Ordered Colourings of Graphs

JAN VAN DEN HEUVEL

joint work with ARVIND GUPTA, JÁN MAŇUCH LADISLAV STACHO & XIAOHONG ZHAO (Simon Fraser University, Canada)

Centre for Discrete and Applicable Mathematics Department of Mathematics

London School of Economics and Political Science

A simple (?) colouring problem

given: graph
$$G = (V, E)$$

with vertices $V = \{1, 2, ..., n\}$

■ **required**: a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \rightarrow \{A, B, C\}$

such that :

- $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)
- all vertices coloured A must appear before
 - all vertices coloured B

Example

decision problem :

given a graph G with vertices {1,2,...,n} how easy is it to decide if it allows such a 3-colouring?

Theorem

deciding if a given graph allows this kind of 3-colouring can be done in **polynomial time**

sketch of proof

- choose a vertex *m* from $1, \ldots, n$ (*n* choices)
- assume *m* forms the boundary between the vertices that can have colour *A* (≤ *m*) and the vertices that can have colour *B* (> *m*)

sketch of proof (cont.)

then vertices $1, \ldots, m$ can only be coloured A or Cand vertices $m + 1, \ldots, n$ can only be coloured B or C

so check if the two parts are bipartite

suppose "yes"

• so G[1, ..., m] has bipartite components same for G[m + 1, ..., n]

each component has 2 different choices for a 2-colouring

sketch of proof (cont.)

- for each component X_i in $G[1, \ldots, m]$
 - choose a top and a bottom part:
 - introduce a **Boolean variable** *x_i* with the meaning

- for each component Y_j in $G[m+1, \ldots, n]$
 - choose a top and a bottom part
 - introduce a Boolean variable y_i with the meaning

 $y_i = FALSE$:

well-known to be polynomial time decidable

Overview of the algorithm

for m from 1 to n:

- check if $G[1, \ldots, m]$ and $G[m+1, \ldots, n]$ are bipartite
- if "**no**": try next *m*

else:

determine bipartite components of

G[1, ..., m] and G[m + 1, ..., n]

- form corresponding 2-SAT problem
 - if solvable : done
 - else: try next m

can all be done in $O(n^3)$ steps

Generalising the problem

a way to look at this colouring problem is as if there is an order relation on the colours { A, B, C }

what would happen if we consider other order relations on the colours?

More general ordered 3-colourings

possible posets with 3 elements :

Theorem

- deciding if a certain graph with vertices 1, ..., n has a colouring according to these posets is
 - NP-complete for the first poset (just 3-colouring)
 - **polynomial** for the others

General ordered colourings with more colours

■ strong order: (A→ B) means: "all A before all B"

suppose we allow any number of colours and any poset on the set of colours

Theorem

deciding if a given graph with vertices 1, ..., n has a colouring according to a fixed colour poset is

NP-complete

if the poset has an anti-chain of length at least 3

polynomial otherwise

given: graph G = (V, E) with *n* vertices vertices are numbered from 1, ..., n

■ **required**: a vertex colouring with colours $\{A, B, C\}$ i.e., a function $\varphi : V \rightarrow \{A, B, C\}$

such that :

• $\forall uv \in E : \varphi(u) \neq \varphi(v)$ (i.e., a proper colouring)

vertices coloured A must appear before vertices coloured B only for adjacent vertices

Example

- suppose the graph is :
 - allowed colouring :
 - also allowed :
 - not allowed :

A different ordered 3-colouring problem

Theorem

this new 3-colouring problem is NP-complete

ideas of proof

- constraint on edges only means "local constraints"
 - allows to construct gadgets
- reduction to SAT

Generalising the 2nd variant for 3 colours

Theorem

- deciding if a certain graph with vertices 1, ..., n has a colouring according to the weak order rule is
 - **NP-complete** for the first two posets
 - polynomial for the others

Generalising the 2nd variant with more colours

- weak order: A → B means: "A before B on edges"
- suppose we allow any number of colours and any poset on the set of colours

Theorem

- deciding if a given graph with vertices 1, ..., n has a colouring according to a fixed colour poset and the weak order rule is
 - **polynomial** if

there is at most one pair of non-comparable colours

NP-complete otherwise

And now for something completely different

- given two directed graphs \overrightarrow{G} and \overrightarrow{H}
- a directed homomorphism $\overrightarrow{G} \longrightarrow \overrightarrow{H}$ is a function $\psi : V(\overrightarrow{G}) \rightarrow V(\overrightarrow{H})$ such that
 - \vec{uv} an arc in $\vec{G} \implies \vec{\psi(u)\psi(v)}$ an arc in \vec{H}
- directed homomorphisms seem to be much harder to understand than their undirected cousins

From colourings to homomorphisms

Some technical definitions

semi-complete digraph :

between any two vertices one arc or two (opposite) arcs

quasi-acyclic digraph :

removal of all 2-cycles gives a transitive acyclic digraph

starting from a colour poset, always gives a quasi-acyclic semi-complete digraph \overrightarrow{H}

Complexity of directed homomorphism

$\blacksquare \overrightarrow{H}$ -COLOURING

Input: directed graph \overrightarrow{G} **Question**: is there a homomorphism $\overrightarrow{G} \to \overrightarrow{H}$?

Theorem (Bang-Jensen, Hell & MacGillivray, 1988)

- let \overrightarrow{H} be a semi-complete digraph then the complexity of \overrightarrow{H} -COLOURING is
 - **polynomial** if \overrightarrow{H} contains **at most one directed cycle**
 - NP-complete otherwise

Complexity of acyclic directed homomorphism

• ACYCLIC- \overrightarrow{H} -COLOURING

Input: acyclic directed graph \overrightarrow{G} **Question**: is there a homomorphism $\overrightarrow{G} \to \overrightarrow{H}$?

Theorem (corollary of our earlier result)

- let \overrightarrow{H} be a quasi-acyclic semi-complete digraph then the complexity of ACYCLIC- \overrightarrow{H} -COLOURING is
 - **polynomial** if \overrightarrow{H} contains **at most one 2-cycle**
 - NP-complete otherwise

Open problems

is there a characterisation for semi-complete digraphs \overline{H} on the complexity of ACYCLIC- \overline{H} -COLOURING? (probably "yes")

• what about a characterisation for general digraphs \overrightarrow{H} on the complexity of ACYCLIC- \overrightarrow{H} -COLOURING? (likely to be very hard; open even if we restrict \overrightarrow{H} to trees)

the Holy Grail : characterisation for general digraphs \overrightarrow{H} on the complexity of \overrightarrow{H} -COLOURING