Mixing Colour(ing)s in Graphs

JAN VAN DEN HEUVEL

Centre for Discrete and Applicable Mathematics Department of Mathematics

London School of Economics and Political Science

in several different combinations

and it all started with a question of

HAJO BROERSMA

(Durham)

First definitions

graph G = (V, E): finite, simple, no loops, *n* vertices

<u>k-colouring of G</u>: proper vertex-colouring using colours from {1,2,...,k}

• we always assume $k \ge \chi(G)$

• we use α, β, \ldots to indicate *k*-colourings

$k\text{-colour graph } \mathcal{C}(G; k)$

- vertices are the k-colourings of G
- two k-colourings are adjacent if they differ in the colour on exactly one vertex of G

Central question

General question

Given G and k, what can we say about the colour graph C(G; k)?

In particular

• is C(G; k) connected?

good way to think about it :

can we go from any k-colouring to any other k-colouring by recolouring one vertex at the time?

Terminology: C(G; k) is connected \iff G is k-mixing

Extremal graphs for the degree bounds

"boring" extremal graph: complete graph K_m

- $\Delta(K_m) + 1 = D(K_m) + 1 = m$
- all *m*-colourings look the same :
- no vertex can change colour

Terminology

- frozen k-colouring: colouring in which no vertex can change colour
 - frozen colourings form isolated vertices in C(G; k)
 - immediately mean G is not k-mixing

The case for planar graphs

frozen 6-colouring of the icosahedron

More interesting extremal graphs

bipartite graphs can be non-k-mixing for arbitrarily large k

More interesting properties of *L_m*

- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \le m 1$ colours

- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

some colour c must appear more than once on the top

- non-*k*-mixing for k = m colours
- but *k*-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

that colour c can't appear among the bottom vertices

More interesting properties of L_m

- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

- hence any colouring is connected to a 2-colouring
- easy to see that all these 2-colourings are connected

- non-*k*-mixing for k = m colours
- but k-mixing for $3 \le k \le m 1$
 - suppose L_m coloured with $k \leq m 1$ colours

hence any colouring is connected to a 2-colouring

easy to see that all these 2-colourings are connected

so: mixing is not a monotone property

Mixing for small values of k

- smallest possible is $k = \chi(G)$
- **\chi(G) = 1**: graph without edges boring
- \$\chi(G) = 2\$: bipartite graph with at least one edge
 not-mixing for \$k = 2\$:

can't become

\chi(G) = 3: 3-colourable graph with at least one odd cycle

Proof looks at 3-colourings of cycles

 $w(\overrightarrow{C}; \alpha) =$ sum of the weights of the arcs

Proof looks at 3-colourings of cycles

 $w(\overrightarrow{C}; \alpha) = -3$

Weights of 3-colourings of cycles

recolour one vertex to go from α to β

Property

• α and β connected by a path in C(G;3) \implies for all cycles C in $G: w(\overrightarrow{C};\alpha) = w(\overrightarrow{C};\beta)$

Weights of 3-colourings of cycles

given 3-colouring α , form α^* by swapping colours 1 and 2

$$\implies$$
 all arcs change sign

$$\implies$$
 so for all C in G: $w(\overrightarrow{C}; \alpha^*) = -w(\overrightarrow{C}; \alpha)$

- **now**: take 3-chromatic graph G with a 3-colouring α , and take an odd cycle C in G
- $\implies w(\vec{C}; \alpha) \neq 0 \quad (\text{odd sum of } + 1 \text{s and } 1 \text{s})$ $\implies w(\vec{C}; \alpha^*) = -w(\vec{C}; \alpha) \neq w(\vec{C}; \alpha)$

 $\implies \alpha$ and α^* not connected in $\mathcal{C}(G;3)$

 $\implies \mathcal{C}(G;3)$ not connected

Mixing for larger values of $k = \chi$

- $\chi(G) = 2 \implies G \text{ is not } 2\text{-mixing}$
- $\chi(G) = 3 \implies G$ is not 3-mixing
- What about $k \ge 4$?
- complete graph K_k has frozen k-colourings
 so: G has K_k as a subgraph \implies G not k-mixing

- and is *m*-mixing for $m \ge 4$
- **so**: graphs with $k = \chi(G) \ge 4$ can be *k*-mixing or not *k*-mixing

Decision problems

k-MIXING

Input: graph *G* Question: is *G k*-mixing?

probably very hard, since finding one k-colouring of a graph
G is probably very hard, even if we know $k \ge \chi(G)$

Maybe easier:

BIPARTITE- k-MIXING

Input : bipartite graph G

Question: is G k-mixing?

Is a given bipartite graph k-mixing?

trivial for k = 2 ("yes" if and only if G has no edges)

necessary for k = 3:

for all 3-colourings α and cycles C in G: $w(\overrightarrow{C}; \alpha) = 0$

Theorem

- the condition is also sufficient for a graph to be 3-mixing
- **so**: BIPARTITE-3-MIXING is in coNP

certificate for not 3-mixing: 3-colouring α and cycle *C* in *G* with $w(\overrightarrow{C}; \alpha) \neq 0$

Why the 6-cycle?

open: what happens for $k \ge 4$?

A decision problem for general graphs

k-COLOUR-PATH

Input: graph *G* and two *k*-colourings α and β **Question**: is there is a path in C(G; k) from α to β ? or: "are α and β connected?"

this question might be doable for any k

trivially decidable for k = 2

necessary condition 1

for two 3-colourings α and β to be connected:

• for all cycles C in G:
$$w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$$

but not sufficient :

fixed vertex of a colouring : can never change colour

necessary condition 2

for two 3-colourings α and β to be connected:

all fixed vertices in α must be fixed in β as well and must have the same colour in both

a path *P* with two fixed end vertices can also be given a weight $w(\overrightarrow{P}; \alpha)$

and this weight stays the same when recolouring

necessary condition 3

for two 3-colourings α and β to be connected :

• for all paths *P* with fixed ends: $w(\vec{P}; \alpha) = w(\vec{P}; \beta)$

two 3-colourings α and β can only be connected if:

• for all cycles C: $w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$

• for all paths *P* with fixed ends: $w(\overrightarrow{P}; \alpha) = w(\overrightarrow{P}; \beta)$

• the sets of fixed vertices in α and β must be identical

Theorem

the conditions above are also sufficient

the conditions can be checked in polynomial time

and

if connected, then there is a path of length $O(n^2)$

k-COLOUR-PATH for $k \ge 4$

Theorem

for $k \ge 4$, *k*-COLOUR-PATH is PSPACE-complete

PSPACE

- decision problems that can be solved using a polynomial amount of memory (no restrictions on time)
- contains NP and coNP
- equal to its non-deterministic variant NPSPACE

k-COLOUR-PATH for $k \ge 4$

Theorem

k-COLOUR-PATH for bipartite, planar graphs:

- k = 2: trivially decidable
- k = 3: decidable in polynomial time
- **k** = 4 : PSPACE-complete
- $k \ge 5$: always "YES"

Length of paths between connected colourings

Theorem

- for $k \ge 4$, *k*-COLOUR-PATH is PSPACE-complete
- If NP ≠ PSPACE (similar status as P ≠ NP), then no PSPACE-complete problem should have polynomial length certificates
- **so**: for $k \ge 4$ path length between two connected k-colourings should not always be polynomial

Length of paths between connected colourings

Theorem

- for all $k \ge 4$, there exists graphs G
 - with two k-colourings α and β so that
 - α and β are connected
 - the shortest path from α to β has exponential length

the graphs can be bipartite

and for k = 4 even bipartite and planar

Something different : using extra colours

given a graph G and two k-colourings α and β

suppose we can "buy" extra colours to go from α to β how many extra colours do we need?

Theorem

\chi(G) – 1 extra colours is always enough

χ – 1 extra colours are always enough

sketch of the proof

- take a χ -colouring using colours $-1, -2, ..., -\chi$ say with colour-classes $V_{-1}, V_{-2}, ..., V_{-\chi}$
- starting with the k-colouring α (using colours $1, 2, \ldots, k$)
 - recolour vertices in V_{-1} with colour -1
 - recolour vertices in V_{-2} with colour -2
 - etc., until vertices in $V_{-(\chi-1)}$ with colour $-(\chi-1)$
- the remaining vertices in $V_{-\chi}$ form an independent set
 - hence can be recoloured to their colours according to β
- now recolour vertices in $V_{-1} \cup V_{-2} \cup \cdots \cup V_{-(\chi-1)}$

according to β as well

χ – 1 extra colours may be needed

Theorem

for all C, k with k ≥ C ≥ 2
 there exists graphs G with X(G) = C
 and two k-colourings α and β so that
 to get from α to β requires C − 1 extra colours

Thank you for your attention.

