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First definitions

graph G = (V , E) : finite, simple, no loops, n vertices

k-colouring of G : proper vertex-colouring

using colours from {1, 2, . . . , k }

we always assume k ≥ χ(G)

we use α,β, . . . to indicate k -colourings

k-colour graph C(G; k)

vertices are the k -colourings of G

two k -colourings are adjacent

if they differ in the colour on exactly one vertex of G
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Some examples

2-colour graph for K 2 :

3-colour graph for K 2 :
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Central question

k-colour graph C(G; k) : two k -colourings are adjacent

if they differ in the colour on exactly one vertex of G

General question

Given G and k , what can we say about C(G; k) ?

In particular

for what G and k is C(G; k) connected ?

intuitively : can we go between any two k -colourings

by recolouring one vertex at the time ?

Terminology : C(G; k) is connected ⇐⇒ G is k -mixing
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Research on C(G; k)C(G; k)C(G; k)

little research in pure graph theory

related to work in theoretical physics on

Glauber dynamics of k -state anti-ferromagnetic Potts

models at zero temperature

related to work in theoretical computer science on

Markov chain Monte Carlo methods for generating random

k -colourings
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The Markov chain of k-colourings

define the Markov chain M(G; k) as follows :

states are the k -colourings of G

transitions from a state ( colouring ) α :

choose a vertex v uniformly at random

choose a colour c ∈ {1, . . . , k} uniformly at random

recolour vertex v with colour c if possible

( i.e., must stay a proper colouring )

=⇒ make this new k -colouring the new state

otherwise, the state remains the same colouring α
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The colour graph and the Markov chain

edge in the colour graph C(G; k) :

α β

gives in the Markov Chain M(G; k) :

α β

Prob = 1
/

nk

Prob = 1
/

nk

Prob > 0 Prob > 0
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A little Markov chain theory

M(G; k) irreducible ⇐⇒ C(G; k) connected

M(G; k) aperiodic ( since Prob(α,α) > 0 )

hence : C(G; k) connected =⇒ M(G; k) ergodic

with : unique stationary distribution π ≡ 1
/

# k -colourings

which means :

starting at any k -colouring α,

walking through the Markov chain long enough,

the final state can be any k -colouring

with ( almost ) equal probability
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Rapid mixing in Markov chains

Problem :

how long is “long enough” ?

G is rapidly mixing for k colours :

starting at any k -colouring α, a state “close” to stationarity

is reached after a number of steps that is polynomial in n

rapid mixing gives :

a “feasible” way to obtain ( almost ) uniformly random

samples of k -colourings

a way to approximately count the number of k -colourings of

a graph G
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Example : mixing but not rapidly mixing

take k = 3 and G = K 1,m :
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in the corresponding Markov chain M(K 1,m; 3),

group 3-colourings according to the colour of v
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Example : mixing but not rapidly mixing

the Markov chain M(K 1,m; 3) :

α(v) = 1

α(v) = 2 α(v) = 3

size each part
is 2m

?
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each part has the structure of a hypercube
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Example : mixing but not rapidly mixing

the Markov chain M(K 1,m; 3) :

3-colourings with
α(v1) = · · · = α(vm)
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Example : mixing but not rapidly mixing

the Markov chain M(K 1,m; 3) :

size each part
is 2mr

rrrpppppr
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bottlenecks : K 1,m is not rapidly mixing for k = 3

can be extended to not rapidly mixing

for k = O(m1−ε) for any ε > 0 ( Łuczak & Vigoda, 2005 )
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Some positive results on rapid mixing

∆(G) : maximum degree of G

k > 2 ∆(G) =⇒ G rapidly mixing for k ( Jerrum, 1995 )

k > 1.8 ∆(G) =⇒ G rapidly mixing for k ( Vigoda, 1999 )

Towards mixing :

k ≥ ∆(G) + 2 =⇒ G is k -mixing ( “well-known” )

Open :

k ≥ ∆(G) + 2 =⇒ G rapidly mixing for k colours ?
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A better bound for mixing

δ(G) : minimum degree of G

col(G) : colouring number ( degeneracy, maximin degree )

= maximum minimum degree of a subgraph of G

col(G) = max { δ(H) | H ⊆ G }

Property :

k ≥ col(G) + 2 =⇒ G is k -mixing ( Dyer, et al., 2004 )

e.g. :

T a tree =⇒ col(T ) = 1 =⇒ T is 3-mixing
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Extremal graphs

“boring” extremal graph : complete graph K m

∆(K m) = col(K m) = m − 1

all m -colourings look the same :
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no vertex can change colour

Terminology

frozen k -colouring : colouring in which no vertex

can change colour

frozen colourings form isolated vertices in C(G; k)

immediately mean G is not k -mixing
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More interesting extremal graphs

graph Lm : K m,m minus a perfect matching ( m ≥ 3 )

∆(Lm) = col(Lm) = m − 1
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1 2 3 m

1 2 3 m

has frozen m -colourings – hence Lm is not m -mixing

so :

graph with χ(G) = 2 can be non-k -mixing for arbitrarily large k
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours

s s s s p p p p p s
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some colour c must appear more than once on the top
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours

s s s s p p p p p s
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¬c ¬c ¬c ¬c ¬c

that colour c can’t appear among the bottom vertices
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours
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all vertices on the top can all be recoloured to c
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours

s s s s p p p p p s

s s s s p p p p p s

�
�
�
�
��

�
�

�
�

��

�
�

�
�

�
�

��

����������������

A
A

A
A

AA

�
�
�
�
��

�
�

�
�

��

!!!!!!!!!!!!!

@
@

@
@

@@

A
A

A
A

AA

�
�
�
�
��

�����������

Q
Q

Q
Q

Q
Q

QQ

@
@

@
@

@@

A
A

A
A

AA

�
�

�
�

�
�

��

PPPPPPPPPPPPPPPP

aaaaaaaaaaaaa

HHHHHHHHHHH

Q
Q

Q
Q

Q
Q

QQ
c c c c c

c′ c′ c′ c′ c′

then the bottom can be recoloured to some c′ 6= c
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours

s s s s p p p p p s
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so any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected
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More interesting properties of L m

non-k -mixing for k = m colours

but k -mixing for 3 ≤ k ≤ m − 1

suppose Lm coloured with k ≤ m − 1 colours

s s s s p p p p p s
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so any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected

so : mixing is not a monotone property
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Really surprising properties of L m

Theorem

fix constant λ > 0

k ≥ λ m, k 6= m =⇒ Lm rapidly mixing for k colours

in particular :

Lm is not mixing for m colours

Lm is rapidly mixing for m − 1 colours

so : rapid mixing is not a monotone property

first known class of graphs with this property
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Small values of k

smallest possible is k = χ(G)

χ(G) = 1 : graph without edges – boring

χ(G) = 2 : bipartite graph with at least one edge

not-mixing for k = 2 :

s
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s
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�� 2

1

χ(G) = 3 : 3-colourable graph with at least one odd cycle
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The case k = χ(G) = 3

cycle C3 has six 3-colourings, all frozen

=⇒ C3 is not 3-mixing

cycle C5 has 30 3-colourings, none of them frozen

the colour graph C(C5; 3) is formed of two 15-cycles

=⇒ C5 is not 3-mixing

Theorem

χ(G) = 3 =⇒ G is not 3-mixing
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Proof looks at 3-colourings of cycles

suppose α a 3-colouring of a graph G

and C a cycle in G

choose an orientation
−→
C

weight of an arc of
−→
C :

+ 1 if s s-1 2 or s s-2 3 or s s-3 1

− 1 if s s-2 1 or s s-3 2 or s s-1 3

weight of the oriented cycle :

w(
−→
C ;α) = sum of weights of arcs

Mixing Colour(ing)s in Graphs – Oxford, 08/11/05



Proof looks at 3-colourings of cycles

Example :

t
t t

t
t
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AA
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3 1

2

1

−→
C

−1 +1

−1

−1

−1

w(
−→
C ;α) = −3
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Weights of 3-colourings of cycles

recolour one vertex to obtain β from α

t t t- -1 2 1

+1 −1
- t t t- -1 3 1

−1 +1
e.g.:

=⇒ w(
−→
C ;α) = w(

−→
C ;β)

Property

α and β connected by a path in C(G; 3)

=⇒ w(
−→
C ;α) = w(

−→
C ;β)
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Weights of 3-colourings of cycles

given 3-colouring α, form α∗ by swapping colours 1 and 2

=⇒ all arcs change sign

=⇒ w(
−→
C ;α∗) = −w(

−→
C ;α)

so :

C odd cycle =⇒ w(
−→
C ;α) 6= 0

=⇒ w(
−→
C ;α∗) 6= w(

−→
C ;α)

=⇒ α and α∗ not connected in C(G; 3)

=⇒ C(G; 3) not connected

Mixing Colour(ing)s in Graphs – Oxford, 08/11/05



Larger values of k

χ(G) = 2 =⇒ G is not 2-mixing

χ(G) = 3 =⇒ G is not 3-mixing

What about k ≥ 4 ?

complete graph K k has frozen k -colourings

so : G has K k as a subgraph =⇒ G not k -mixing

Mixing Colour(ing)s in Graphs – Oxford, 08/11/05



Larger values of k

Hajos’ graph Hm ( m ≥ 3 )
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has χ(Hm) = m

and is m-mixing for m ≥ 4
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Graphs with prescribed mixing behaviour

Lm : χ(Lm) = 2, mixing for k > 2, k 6= m

K m : χ(K m) = m, mixing for k > m

Hm : χ(Hm) = m, mixing for k ≥ m ( m ≥ 4 )

G 2-chromatic =⇒ not 2-mixing

G 3-chromatic =⇒ not 3-mixing

allows to characterise

integers q and sets S

such that there is a graph G

with χ(G) = q and k -mixing if and only if k 6∈ S
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Decision problems

Input : graph G and integer k

Question : is G k -mixing ?

probably very hard, since finding one k -colouring of a graph

G is very hard, even if we know k ≥ χ(G)

Maybe easier :

Input : bipartite graph G and integer k

Question : is G k -mixing ?
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Is a given bipartite graph k-mixing ?

trivial for k = 2 ( “yes” if and only if G has no edges )

necessary for k = 3 :

for all 3-colourings α and cycles C in G : w(
−→
C ;α) = 0

Theorem

the condition is also sufficient for a graph to be 3-mixing

so : deciding 3-mixing for bipartite graphs is in coNP

certificate for non-3-mixing :

a 3-colouring α and cycle C in G with w(
−→
C ;α) = 0
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A structural certificate for bipartite non-3-mixing

pinch of two vertices at distance 2 :

s
s s
B

B
B
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s
s

-

G pinchable to H : sequence of pinches changes G to H

Theorem

connected bipartite G is non-3-mixing

⇐⇒ G is pinchable to a chordless 6-cycle
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Why the 6-cycle ?

C6
∼= L3 – so C6 is non-3-mixing
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note : C4 is 3-mixing
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Results / open problems for bipartite mixing

Theorem

deciding 3-mixing for bipartite graphs is in coNP

deciding 3-mixing for bipartite graphs

is polynomial for planar graphs

open

is deciding 3-mixing for bipartite graph

polynomial or coNP-complete or . . . ?

what happens for k ≥ 4 ?
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A decision problem for general graphs

call k -colourings α and β connected :

if there is a path in C(G; k) from α to β

Input : graph G, integer k , two k -colourings α and β

Question : are α and β connected ?

this question might be doable for any k
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Connected 3-colourings

necessary
for two 3-colourings α and β to be connected :

for all cycles C in G we must have

w(
−→
C ;α) = w(

−→
C ;β)

but not sufficient :
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Connected 3-colourings

frozen vertex of a colouring :

vertex that never can change colour

frozen vertices can appear outside cycles :
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Connected 3-colourings

necessary
for two 3-colourings α and β to be connected :

all cycles C must satisfy w(
−→
C ;α) = w(

−→
C ;β)

frozen vertices in α must be frozen also in β

and must have the same colour in both

Theorem

the conditions above are also sufficient

the conditions can be checked in polynomial time

and again : no idea what to do for k ≥ 4
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Mixing of planar graphs

suppose G is planar

how many colours k are needed to be sure G is k -mixing ?

G planar =⇒ col(G) ≤ 5

hence : k = 7 is enough

but can we do better ?
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Mixing of planar graphs

no :
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frozen 6-colouring of the icosahedron

for planar graphs, 7 colours are needed to guarantee mixing
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Mixing of graphs on surfaces

for all surfaces ( orientable and non-orientable )

we know similar “mixing numbers”

except for the Klein bottle

for all surfaces S

there is a sharp upper bound δS so that

col(G) ≤ δS for all G embeddable on S ( Heawood )

hence : k ≥ δS + 2 is enough to guarantee mixing

for all surfaces S, except plane and Klein bottle

we can’t do better, because there exist

complete graphs of order δS + 1 ( Ringel & Youngs, 1968 )
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Mixing of graphs on surfaces

for the plane : δplane + 2 = 7

best possible because of

5-regular icosahedron with a frozen 6-colouring

for the Klein bottle : δKlein + 2 = 8

but no graph embeddable on the Klein bottle can be

6-regular and have a frozen 7-colouring

( follows from result of Hliněný, 1999 )

so are 7 or 8 colours needed for mixing on the Klein

bottle ?
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The end
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