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First definitions / notation

G = (V (G), E(G))G = (V (G), E(G))G = (V (G), E(G)) : finite graph,

no loops, but multiple edges allowed

nnn : number of vertices

mmm : number of edges

forest : subgraph of G without cycles

Rα : circle with circumference α ( α ∈ R, α > 0 )

think : interval [ 0 , α ) with a circular ordering

Zk : integers modulo k ( k ∈ N )

think : numbers 1, 2, . . . , k with a circular ordering
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Circular arboricity

we want to map the edges of G to Rα so that :

for every unit interval [ a, a + 1 ) of Rα :

the edges mapped into that interval form a forest

e1

e2

e3,e4

Rα

circular arboricity of G, ΥC(G)ΥC(G)ΥC(G) :

minimum α for which this is possible
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A bound on the circular arboricity

we must have for every subgraph H ⊆ G :

a forest can have at most |V(H)| − 1 edges from H

so every unit interval of Rα can have

at most |V(H)| − 1 edges from H

so we need α ≥
|E(H)|

|V(H)| − 1

and hence ΥC(G) ≥ max
H ⊆G

|E(H)|

|V(H)| − 1

Conjecture ( Goncalves ) : ΥC(G) === max
H ⊆G

|E(H)|

|V(H)| − 1
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Integral arboricity

Theorem ( Nash-Williams, 1964 )

If : K ≥ max
H ⊆G

⌈

|E(H)|

|V(H)| − 1

⌉

, for some K ∈ N

Then : E(G) can be partitioned into K disjoint forests

generalised to matroids by Edmonds (1964)

in fact : everything in this talk can be ( and has been )

formulated / asked / proved for matroids as well
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Fractional arboricities

the circular arboricity can be considered as some kind of

“ fractional ” arboricity

a more natural fractional arboricity concept is the solution to

the following LP-problem :

xF : real-valued variable for a forest F

minimise :
∑

F
xF

such that : ∀∀∀ e ∈ E(G) :
∑

F ∋ e
xF ≥ 1

∀∀∀ F : xF ≥ 0

folklore : this minimum is equal to max
H ⊆G

|E(H)|

|V(H)| − 1
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Quick proof of the fractional arboricity

suppose max
H ⊆G

|E(H)|

|V(H)| − 1
===

P

Q

form GQGQGQ by replacing each edge by Q parallel edges

then max
H ⊆GQ

⌈

|E(H)|

|V(H)| − 1

⌉

=== max
H ⊆GQ

|E(H)|

|V(H)| − 1
=== P

Nash-Williams : GQ can be covered by P disjoint forests

so G has P forests covering each edge Q times

set xF === 1/Q for these forests �
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Forests in a circle

Conjecture : ΥC(G) === max
H ⊆G

|E(H)|

|V(H)| − 1
===

P

Q

and we know : there is a collection FFF === { F 1, . . . , F P }

of P forests covering each edge Q times

if we give each forest in FFF weight 1/Q we can put them

around RP/Q :
F P

F 1

F 2

F i

RP/Q

1/Q
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From forests in a circle to circular arboricity

P forests with each edge appearing in Q of them

F P
F 1

F 2

F i

RP/Q

1/Q

we would be done if we can make sure that

every edge occurs in Q consecutive forests

then : map each edge to the first forest it appears in

which would mean :

set of edges in a unit interval

=== edges of the last forest in that interval
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A possible proof of Goncalves’ Conjecture

Conjecture : ΥC(G) === max
H ⊆G

|E(H)|

|V(H)| − 1
===

P

Q

we are done if we can prove :

there exists a “cyclic” list of P forests so that

each edge appears in Q consecutive forests

equivalent to :

there exists a multimap E(G) ��:-
XXz ZP so that

each edge is mapped to Q consecutive numbers

for all x ∈ ZP : edges mapped to x form a forest
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A general theorem

Theorem 1

Given : K ∈ N, edge weights w : E(G) - N

If : ∀∀∀ H ⊆ G :
∑

e ∈ E(H)

w(e) ≤ K · ( |V(H)| − 1 )

Then : there exists a multimap E(G) ��:-
XXz ZK so that

each edge e is mapped to w(e) consecutive numbers

for all x ∈ ZK : edges mapped to x form a forest

Corollary : by taking K === P and ∀∀∀ e : w(e) === Q we get :

ΥC(G) ===
P

Q
=== max

H ⊆G

|E(H)|

|V(H)| − 1
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Some ideas from the the proof

proof by induction on
∑

w(e)

choose an e1 and replace w(e1) by w(e1) − 1

find a multimap to ZK with this reduced weight

say e1 gets mapped to the interval x0, . . . , x1 − 1

map an extra copy of e1 to position x1

this may introduce a cycle at position x1

there is an edge e2 in this cycle not mapped to x1 − 1

say e2 gets mapped to the interval x1, . . . , x2 − 1

remove the map from e2 to x1

map a new copy of e2 to position x2

this may introduce a cycle at position x2
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Some ideas from the the proof

map a new copy of e2 to position x2

this may introduce a cycle at position x2

there is an edge e3 in this cycle not mapped to x2 − 1

say e3 gets mapped to the interval x2, . . . , x3 − 1

remove the map from e3 to x2

map a new copy of e3 to position x3

this may introduce a cycle at position x3

ad infinitum . . . . . . . . .

NOT !
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Disjoint spanning trees

ω(G)ω(G)ω(G) : number of components of a graph G

Theorem ( Nash-Williams, Tutte, 1961 )

If : K ≤ min
A ⊆E(G)

⌊

|A|

ω(G − A) − 1

⌋

, for some K ∈ N

Then : G contains K disjoint spanning trees

matroid version by Edmonds (1964)
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The dual of Theorem 1

A circular version of the Nash-Williams / Tutte Theorem can be

derived from the following dual version of Theorem 1.

Theorem 2

Given : K ∈ N, edge weights w : E(G) −→ N

If : ∀∀∀ A ⊆ E(G) :
∑

e ∈ A
w(e) ≥ K · ( ω(G − A) − 1 )

Then : there exists a multimap E(G) ��:-
XXz ZK so that

each edge e is mapped to w(e) consecutive numbers

for all x ∈ ZK :

edges mapped to x form a connected subgraph
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More on circular mappings of edges

condition from Theorem 1 :

∀∀∀ H ⊆ G :
∑

e ∈ E(H)

w(e) ≤ K · ( |V(H)| − 1 )

suppose we take

∀∀∀e : w(e) === |V(G)| − 1 === n − 1 and K === |E(G)| === m

Corollary

If : ∀∀∀ H ⊆ G : ( n − 1 ) · |E(H)| ≤ m · ( |V(H)| − 1 )

Then : there exists a multimap E(G) ��:-
XXz Zm so that

each edge is mapped to n − 1 consecutive numbers

for all x ∈ Zm : edges mapped to x form a forest
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More on circular mappings of edges

Equivalent to

If : ∀∀∀ H ⊆ G : ( n − 1 ) · |E(H)| ≤ m · ( |V(H)| − 1 )

Then : there exists a function ϕ : E(G) - Zm so that

for all intervals of n − 1 consecutive numbers :

edges mapped to that interval form a forest

Question

can we make this function ϕ : E(G) - Z|E(G)| a

bijection ?
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Circular orderings of edges

Conjecture ( Kajitani, Ueno & Miyano, 1988 )

If : ∀∀∀ H ⊆ G : ( n − 1 ) · |E(H)| ≤ m · ( |V(H)| − 1 )

Then : there exists a circular ordering of E(G) so that

each n − 1 consecutive edges form a spanning tree

they posed the same conjecture for matroids

known to be true for

a few special classes of graphs

graphs consisting of two edge-disjoint spanning trees

( but even that case is open for matroids )
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A result on circular orderings

Theorem 3

If : ∀∀∀ H ⊆ G : ( n − 1 ) · |E(H)| ≤ m · ( |V(H)| − 1 )

and : n − 1 and m are co-prime

Then : there exists a circular ordering of E(G) so that

each n − 1 consecutive edges form a spanning tree

holds for matroids as well
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