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The Transportation Problem

m supply points, each holding quantity r i > 0

m demand points, each wanting quantity cj > 0

total supply = total demand :
m∑∑∑

i=1

r i =

n∑∑∑

j=1

c j
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The Transportation Polytope

x ij : amount transported from i to j

a feasible solution X is an m · n vector X = (x ij) so that

n∑∑∑

j=1

x ij = r i , i = 1, . . . , m

m∑∑∑

i=1

x ij = c j , j = 1, . . . , n

x ij ≥ 0, i = 1, . . . , m, j = 1, . . . , n

transportation polytope T : convex polytope formed by

the set of all feasible solutions in Rmn
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The diameter of TTT

1-skeleton or edge graph of T :

graph formed by 0-faces as vertices and 1-faces as edges

polytope its 1-skeleton

diam(T ) : graph diameter of the 1-skeleton of T

question of the day : what can we say about diam(T ) ?
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Why ?

Conjecture (Hirsch, 1957)

P a polytope with f facets and dimension d

=⇒ diam(P) ≤ f − d

Kalai & Kleitman, 1992

diam(P) ≤ f log2(d)+2
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The Hirsch Conjecture for TTT

T contains points X = (x ij) from Rmn

but there are m + n − 1 independent equalities of type
n∑∑∑

j=1

x ij = r i and
m∑∑∑

i=1

x ij = c j

so : dim(T ) = m n − m − n + 1

each inequality x ij ≥ 0 gives a facet

so : # facets = m n

Hirsch Conjecture true =⇒ diam(T ) ≤ m + n − 1
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Bounds on diam(T )(T )(T )

Hirsch Conjecture true =⇒ diam(T ) ≤ m + n − 1

also best possible

Dyer & Frieze, 1994 diam(T ) ≤ O( m16 n3 log3n )

(corollary of much more general result)

Stougie, Oct 2002 diam(T ) ≤ m2 n

vdH & Stougie, Nov 2002 diam(T ) ≤ 1
2 ( m + n − 1 )2

Brightwell, vdH & S, Dec 2002

diam(T ) ≤ 8 ( m + n − 2 )
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The structure of the skeleton of TTT

for the remainder, assume the problem is non-degenerate :

∀I $$$ {1, . . . , m}, J $$$ {1, . . . , n} :
∑∑∑

i∈I

r i 6=
∑∑∑

j∈J

c j

( if T degenerate, then a small perturbation of r i and c j

gives a non-degenerate T ∗ with a larger diameter )
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The vertices of TTT

for X ∈ T , let G(((X ))) be the subgraph of K m,n with edges

(i , j) ∈ E(X) ⇐⇒ x ij > 0

Klee & Witzgall, 1968

X is a vertex of T ⇐⇒ G(X) is a ( spanning ) tree

note: not every tree in K m,n can appear as a G(X)
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The edges of TTT

vertex X with xab = 0 , i.e., tree G(X) and (a, b) /∈ E(X)

then a pivot on (((a, b))) is :

add edge (a, b): gives a unique cycle C of even length

label edges of C alternating + /−−−+ /−−−+ /−−− ; giving (a, b) a +++

remove −−− -edge with minimal value

change value other edges by + /−−−+ /−−−+ /−−− the removed value
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pivot changing G(X) to G(Y ) ≡ edge from X to Y
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The problem reformulated

given m , n , r1, . . . , rm , c1, . . . , cn

and a pair X , Y ∈ T so that G(X), G(Y ) are trees

how many pivots are needed to get from G(X) to G(Y ) ?
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easy to add a new edge (a, b) to a tree G(X)

but can we control the edge that gets removed ?
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Some stronger conjectures

G(X), G(Y ) trees corresponding to vertices X , Y ∈ T

a pivot in a tree adds one edge and removes one edge

Stronger Conjecture 1

there exists a pivot in G(X) removing an edge from G(X)

and adding an edge from G(Y )

Stronger Conjecture 2

the number of pivots needed to get from G(X) to G(Y )

is |E(X) \ E(Y )| ( = |E(Y ) \ E(X)| )
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The stronger conjectures

if E(X) ∩ E(Y ) = ∅∅∅ :

Conjecture 1 trivially holds

Hirsch Conjecture =⇒ Conjecture 2 holds

( since |E(X) \ E(Y )| = |E(X)| = m + n − 1 )

if |E(X) \ E(Y )| = 1 : both conjectures hold

but both conjectures are false in general :
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Main ideas of our proofs : Leafs in trees

pendant edge : edge incident with a leaf

(a, b) a pendant edge in both G(X) and G(Y )

=⇒ either a is a leaf in both ( if ra < cb ),

or b is a leaf in both

a a leaf and (a, b) a pendant edge in both G(X), G(Y )

=⇒ any pivot not involving a ,

leaves (a, b) a pendant edge

and xab = yab ( = ra )

=⇒ dist(G(X), G(Y )) = dist(G(X) − a, G(Y ) − a)
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Making (a, b) a pendant edge in a tree G(X)

if (a, b) /∈ E(X) , insert it in one pivot step

as long as (a, b) not a pendant edge

( both dG(X)(a), dG(X)(b) > 1 )

find i 6= a and j 6= b with (i, b), (a, j) ∈ E(X)

do a pivot inserting (i, j)

this removes one of (i, b), (a, j) ,

i.e., reduces dG(X)(a) + dG(X)(b) by one
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Making (a, b) a pendant edge in a tree G(X)

if (a, b) /∈ E(X) , insert it in one pivot step

as long as (a, b) not a pendant edge

( both dG(X)(a), dG(X)(b) > 1 )

find i 6= a and j 6= b with (i, b), (a, j) ∈ E(X)

do a pivot inserting (i, j)

this removes one of (i, b), (a, j) ,

i.e., reduces dG(X)(a) + dG(X)(b) by one

(a, b) becomes a pendant edge

when one of dG(X)(a), dG(X)(b) becomes 1

which happens after at most

dG(X)(a) + dG(X)(b) − 3 ≤ n + m − 3 pivots
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A quadratic bound on the diameter

Input : two trees G(X), G(Y )

choose a pendant edge (a, b) in G(Y )

transform G(X) to G(X∗) ,

with (a, b) a pendant edge in G(X∗)

requires at most

1 + dG(X)(a) + dG(X)(b) − 3 ≤ n + m − 2 pivots

now (a, b) is a pendant edge in both G(X∗) and G(Y )

=⇒ same end vertex of (a, b) is leaf in both

remove common leaf from both G(X∗) and G(Y )

proceed by induction

On the diameter of the Transportation Polytope – Prague, 4 Dec 2006



Towards a linear bound

Main extra idea

not : transform G(X) to G(X∗) to get closer to G(Y )

but : transform G(X) to G(X∗) and G(Y ) to G(Y ∗)

such that G(X∗) and G(Y ∗) have common pendant edge

remove the common leaf from G(X∗) and G(Y ∗)

continue by induction

Claim : by choosing the edge (a, b) to be inserted carefully,

one iteration of the above can be done in at most 8 pivots

uses : trees have low average degree
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Using average degree of trees

two very different cases

1
2 n ≤ m ≤ 2 n =⇒ there exist a, b with

dG(X)(a) + dG(X)(b) + dG(Y)(a) + dG(Y)(b) ≤ 8

m > 2 n

=⇒ every tree in K m,n

has at least 1
2 ( m + 1 ) leafs among the sources

=⇒ there is a source

that is leaf in both G(X) and G(Y )

some further analysis . . .
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