Circular Arboricity of Graphs

JAN VAN DEN HEUVEL

Centre for Discrete and Applicable Mathematics Department of Mathematics

London School of Economics and Political Science

First definitions/notation

• G = (V(G), E(G)): finite graph,

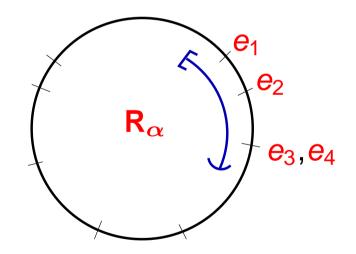
no loops, but multiple edges allowed

- n : number of vertices
- **m**: number of edges
- **forest**: subgraph of *G* without cycles
- R_{α} : circle with circumference α ($\alpha \in R, \alpha > 0$) think: interval [0, α) with a circular ordering
- Z_k : integers modulo k ($k \in N$) think: numbers 1, 2, ..., k with a circular ordering

Circular arboricity

• we want to map the edges of G to \mathbf{R}_{α} so that :

for every unit interval [a, a + 1) of R_α:
 the edges mapped into that interval form a forest



circular arboricity of G, $\Upsilon_C(G)$:

minimum α for which this is possible

for every subgraph $H \subseteq G$ we must have :

- a forest can have at most |V(H)| 1 edges from H
- so every unit interval of R_{α} can have

at most |V(H)| - 1 edges from H

• so we need
$$\alpha \ge \frac{|E(H)|}{|V(H)| - 1}$$

• and hence
$$\Upsilon_C(G) \ge \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}$$

Conjecture (Goncalves): $\Upsilon_C(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}$

Integral arboricity

If:
$$K \ge \max_{H \subseteq G} \left[\frac{|E(H)|}{|V(H)| - 1} \right]$$
, for some $K \in \mathbb{N}$

Then: E(G) can be partitioned into K disjoint forests

• this means:
$$\Upsilon_C(G) \leq \max_{H \subseteq G} \left[\frac{|E(H)|}{|V(H)| - 1} \right]$$

Integral arboricity

If:
$$K \ge \max_{H \subseteq G} \left[\frac{|E(H)|}{|V(H)| - 1} \right]$$
, for some $K \in \mathbb{N}$

Then: E(G) can be partitioned into K disjoint forests

generalised to matroids by Edmonds (1964)

in fact: everything in this talk can be (and has been) formulated/asked/proved for matroids as well

Fractional arboricities

- the circular arboricity can be considered as some kind of "fractional" arboricity
- a more natural fractional arboricity concept is the solution to the following LP-problem :
 - x_F : real-valued variable for a forest F
 - minimise: $\sum_{F} x_{F}$ such that: $\forall e \in E(G)$: $\sum_{F \ni e} x_{F} \ge 1$ $\forall F$: $x_{F} \ge 0$

folklore: this minimum is equal to $\max_{H \subseteq G} \frac{|\mathcal{L}(H)|}{|\mathcal{V}(H)| - 1}$

Quick proof of the fractional arboricity

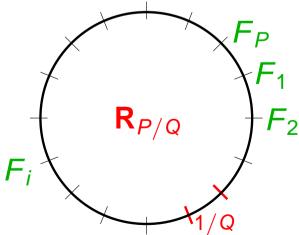
suppose
$$\max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1} = \frac{P}{Q}$$

form G^Q by replacing each edge by Q parallel edges
then $\max_{H \subseteq G^Q} \left[\frac{|E(H)|}{|V(H)| - 1} \right] = \max_{H \subseteq G^Q} \frac{|E(H)|}{|V(H)| - 1} = P$
Nash-Williams: G^Q can be covered by P disjoint forests
so G has P forests covering each edge Q times
set $x_E = 1/Q$ for these forests

Forests in a circle

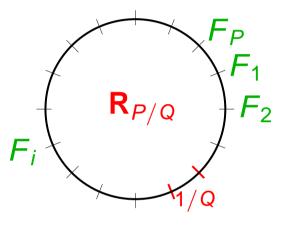
Conjecture:
$$\Upsilon_C(G) = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1} = \frac{P}{Q}$$

- and we know: there is a collection $\mathcal{F} = \{F_1, \dots, F_P\}$ of *P* forests covering each edge *Q* times
- if we give each forest in \mathcal{F} weight 1/Q we can put them around $\mathbb{R}_{P/Q}$:



From forests in a circle to circular arboricity

P forests with each edge appearing in Q of them



we would be done if we can make sure that

every edge occurs in Q consecutive forests

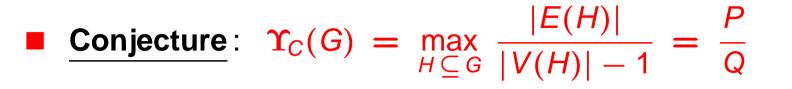
then: map each edge to the first forest it appears in

which would mean :

set of edges in a unit interval

edges of the last forest in that interval

A possible proof of Goncalves' Conjecture



we are done if we can prove :
there exists a "cyclic" list of *P* forests so that
each edge appears in *Q* consecutive forests

equivalent to :

there exists a multimap $E(G) \iff \mathbb{Z}_P$ so that

- each edge is mapped to Q consecutive numbers
- for all $x \in \mathbb{Z}_P$: edges mapped to x form a forest

A general theorem

Theorem 1

Given: $K \in \mathbb{N}$, edge weights $w : E(G) \longrightarrow \mathbb{N}$

If:
$$\forall H \subseteq G$$
: $K \ge \frac{\sum\limits_{e \in E(H)} w(e)}{|V(H)| - 1}$

• Then: there exists a multimap $E(G) \iff Z_K$ so that

- each edge e is mapped to w(e) consecutive numbers
- for all $x \in \mathbb{Z}_{K}$: edges mapped to x form a forest

Corollary: by taking
$$K = P$$
 and $\forall e: w(e) = Q$ we get:

$$\Upsilon_C(G) = \frac{P}{Q} = \max_{H \subseteq G} \frac{|E(H)|}{|V(H)| - 1}$$

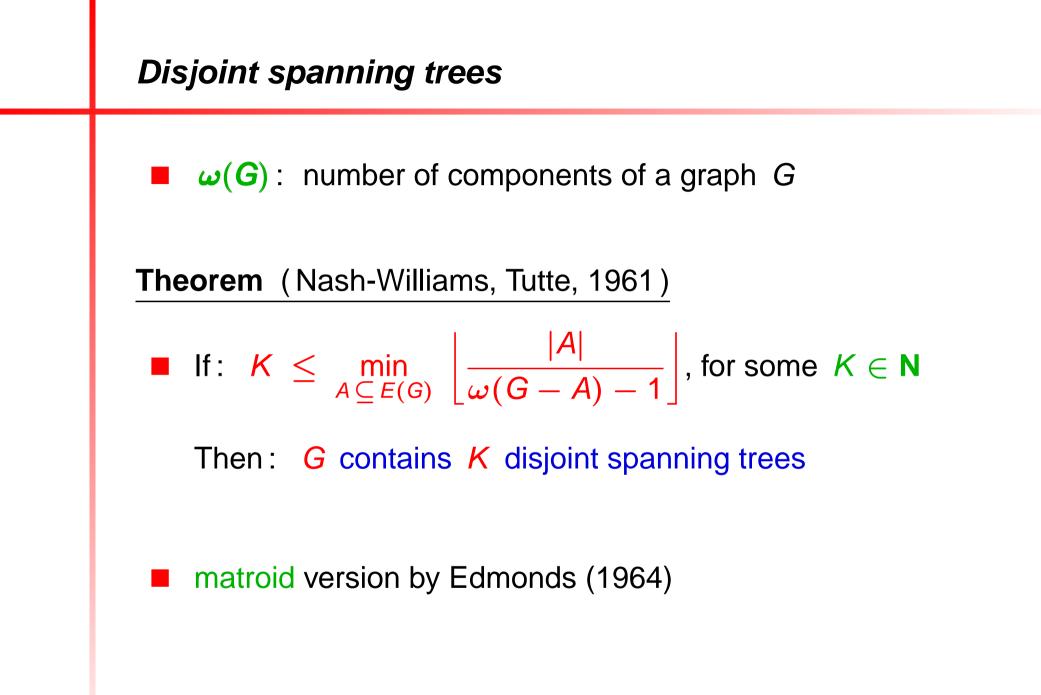
Some ideas from the the proof

- proof by induction on $\sum w(e)$
- choose an e_1 and replace $w(e_1)$ by $w(e_1) 1$
 - find a multimap to Z_K with this reduced weight
- say e_1 gets mapped to the interval $x_0, \ldots, x_1 1$
 - map an extra copy of e_1 to position x_1
 - this may introduce a cycle at position x_1
- there is an edge e_2 in this cycle not mapped to $x_1 1$
- say e_2 gets mapped to the interval $x_1, \ldots, x_2 1$
 - remove the map from e₂ to x₁
 - map a new copy of e₂ to position x₂
 - this may introduce a cycle at position x₂

Some ideas from the the proof

- map a new copy of e₂ to position x₂
 - this may introduce a cycle at position x_2
- there is an edge e_3 in this cycle not mapped to $x_2 1$
- say e_3 gets mapped to the interval $x_2, \ldots, x_3 1$
 - remove the map from e_3 to x_2
 - map a new copy of e_3 to position x_3
 - this may introduce a cycle at position x₃
- ad infinitum

NOT !



The dual of Theorem 1

Theorem 1, using matroid duality, can be used to prove :

Theorem 2

Given: $K \in \mathbb{N}$, edge weights $w : E(G) \longrightarrow \mathbb{N}$

If:
$$\forall A \subseteq E(G)$$
: $K \leq \frac{\sum\limits_{e \in A} w(e)}{\omega(G-A)-1}$

• Then: there exists a multimap $E(G) \iff \mathbf{Z}_{K}$ so that

• each edge e is mapped to w(e) consecutive numbers

• for all $x \in \mathbb{Z}_{K}$: edges mapped to x

form a connected spanning subgraph

The dual of circular arboricity

Theorem 2 gives the following **circular version** of the Nash-Williams / Tutte Theorem :

Corollary

If:
$$\alpha \leq \min_{A \subseteq E(G)} \frac{|A|}{\omega(G-A)-1}$$
, for some $\alpha \in \mathbb{R}, \ \alpha > 0$

• Then: there exists a map $E(G) \rightarrow \mathbf{R}_{\alpha}$ so that:

 for every unit interval [a, a + 1) of R_α: the edges mapped into that interval form a connected spanning subgraph

• this upper bound on α is best possible

More on circular mappings of edges

condition from **Theorem 1**: $\forall H \subseteq G: K \ge \frac{\sum_{e \in E(H)} w(e)}{|V(H)| - 1}$

suppose we take

 $\forall e: w(e) = |V(G)| - 1 = n - 1 \text{ and } K = |E(G)| = m$

Corollary

If:
$$\forall H \subseteq G$$
: $\frac{m}{n-1} \geq \frac{|E(H)|}{|V(H)|-1}$

• Then: there exists a multimap $E(G) \iff Z_m$ so that

• each edge is mapped to n - 1 consecutive numbers

• for all $x \in \mathbb{Z}_m$: edges mapped to x form a forest

More on circular mappings of edges

• there exists a multimap $E(G) \iff Z_m$ so that

- each edge is mapped to n 1 consecutive numbers
- for all $x \in \mathbb{Z}_m$: edges mapped to x form a forest

Corrolary is equivalent to

If:
$$\forall H \subseteq G$$
: $\frac{m}{n-1} \geq \frac{|E(H)|}{|V(H)|-1}$

• Then: there exists a function $E(G) \rightarrow Z_{|E(G)|}$ so that

for all intervals of n – 1 consecutive numbers:
 edges mapped to that interval form a spanning tree

Question: can we make this function a bijection?

Circular orderings of edges

Conjecture (Kajitani, Ueno & Miyano, 1988)

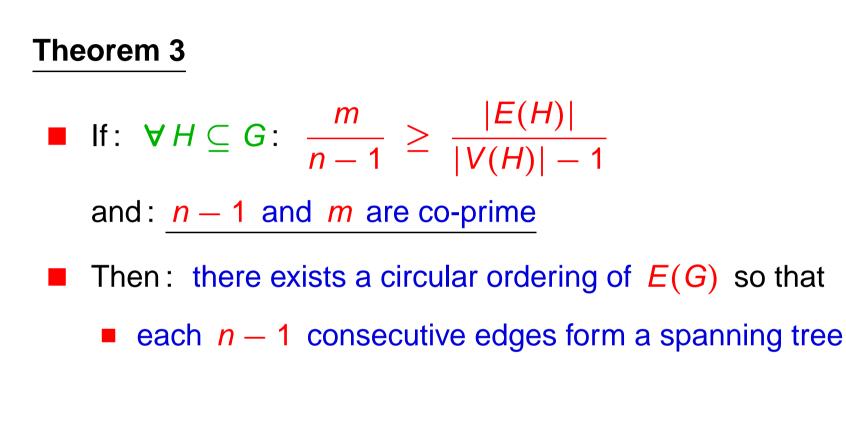
If:
$$\forall H \subseteq G$$
: $\frac{m}{n-1} \geq \frac{|E(H)|}{|V(H)|-1}$

• Then: there exists a circular ordering of E(G) so that

• each n - 1 consecutive edges form a spanning tree

- they posed the same conjecture for matroids
- known to be true for
 - a few special classes of graphs
 - graphs consisting of two edge-disjoint spanning trees
 (but even that case is open for matroids)

A result on circular orderings



holds for matroids as well