Mixing Colour(ing)s in Graphs

JAN VAN DEN HEUVEL

Centre for Discrete and Applicable Mathematics
Department of Mathematics

London School of Economics and Political Science


```
■ reporting on research by: Paul Bonsma (Twente)

Luis Cereceda (LSE)

JVDH (LSE)

and Matthew Johnson (Durham)
```

in several different combinations

and it all started with a question of

HAJO BROERSMA (Durham)

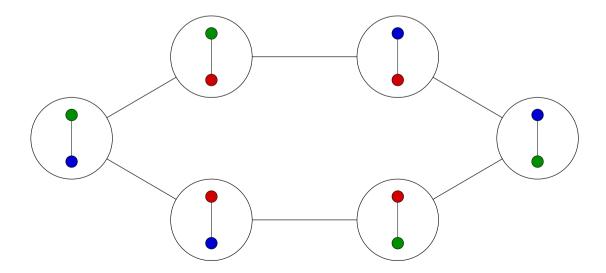
First definitions

- **graph** G = (V, E): finite, simple, no loops, n vertices
- <u>k-colouring</u> of <u>G</u>: proper vertex-colouring using colours from { 1, 2, ..., k }
 - we always assume $k \geq \chi(G)$
 - we use α, β, \ldots to indicate k-colourings
- \blacksquare k-colour graph C(G; k)
 - vertices are the k-colourings of G
 - two k-colourings are adjacent if they differ in the colour on exactly one vertex of G

Small example

2-colour graph for K_2 :

3-colour graph for K_2 :



Central question

General question

Given G and k, what can we say about the colour graph C(G; k)?

In particular

- is C(G; k) connected? good way to think about it:
 - can we go from any k-colouring to any other k-colouring by recolouring one vertex at the time?

Terminology: C(G; k) is connected \iff G is k-mixing

Research on C(G; k)

little research in pure graph theory

- related to work in theoretical physics on
 Glauber dynamics of k-state anti-ferromagnetic Potts models at zero temperature
- related to work in theoretical computer science on Markov chain Monte Carlo methods for generating random k-colourings ("rapid mixing")

Some first results on mixing

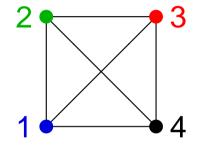
Property

$$k \ge D(G) + 2 \implies G \text{ is } k\text{-mixing}$$
 (Dyer, et al., 2004)

Theorem

Extremal graphs for the degree bounds

- "boring" extremal graph: complete graph K_m
 - $lacksquare \Delta(K_m) + 1 = D(K_m) + 1 = m$
 - all *m*-colourings look the same:
 - no vertex can change colour



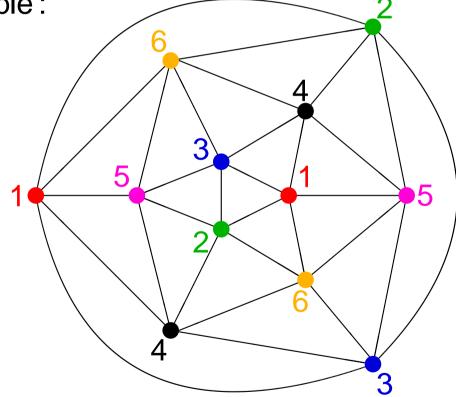
Terminology

- frozen k-colouring: colouring in which no vertex can change colour
 - frozen colourings form isolated nodes in C(G; k)
 - immediately mean G is not k-mixing

The case for planar graphs

■ G planar \Longrightarrow $D(G) \le 5 \Longrightarrow$ k-mixing for $k \ge 7$

best possible:

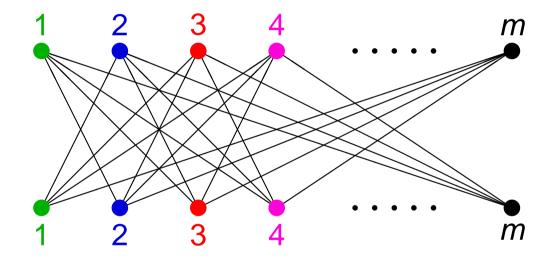


frozen 6-colouring of the icosahedron

More interesting extremal graphs

graph L_m : $K_{m,m}$ minus a perfect matching ($m \ge 3$)

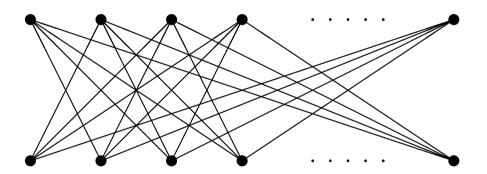
$$lacksquare \Delta(L_m) + 1 = D(L_m) + 1 = m$$



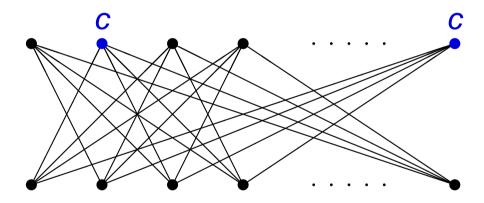
- has frozen m-colourings hence L_m is not m-mixing
- **SO**:

bipartite graphs can be non-k-mixing for arbitrarily large k

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \leq m-1$ colours

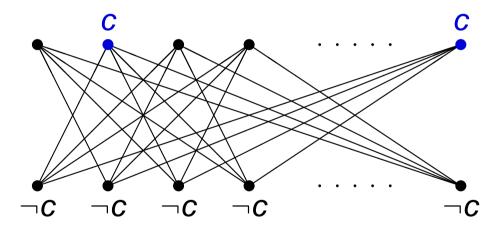


- \blacksquare non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



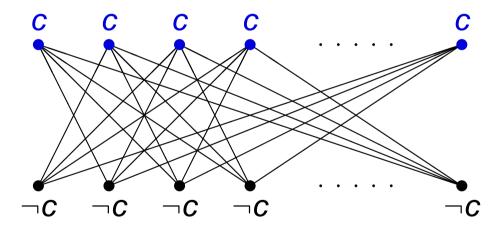
some colour c must appear more than once on the top

- \blacksquare non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



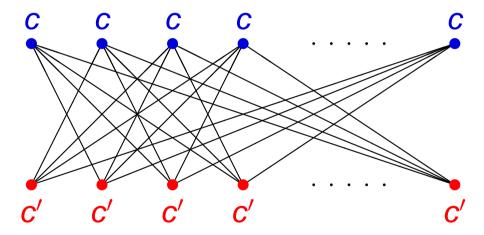
that colour c can't appear among the bottom vertices

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



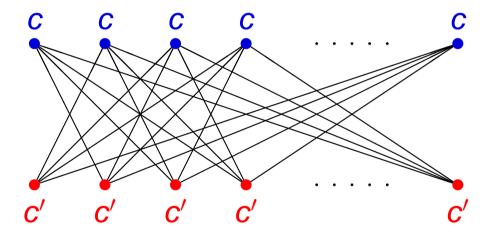
so all vertices on the top can be recoloured to c

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



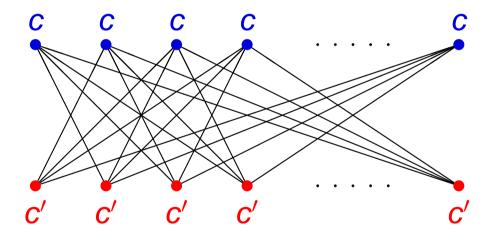
• then the bottom can be recoloured to some $c' \neq c$

- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



- hence any colouring is connected to a 2-colouring
- easy to see that all these 2-colourings are connected

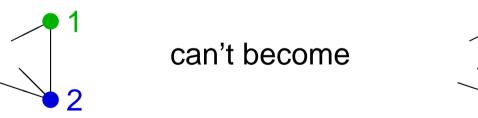
- non-k-mixing for k = m colours
- but k-mixing for $3 \le k \le m-1$
 - suppose L_m coloured with $k \le m-1$ colours



- hence any colouring is connected to a 2-colouring
- easy to see that all these 2-colourings are connected
- **so**: mixing is not a monotone property

Mixing for small values of k

- \blacksquare smallest possible is $k = \chi(G)$
- $\chi(G) = 1$: graph without edges boring
- $\chi(G) = 2$: bipartite graph with at least one edge
 - not-mixing for k = 2:



The case $k = \chi = 3$

- $\chi(G) = 3$: 3-colourable graph with at least one odd cycle
- cycle C_3 has six 3-colourings, all frozen

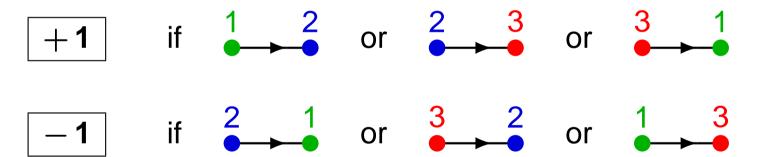
 ⇒ C_3 is not 3-mixing
- \blacksquare cycle C_5 has 30 3-colourings, none of them frozen
 - the colour graph $C(C_5; 3)$ is formed of two 15-cycles \longrightarrow C_5 is not 3-mixing

Theorem

 $\chi(G) = 3 \implies G \text{ is not 3-mixing}$

Proof looks at 3-colourings of cycles

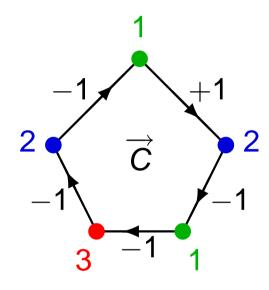
- suppose α is a 3-colouring of G
 and C is a cycle in G
 - choose an orientation of the cycle
 - weight of an arc of \overrightarrow{C} :



weight of the oriented cycle: $\frac{w(\overrightarrow{C}; \alpha)}{w(\overrightarrow{C}; \alpha)} = \text{sum of the weights of the arcs}$

Proof looks at 3-colourings of cycles

Example:



$$w(\overrightarrow{C}; \alpha) = -3$$

Weights of 3-colourings of cycles

recolour one vertex to go from α to β

Property

lacktriangle and eta connected by a path in $\mathcal{C}(G;3)$

$$\implies$$
 for all cycles C in G : $w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$

Weights of 3-colourings of cycles

- **given 3-colouring** α , form α^* by swapping colours 1 and 2
 - ⇒ all arcs change sign
 - \implies so for all C in G: $w(\overrightarrow{C}; \alpha^*) = -w(\overrightarrow{C}; \alpha)$
- **now**: take 3-chromatic graph G with a 3-colouring α , and take an odd cycle C in G
 - $\longrightarrow w(\overrightarrow{C}; \alpha) \neq 0$ (odd sum of +1s and -1s)

$$\implies w(\overrightarrow{C}; \alpha^*) = -w(\overrightarrow{C}; \alpha) \neq w(\overrightarrow{C}; \alpha)$$

- $\implies \alpha$ and α^* not connected in C(G;3)
- \Longrightarrow C(G;3) not connected

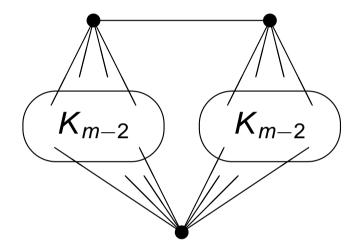
Mixing for larger values of $k = \chi$

- $\chi(G) = 2 \implies G \text{ is not 2-mixing}$
- $\chi(G) = 3 \implies G \text{ is not 3-mixing}$
- What about $k \ge 4$?
- \blacksquare complete graph K_k has frozen k-colourings

so: G has K_k as a subgraph \Longrightarrow G not k-mixing

Mixing for larger values of $k = \chi$

■ Hajos' graph H_m ($m \ge 3$)



- has $\chi(H_m) = m$
- \blacksquare and is *m*-mixing for $m \ge 4$
- **so**: graphs with $k = \chi(G) \ge 4$ can be k-mixing or not k-mixing

Decision problems

k-MIXING

Input: graph **G**

Question: is *G k*-mixing?

■ probably very hard, since finding one k-colouring of a graph G is probably very hard, even if we know $k \ge \chi(G)$

Maybe easier:

BIPARTITE- k-MIXING

Input: bipartite graph G

Question: is *G k*-mixing?

Is a given bipartite graph k-mixing?

trivial for k = 2 ("yes" if and only if G has no edges)

necessary for k = 3:

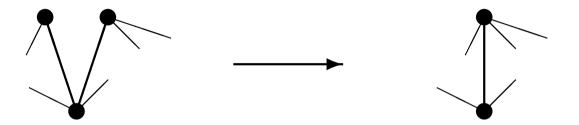
for all 3-colourings α and cycles C in G: $w(\overrightarrow{C}; \alpha) = 0$

Theorem

- the condition is also **sufficient** for a graph to be 3-mixing
- **so**: BIPARTITE-3-MIXING is in coNP
- certificate for not 3-mixing: 3-colouring α and cycle C in G with $w(\overrightarrow{C}; \alpha) \neq 0$

A structural certificate for bipartite non-3-mixing

pinch of two vertices at distance 2:



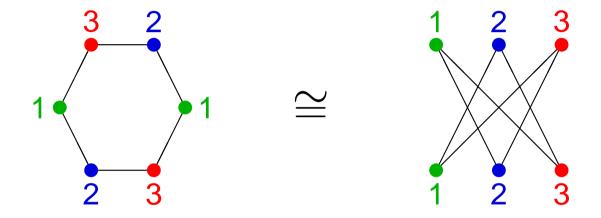
■ G pinchable to H: sequence of pinches changes G to H

Theorem

- connected bipartite G is not 3-mixing

Why the 6-cycle?

 $C_6 \cong L_3 - \text{so } C_6 \text{ is not 3-mixing }$



■ **note**: C₄ is 3-mixing

Deciding bipartite mixing

■ bipartite G not 3-mixing \iff G pinchable to C_6

Theorem

 \blacksquare deciding pinchability to C_6 is NP-complete

hence

■ BIPARTITE-3-MIXING is coNP-complete

Theorem

■ BIPARTITE-3-MIXING is polynomial for planar graphs

open: what happens for $k \ge 4$?

A decision problem for general graphs

k-COLOUR-PATH

Input: graph G and two k-colourings α and β

Question: is there is a path in C(G; k) from α to β ?

or: "are α and β connected?"

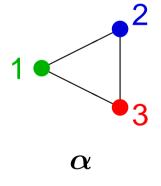
- \blacksquare this question might be doable for any k
- trivially decidable for k=2

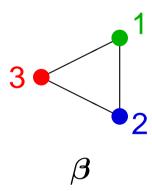
necessary condition 1

for two 3-colourings α and β to be connected:

• for all cycles C in G: $w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$

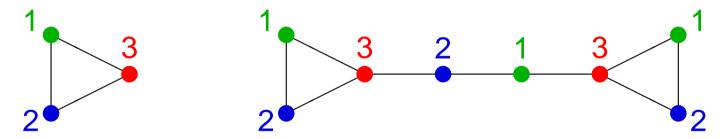
but not sufficient:





fixed vertex of a colouring: can never change colour

examples

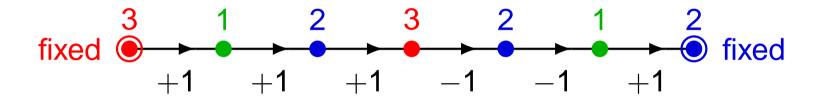


necessary condition 2

for two 3-colourings α and β to be connected:

■ all fixed vertices in α must be fixed in β as well and must have the same colour in both

a path P with two fixed end vertices can also be given a weight $w(\overrightarrow{P}; \alpha)$



- and this weight stays the same when recolouring
- necessary condition 3 for two 3-colourings α and β to be connected:
 - for all fixed-ends paths $P: w(\overrightarrow{P}; \alpha) = w(\overrightarrow{P}; \beta)$

- two 3-colourings α and β can only be connected if:
 - for all cycles $C: w(\overrightarrow{C}; \alpha) = w(\overrightarrow{C}; \beta)$
 - for all fixed-ends paths $P: w(\overrightarrow{P}; \alpha) = w(\overrightarrow{P}; \beta)$
 - the sets of fixed vertices in α and β must be identical

Theorem

- the conditions above are also sufficient
- the conditions can be checked in polynomial time

and

if connected, then there is a path of length $O(n^2)$

k-COLOUR-PATH for $k \ge 4$

Theorem

• for $k \ge 4$, k-COLOUR-PATH is PSPACE-complete

PSPACE

- decision problems that can be solved using a polynomial amount of memory (no restrictions on time)
- contains NP and coNP
- equal to its non-deterministic variant NPSPACE

k-COLOUR-PATH for $k \ge 4$

Theorem

k-COLOUR-PATH for bipartite, planar graphs:

- k = 2: trivially decidable
- k = 3: decidable in polynomial time
- = k = 4: PSPACE-complete
- $k \ge 5$: always "YES"

Length of paths between connected colourings

Theorem

- for $k \ge 4$, k-COLOUR-PATH is PSPACE-complete
- if NP ≠ PSPACE (similar status as P ≠ NP), then no PSPACE-complete problem should have polynomial length certificates
- **so**: for $k \ge 4$ path length between two connected k-colourings should not always be polynomial

Length of paths between connected colourings

Theorem

- for all $k \ge 4$, there exists graphs G with two k-colourings α and β so that
 - lacksquare α and β are connected
 - the shortest path from α to β has exponential length

- the graphs can be bipartite
- \blacksquare and for k = 4 even bipartite and planar

Something different: using extra colours

- **given** a graph G and two k-colourings α and β
- **u** suppose we can "buy" extra colours to go from α to β

how many extra colours do we need?

Theorem

 $\chi(G)$ – 1 extra colours is always enough

χ – 1 extra colours are always enough

sketch of the proof

- take a χ -colouring using colours $-1, -2, \dots, -\chi$ say with colour-classes $V_{-1}, V_{-2}, \dots, V_{-\chi}$
- \blacksquare starting with the k-colouring α (using colours $1, 2, \ldots, k$)
 - recolour vertices in V₋₁ with colour -1
 - recolour vertices in V₂ with colour -2
 - **etc.**, until vertices in $V_{-(\chi-1)}$ with colour $-(\chi-1)$
- \blacksquare the remaining vertices in $V_{-\chi}$ form an independent set
 - hence can be recoloured to their colours according to β
- now recolour vertices in $V_{-1} \cup V_{-2} \cup \cdots \cup V_{-(\chi-1)}$ according to β as well

χ – 1 extra colours may be needed

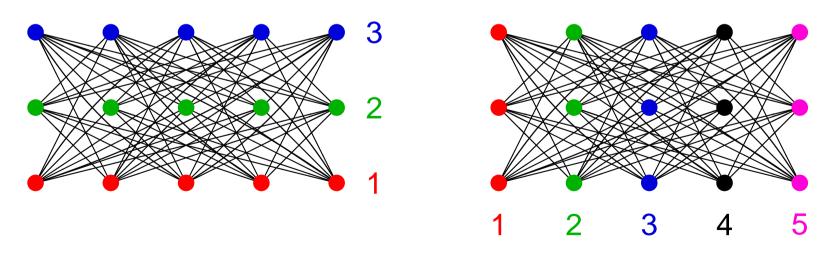
Theorem

- for all C, k with $k \ge C \ge 2$ there exists graphs G with $\chi(G) = C$ and two k-colourings α and β so that
 - to get from α to β requires C-1 extra colours

χ – 1 extra colours may be needed

Theorem

- for all C, k with $k \ge C \ge 2$ there exists graphs G with $\chi(G) = C$ and two k-colourings α and β so that
 - to get from α to β requires C-1 extra colours



the graph for C = 3 and k = 5