Ordered Colourings

JAN VAN DEN HEUVEL

joint work with ARVIND GUPTA, JÁN MAŇUCH LADISLAV STACHO & XIAOHONG ZHAO (Simon Fraser University, Canada)

Centre for Discrete and Applicable Mathematics Department of Mathematics London School of Economics and Political Science

Inspired by a problem in mathematical biology

genotype: the genetic information of one individual

stored on chromosomes

most organisms have **two copies** of each chromosome

Inspired by a problem in mathematical biology

- genotype : the genetic information of one individual
 - stored on chromosomes
- most organisms have two copies of each chromosome
 - one from each parent
 - these two copies need not be identical
 - the genetic make-up of one chromosome is called a haplotype
- the genotype has the combined information of the two haplotypes in some kind of "mixed format"
- determining the haplotypes in a laboratory is much harder than determining the genotype

Genotype versus haplotypes

information in the genotype can be one of 0, 1, 2

- for the haplotype it can be one of 0, 1
- interpretation :

Haplotype inferring

Input: the different variants of genotypes appearing in some population

Output: for each genotype: two corresponding haplotypes

satisfying some rules (usually biologically inspired)

• e.g.: the fewer variants of haplotypes required, the better

```
\{02, 20, 22\} \text{ could be } \{\begin{array}{l} 00, 00, 00\\ 01, 10, 11 \end{array}\}
or \{\begin{array}{l} 00, 00, 01\\ 01, 10, 10 \end{smallmatrix}\}
```

2nd choice preferable (only three different haplotypes)

Rules from genetic assumptions

initial assumptions :

- all haplotypes originate from one original one
- variants appeared because of mutations
 but only small chance that a mutation occurs at a particular place on a chromosome
- so try to obtain a collection of haplotypes requiring minimum number of mutations

An even stronger genetic requirement

- the proposed collection of haplotypes should should fit in a Perfect Phylogenetic Tree :
 - rooted tree
 - each node labelled with a proposed haplotype
 - each haplotype appears as the label of one node
 - each edge labelled by sites in which the ends differ
 - each site occurs at most once as an edge label

Perfect Phylogeny Haplotype Problem

- Input: the different variants of genotypes appearing in some population
 - Question: is there a collection of haplotypes such that
 - each genotype has two corresponding haplotypes,
 - the haplotypes fit in a Perfect Phylogenetic Tree?
- **Theorem** (Gusfield, 2002)

this can be solved in polynomial time

(in number and length of the genotypes)

A more difficult problem

Imperfect Phylogenetic Tree : some nodes do not appear in the original data

example : suppose proposed haplotypes are
 00000, 01001, 11000, 11010

to explain as a phylogenetic tree, the data needs an extra ("non-observed") node:

A more difficult problem

Imperfect Phylogenetic Tree :

some nodes do not appear in the original data

Theorem (Kimmel & Shamir, 2005)

the Imperfect Phylogeny Haplotype Problem is NP-complete

Further complications new haplotypes can occur because of recombination : can be modelled with cycles in the phylogenetic tree is assumed to happen very rarely leads to more and more combinatorial (decision) problems

From now on, mathematics only

an ordered colouring problem

given: graph G = (V, E) with *n* vertices vertices are numbered from $1, \ldots, n$

■ **required**: a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \rightarrow \{A, B, C\}$

such that :

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- vertices coloured A have a smaller number than vertices coloured B

An example

decision problem :

given a graph G with vertices $1, \ldots, n$, how easy is it to decide if it allows such a 3-colouring?

note : normal 3-colouring is NP-complete

Theorem

deciding if a given graph allows this kind of 3-colouring can be done in **polynomial time**

sketch of proof

- choose a vertex m from $1, \ldots, n$ (n choices)
- assume *m* forms the boundary between
 the vertices that can have colour *A* (≤ *m*)
 and the vertices that can have colour *B* (> *m*)
- then vertices $1, \ldots, m$ can only be coloured A or Cand vertices $m + 1, \ldots, n$ can only be coloured B or C
 - easy to check if such colourings exist (for chosen m)

sketch of proof (cont.)

- suppose the chosen *m* allows the required 2-colourings
- so vertices 1, ..., *m* form 2-colourable **components**
- similar for the vertices $m + 1, \ldots, n$

each component has 2 different choices for a 2-colouring

but edges between vertices in $1, \ldots, m$ and vertices in $m+1, \ldots, n$ restrict the options

not both ends can have colour C

sketch of proof (cont.)

- for each component X_i in $1, \ldots, m$
 - choose a top and a bottom part:

- for each component Y_j in $m+1, \ldots, n$
 - choose a top and a bottom part
 - introduce a Boolean variable y_i with the meaning

•
$$y_j = \text{TRUE}$$
 : B_C

 $y_i = FALSE$:

A different ordered 3-colouring problem

given: graph G = (V, E) with *n* vertices vertices are numbered from 1, ..., n

■ required : a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \rightarrow \{A, B, C\}$

such that :

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- condition that vertices coloured A must have a smaller number than vertices coloured B only has to hold for adjacent vertices

A different ordered 3-colouring problem

given: graph G = (V, E) with *n* vertices vertices are numbered from 1, ..., n

■ required: a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \rightarrow \{A, B, C\}$

such that :

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- condition that vertices coloured A must have a smaller number than vertices coloured B only has to hold for adjacent vertices

Theorem

deciding if for a given graph such a colouring is possible is **NP-complete**

Generalising the problem (even less applied)

a way to look at these colouring problems is as if there is a order relation on the colours { A, B, C }

what would happen if we consider other order relations on the colours ?

More general ordered 3-colourings

first variant:
A -> B means "any A before any B"
possible posets with 3 elements:
C
B
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
C
A
A
C
A
A
C
A
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
B
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
C
A
A
C
A
A
C
A
A
C
A
A
C
A
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
C
A
C
A
B
C
A
C
A
C
A
C
A
A
C
A
A
C
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A<

- deciding if a certain graph with vertices 1, ..., n has a colouring according to these posets is
 - NP-complete for the first poset (just 3-colouring)
 - polynomial for the others

More general ordered 3-colourings with more colours

- A→B means "any A before any B"
- suppose we allow any number of colours and any poset on the set of colours

Theorem

deciding if a given graph with vertices $1, \ldots, n$ has a colouring according to the fixed colour poset is

- **NP-complete** if the poset has an anti-chain of length 3
- polynomial otherwise
- similar (more complicated) dichotomy result also known for the other variant

 $(A \rightarrow B \text{ means "} A \text{ before } B \text{ if adjacent"})$