvalues. For the eigenvalues, we solve the equation det(A− λI) = 0, i.e.

∣∣∣∣∣∣

−1− 4λ 0 −1
0 4− 4λ 0
−1 0 −1− 4λ

∣∣∣∣∣∣
= 0 =⇒ (4− 4λ)[(1 + 4λ)2 − 1] = 0 =⇒ (1− λ)λ(1 + 2λ) = 0,

and so the eigenvalues are −1/2, 0, 1. The eigenvectors that correspond to these eigenvalues are then
given by solving the matrix equation (A− λI)x = 0 for each eigenvalue:

• For λ = −1/2 we have:

1
4




1 0 −1
0 6 0
−1 0 1







x
y
z


 = 0 =⇒

x− z = 0
6y = 0

−x + z = 0
,

i.e. x = z for z ∈ R and y = 0. Thus, a corresponding eigenvector is [1, 0, 1]t.

• For λ = 0 we have:

1
4



−1 0 −1
0 4 0
−1 0 −1







x
y
z


 = 0 =⇒

−x− z = 0
4y = 0

−x− z = 0
,

i.e. x = −z for z ∈ R and y = 0. Thus, a corresponding eigenvector is [−1, 0, 1]t.

• For λ = 1 we have:

1
4



−5 0 −1
0 0 0
−1 0 −5







x
y
z


 = 0 =⇒

−5x− z = 0
0 = 0

−x− 5z = 0
,

i.e. x = z = 0 and y ∈ R. Thus, a corresponding eigenvector is [0, 1, 0]t.

So, to find the spectral decomposition of A, we need to find an orthonormal set of eigenvectors, i.e.







1
0
1


 ,



−1
0
1


 ,




0
1
0






 becomes





1√
2




1
0
1


 ,

1√
2



−1
0
1


 ,




0
1
0






 ,

(since the eigenvectors are already mutually orthogonal) and substitute all of this into the expression
in (c). Thus, since the λ = 0 term vanishes, we have:

A = −1
2




1√
2

0
1√
2




[
1√
2

0 1√
2

]
+ 1




0
1
0


 [

0 1 0
]

= −1
2




1
2 0 1

2
0 0 0
1
2 0 1

2


 + 1




0 0 0
0 1 0
0 0 0


 .
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is the spectral decomposition of A.

Consequently, using part (c), we can see that ln(I + A) is given by the matrix

ln(I + A) = ln
(

1
2

)


1
2 0 1

2
0 0 0
1
2 0 1

2


 + ln 2




0 0 0
0 1 0
0 0 0


 =

ln 2
2



−1 0 −1
0 2 0
−1 0 −1


 ,

since ln(1/2) = − ln 2.
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Question 5.

(a) A strong generalised inverse of an m× n matrix A is any n×m matrix AG which is such that:

• AAGA = A.

• AGAAG = AG.

• AAG orthogonally projects Rm onto R(A).

• AGA orthogonally projects Rn parallel to N(A).

(b) Given that the matrix equation Ax = b represents a set of m inconsistent equations in n variables,
we can see that any vector of the form

x = AGb + (I− AGA)w,

with w ∈ Rn is a solution to the least squares fit problem associated with this set of linear equations
since

Ax = AAGb + (A− AAGA)w = AAGb + (A− A)w = AAGb,

using the first property of AG given in (a). As such, using the third property of AG given in (a), we
can see that Ax is equal to AAGb, the orthogonal projection of b onto R(A). But, by definition, a least
squares analysis of an inconsistent set of equations Ax = b minimises the distance (i.e. ‖Ax − b‖)
between the vector b and R(A), which is exactly what this orthogonal projection does. Thus, the
given vector is such a solution.

(c) To find a strong generalised inverse of the matrix

A =




1 1 0
1 0 1
1 1 0


 ,

we use the given method. This is done by noting that the first column vector of A is linearly dependent
on the other two since 


1
1
1


 =




1
0
1


 +




0
1
0


 ,

and so the matrix A is of rank 2 (as the other two column vectors are linearly independent). Thus,
taking k = 2, the matrices B and C are given by:

B =




1 0
0 1
1 0


 and C =

[
1 1 0
1 0 1

]
,

respectively. So to find the strong generalised inverse, we note that:

BtB =
[
1 0 1
0 1 0

] 


1 0
0 1
1 0


 =

[
2 0
0 1

]
=⇒ (BtB)−1 =

1
2

[
1 0
0 2

]
,

and,

CCt =
[
1 1 0
1 0 1

] 


1 1
1 0
0 1


 =

[
2 1
1 2

]
=⇒ (CCt)−1 =

1
3

[
2 −1
−1 2

]
.

Thus, since

(BtB)−1Bt =
1
2

[
1 0
0 2

] [
1 0 1
0 1 0

]
=

1
2

[
1 0 1
0 2 0

]
,
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and,

Ct(CCt)−1 =
1
3




1 1
1 0
0 1




[
2 −1
−1 2

]
=

1
3




1 1
2 −1
−1 2


 ,

we have,

AG = Ct(CCt)−1(BtB)−1Bt =
1
6




1 1
2 −1
−1 2




[
1 0 1
0 2 0

]
=

1
6




1 2 1
2 −2 2
−1 4 −1


 ,

which is the sought after strong generalised inverse of A. So to find the set of all solutions to the
least squares fit problem associated with the system of linear equations given by

x + y = 1
x + z = 2
x + y = −1

we note that these equations can be written in the form Ax = b with

A =




1 1 0
1 0 1
1 1 0


 x =




x
y
z


 and b =




1
2
−1


 .

Thus, as

AGA =
1
6




1 2 1
2 −2 2
−1 4 −1







1 1 0
1 0 1
1 1 0


 =

1
6




4 2 2
2 4 −2
2 −2 4


 =

1
3




2 1 1
1 2 −1
1 −1 2


 ,

we have

AGA− I =
1
3








2 1 1
1 2 −1
1 −1 2


−




3 0 0
0 3 0
0 0 3






 =

1
3



−1 1 1
1 −1 −1
1 −1 −1


 ,

and

AGb =
1
6




1 2 1
2 −2 2
−1 4 −1







1
2
−1


 =

1
6




4
−4
8


 =

1
3




2
−2
4


 .

So, the solutions of this system of linear equations are given by

x =
1
3








2
−2
4


 +



−1 1 1
1 −1 −1
1 −1 −1


w



 ,

for any w ∈ R3.
We know from parts (a) and (b) that the (AgA − I)w part of our solutions will yield a vector in
N(A) and so the solution set is the translate of N(A) by 1

3 [2,−2, 4]t. Further, by the rank-nullity
theorem, we have η(A) = 3−ρ(A) = 3−2 = 1 and so N(A) will be a line through the origin. Indeed,
the vector equation of the line representing the solution set is

x =
2
3




1
−1
2


 + λ



−1
1
1


 ,

where λ ∈ R.
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Question 6

(a) To test the set of functions {1, x, x2} for linear independence we calculate the Wronskian as
instructed, i.e.

W (x) =

∣∣∣∣∣∣

f1 f2 f3

f ′1 f ′2 f ′3
f ′′1 f ′′2 f ′′3

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 x x2

0 1 2x
0 0 2

∣∣∣∣∣∣
= 2,

and as W (x) 6= 0 the set is linearly independent (as required).

(b) We consider the inner product space formed by the vector space P[−2,2]
3 and the inner product

〈f(x), g(x)〉 =
∫ 1

−1
f(x)g(x)dx.

To find an orthonormal basis of the space Lin{1, x, x2}, we use the Gram-Schmidt procedure:

• We start with the vector 1, and note that

‖1‖2 = 〈1, 1〉 =
∫ 1

−1
1dx = [x]1−1 = 2.

Consequently, we set e1 = 1/
√

2.

• We need to find a vector u2 where

u2 = x−
〈

x,
1√
2

〉
1√
2

= x− 1
2
〈x, 1〉,

But, as

〈x, 1〉 =
∫ 1

−1
xdx =

[
x2

2

]1

−1

= 0,

we have u2 = x. Now, as

‖x‖2 = 〈x, x〉 =
∫ 1

−1
x2dx =

[
x3

3

]1

−1

=
2
3
,

we set e2 =
√

3
2 x.

• Lastly, we need to find a vector u3 where

u3 = x2 −
〈

x2,

√
3
2
x

〉√
3
2
x−

〈
x2,

1√
2

〉
1√
2

= x2 − 3
2
〈x2, x〉x− 1

2
〈x2, 1〉,

But, as

〈x2, x〉 =
∫ 1

−1
x3dx =

[
x4

4

]1

−1

= 0,

and,

〈x2, 1〉 =
∫ 1

−1
x2dx =

[
x3

3

]1

−1

=
2
3
,

we have u3 = x2 − 1/3 = (3x2 − 1)/3. Now, as

‖3x2 − 1‖2 = 〈3x2 − 1, 3x2 − 1〉 =
∫ 1

−1
(3x2 − 1)2dx =

∫ 1

−1
(9x4 − 6x2 + 1)dx

=
[
9
5
x5 − 2x3 + x

]1

−1

= 2
[
9
5
− 2 + 1

]
= 2

[
4
5

]
=

8
5

we set e3 =
√

5
8 (3x2 − 1).
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Consequently, the set {
1√
2
,

√
3
2

x,

√
5
8

(3x2 − 1)

}
,

is an orthonormal basis for the space Lin{1, x, x2}.
(c) We are given that {e1, e2, . . . , ek} is an orthonormal basis of a subspace S of an inner product
space V . Extending this to an orthonormal basis {e1, e2, . . . , ek, ek+1, . . . , en} of V , we note that for
any vector x ∈ V ,

x =
n∑

i=1

αiei.

Now, for any j (where 1 ≤ j ≤ n) we have

〈x, ej〉 =

〈
n∑

i=1

αiei, ej

〉
=

n∑

i=1

αi〈ei, ej〉 = αj ,

since we are using an orthonormal basis. Thus, we can write

x =
n∑

i=1

〈x, ei〉ei =
k∑

i=1

〈x, ei〉ei

︸ ︷︷ ︸
in S

+
n∑

i=k+1

〈x, ei〉ei

︸ ︷︷ ︸
in S⊥

.

and so, the orthogonal projection of V onto S [parallel to S⊥] is given by

Px =
k∑

i=1

〈x, ei〉ei,

for any x ∈ V (as required).

(d) Using the result in (c), it should be clear that a least squares approximation to x4 in Lin{1, x, x2}
will be given by Px4. So, using the inner product in (b) and the orthonormal basis for Lin{1, x, x2}
which we found there, we have:

Px4 = 〈x4, e1〉e1 + 〈x4, e2〉e2 + 〈x4, e3〉e3

=
1
2
〈x4, 1〉+

3
2
〈x4, x〉x +

5
8
〈x4, 3x2 − 1〉(3x2 − 1)

=
1
5

+
2
7
(3x2 − 1)

∴ Px4 =
3
35

(10x2 − 1)

since,

〈x4, 1〉 =
∫ 1

−1
x4dx =

[
x5

5

]1

−1

=
2
5
,

〈x4, x〉 =
∫ 1

−1
x5dx =

[
x6

6

]1

−1

= 0

〈x4, 3x2 − 1〉 =
∫ 1

−1
x4(3x2 − 1)dx =

∫ 1

−1
(3x6 − x4)dx =

[
3
7
x7 − x5

5

]1

−1

= 2
[
3
7
− 1

5

]
= 2

[
8
35

]
=

16
35

Thus, our least squares approximation to x4 is 3
35(10x2 − 1).
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