Ordered Colourings of Graphs

JAN VAN DEN HEUVEL

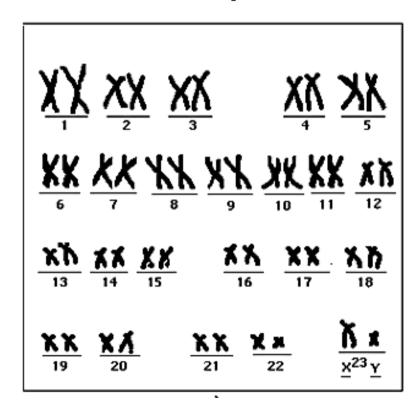
joint work with ARVIND GUPTA, JÁN MAŇUCH
LADISLAV STACHO & XIAOHONG ZHAO
(Simon Fraser University, Canada)

Centre for Discrete and Applicable Mathematics Department of Mathematics

London School of Economics and Political Science

Inspired by a problem in mathematical biology

- **genotype**: the genetic information of one individual
 - stored on chromosomes
- most organisms have **two copies** of each chromosome



Inspired by a problem in mathematical biology

- **genotype**: the genetic information of one individual
 - stored on chromosomes
- most organisms have two copies of each chromosome
 - one from each parent
 - these two copies need not be identical
 - the genetic make-up of one chromosome is called a haplotype
- the genotype has the combined information of the two haplotypes in some kind of "mixed format"
- determining the haplotypes in a laboratory is much harder than determining the genotype

Genotype versus haplotypes

- information in the genotype can be one of 0, 1, 2
 - for the haplotype it can be one of 0, 1
- interpretation:

Main problem

$$-2-2 - \longrightarrow \begin{array}{c} -0-0- \\ -1-1- \end{array} \text{ or } \begin{array}{c} -0-1- \\ -1-0- \end{array}$$

Haplotype inferring

Input: the different variants of genotypes appearing in some population

Output: for each genotype: two corresponding haplotypes

- satisfying some rules (usually biologically inspired)
 - **e.g.**: the fewer variants of haplotypes required, the better

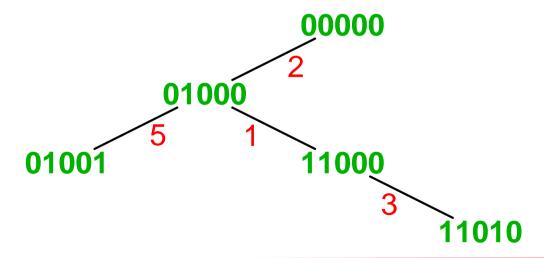
2nd choice preferable (only three different haplotypes)

Rules from genetic assumptions

- initial assumptions:
 - all haplotypes originate from one original one
 - variants appeared because of mutations but only small chance that a mutation occurs at a particular place on a chromosome
- so try to obtain a collection of haplotypes requiring minimum number of mutations

An even stronger genetic requirement

- the proposed collection of haplotypes should should fit in a Perfect Phylogenetic Tree:
 - rooted tree
 - each node labelled with a proposed haplotype
 - each haplotype appears as the label of one node
 - each edge labelled by sites in which the ends differ
 - each site occurs at most once as an edge label



Perfect Phylogeny Haplotype Problem

Input: the different variants of genotypes appearing in some population

Question: is there a collection of haplotypes such that

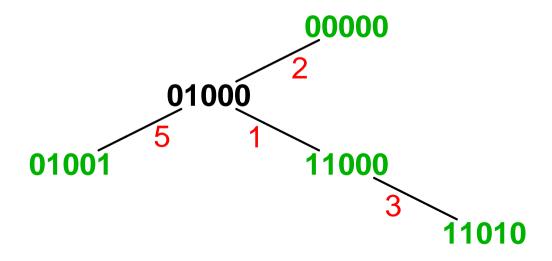
- each genotype has two corresponding haplotypes,
- the haplotypes fit in a Perfect Phylogenetic Tree,
- all haplotypes are used in some genotype?

Theorem (Gusfield, 2002)

this can be solved in polynomial time (in number and length of the genotypes)

A more difficult problem

- Imperfect Phylogenetic Tree:
 some nodes do not appear in the original data
- example: suppose proposed haplotypes are 00000, 01001, 11000, 11010
 - to explain as a phylogenetic tree, the data needs an extra ("non-observed") node:



A more difficult problem

■ Imperfect Phylogenetic Tree: some nodes do not appear in the original data

Theorem (Kimmel & Shamir, 2005)

the Imperfect Phylogeny Haplotype Problem is NP-complete

Further complications

new haplotypes can occur because of recombination:

- can be modelled with cycles in the phylogenetic tree
- is assumed to happen very rarely
- leads to more and more combinatorial (decision) problems

From now on, mathematics only

a simple ordered colouring problem

- **given**: graph G = (V, E) with vertices $V = \{1, 2, ..., n\}$
- required: a vertex colouring with colours { A, B, C } i.e., a function φ: V → { A, B, C }

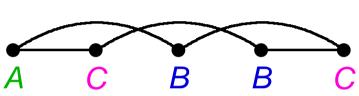
such that:

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- all vertices coloured A must appear before
 all vertices coloured B

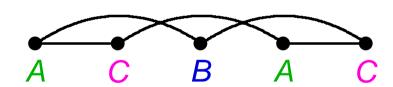
Example

suppose the graph is:

allowed colouring:



not allowed:



decision problem:

■ given a graph *G* with vertices {1,2,...,*n*} how easy is it to decide if it allows such a 3-colouring?

Theorem

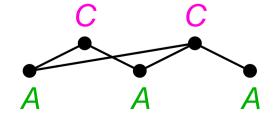
deciding if a given graph allows this kind of 3-colouring can be done in polynomial time

sketch of proof

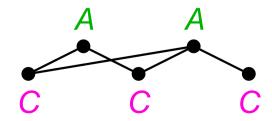
- \blacksquare choose a vertex m from $1, \ldots, n$ (n choices)
- assume m forms the boundary between the vertices that can have colour $A \ (\le m)$ and the vertices that can have colour $B \ (> m)$

sketch of proof (cont.)

- then vertices $1, \ldots, m$ can only be coloured A or C and vertices $m+1, \ldots, n$ can only be coloured B or C
 - so check if the two parts are bipartite
- suppose "yes"
 - so G[1, ..., m] has bipartite components same for G[m+1, ..., n]
- each component has 2 different choices for a 2-colouring



or



sketch of proof (cont.)

- for each component X_i in G[1, ..., m]
 - choose a top and a bottom part:

- introduce a Boolean variable x_i with the meaning
 - $x_i = \text{TRUE}$: $A \subset C$

$$x_i = \mathsf{FALSE}$$
:

- for each component Y_j in $G[m+1, \ldots, n]$
 - choose a top and a bottom part
 - introduce a Boolean variable y_i with the meaning

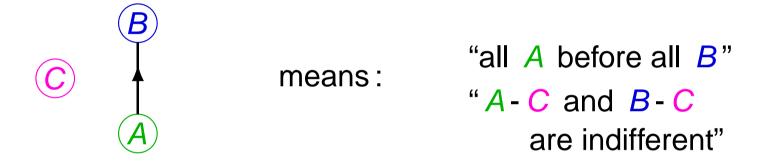
$$y_j = \mathsf{FALSE}$$
:

sketch of proof (cont.)

- each edge between a component X_i and a component Y_j gives rise to a **2-literal disjunction**
 - $\bullet \text{ e.g.}: \qquad \qquad \overline{X_i} \vee y_j$
- doing this for all edges between X_i and Y_j components gives a conjunction of 2-literal disjunctions
- i.e., an instance of the **2-SATISFIABILITY** problem
 - well-known to be polynomial time decidable

Generalising the problem

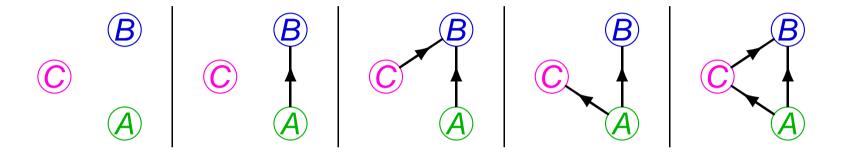
a way to look at this colouring problem is as if there is an order relation on the colours { A, B, C }



what would happen if we consider other order relations on the colours?

More general ordered 3-colourings

possible posets with 3 elements:



Theorem

- deciding if a certain graph with vertices 1, ..., n has a colouring according to these posets is
 - NP-complete for the first poset (just 3-colouring)
 - polynomial for the others

General ordered colourings with more colours

- strong order: A → B means: "all A before all B"
- suppose we allow any number of colours and any poset on the set of colours

Theorem

- deciding if a given graph with vertices 1, ..., n has a colouring according to a fixed colour poset is
 - **NP-complete**if the poset has an anti-chain of length at least 3
 - polynomial otherwise

A different ordered 3-colouring problem

- **given**: graph G = (V, E) with n vertices vertices are numbered from $1, \ldots, n$
- required: a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \to \{A, B, C\}$

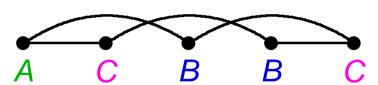
such that:

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- vertices coloured A must appear before vertices
 coloured B only for adjacent vertices

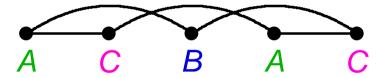
Example

suppose the graph is:

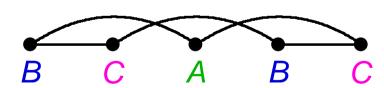
allowed colouring:



also allowed:



not allowed:



A different ordered 3-colouring problem

Theorem

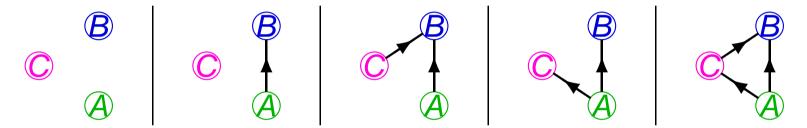
■ this new 3-colouring problem is **NP-complete**

ideas of proof

- constraint on edges only means "local constraints"
 - allows to construct gadgets
- reduction to SAT

Generalising the 2nd variant for 3 colours

- weak order: (A) → (B) means: "A before B on edges"
- possible posets with 3 elements:



Theorem

- deciding if a certain graph with vertices 1, ..., n has a colouring according to the weak order rule is
 - **NP-complete** for the first two posets
 - polynomial for the others

Generalising the 2nd variant with more colours

- weak order: A → B means: "A before B on edges"
- suppose we allow any number of colours and any poset on the set of colours

Theorem

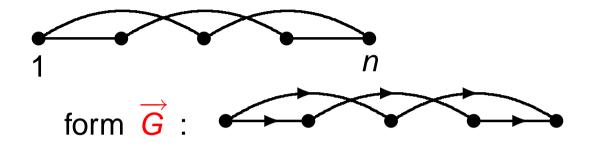
- deciding if a given graph with vertices 1, ..., n has a colouring according to a **fixed colour poset** and the weak order rule is
 - polynomial if there is at most one pair of non-comparable colours
 - **NP-complete** otherwise

And now for something completely different ...

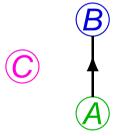
- \blacksquare given two directed graphs \overrightarrow{G} and \overrightarrow{H}
- a directed homomorphism $\overrightarrow{G} \longrightarrow \overrightarrow{H}$ is a function $\psi : V(\overrightarrow{G}) \to V(\overrightarrow{H})$ such that
 - \overrightarrow{uv} an arc in \overrightarrow{G} \Longrightarrow $\overrightarrow{\psi(u)\psi(v)}$ an arc in \overrightarrow{H}
- directed homomorphisms seem to be much harder to understand than their undirected cousins

From colourings to homomorphisms

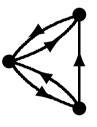
given graph G



given colour poset



form \overrightarrow{H}



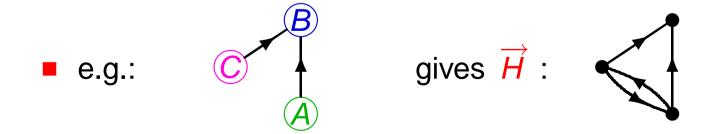
then:

G is colourable with the poset using the weak order rule

there is a directed homomorphism $\overrightarrow{G} \longrightarrow \overrightarrow{H}$

Some technical definitions

- semi-complete digraph:
 between any two vertices one arc or two (opposite) arcs
- quasi-acyclic digraph : removal of all 2-cycles gives an acyclic digraph
- starting from a colour poset, always gives a quasi-acyclic semi-complete digraph \overrightarrow{H}



Complexity of directed homomorphism

 \blacksquare \overrightarrow{H} -COLOURING

Input: directed graph \overrightarrow{G}

Question: is there a homomorphism $\overrightarrow{G} \rightarrow \overrightarrow{H}$?

Theorem (Bang-Jensen, Hell & MacGillivray, 1988)

- let \overrightarrow{H} be a semi-complete digraph then the complexity of \overrightarrow{H} -COLOURING is
 - polynomial if \overrightarrow{H} contains at most one directed cycle
 - **NP-complete** otherwise

Complexity of acyclic directed homomorphism

 \blacksquare ACYCLIC- \overrightarrow{H} -COLOURING

Input: acyclic directed graph \overrightarrow{G}

Question: is there a homomorphism $\overrightarrow{G} \rightarrow \overrightarrow{H}$?

Theorem (corollary of our earlier result)

- let \overrightarrow{H} be a quasi-acyclic semi-complete digraph then the complexity of ACYCLIC- \overrightarrow{H} -COLOURING is
 - polynomial if \overrightarrow{H} contains at most one 2-cycle
 - **NP-complete** otherwise

Open problems

is there a characterisation for semi-complete digraphs \overrightarrow{H} on the complexity of ACYCLIC- \overrightarrow{H} -COLOURING? (probably "yes")

- what about a characterisation for general digraphs \overrightarrow{H} on the complexity of ACYCLIC- \overrightarrow{H} -COLOURING?

 (likely to be very hard; open even if we restrict \overrightarrow{H} to trees)
- the Holy Grail: characterisation for general digraphs \overrightarrow{H} on the complexity of \overrightarrow{H} -COLOURING